blob: 95fc6d9a65f806391b794dd4ac5ee96d89551c15 [file] [log] [blame]
"""
PYTEST_DONT_REWRITE (prevents pytest from rewriting assertions, which interferes
with test_rewrite_assert_with_msg and test_rewrite_assert_without_msg)
"""
# Owner(s): ["module: dynamo"]
import collections
import contextlib
import copy
import functools
import inspect
import itertools
import random
import unittest
import weakref
from abc import ABC
from collections import namedtuple
from copy import deepcopy
from functools import wraps
from typing import List
import numpy as np
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._dynamo.utils
import torch._functorch.config
import torch.library
from torch import nn
from torch._dynamo.debug_utils import same_two_models
from torch._dynamo.testing import (
CompileCounter,
expectedFailureDynamic,
rand_strided,
same,
)
from torch.nn import functional as F
from torch.testing._internal.common_utils import (
disable_translation_validation_if_dynamic_shapes,
)
_orig_module_call = torch.nn.Module.__call__
# Custom operator that only supports CPU and Meta
lib = torch.library.Library("test_sample", "DEF")
lib.define("foo(Tensor self) -> Tensor")
lib.impl("foo", torch.sin, "CPU")
requires_cuda = functools.partial(
unittest.skipIf, not torch.cuda.is_available(), "requires cuda"
)
_GLOBAL_CPU_TENSOR = torch.randn(3)
def exists(val):
return val is not None
def maybe(fn):
@wraps(fn)
def inner(x, *args, **kwargs):
if not exists(x):
return x
return fn(x, *args, **kwargs)
return inner
def is_fx_tracing_test() -> bool:
"""
Copied from the hpc trainer codebase
"""
return torch.nn.Module.__call__ is not _orig_module_call
def has_detectron2():
try:
from detectron2.layers.mask_ops import _paste_masks_tensor_shape
return _paste_masks_tensor_shape is not None
except ImportError:
return False
def _do_paste_mask(masks, boxes, img_h: int, img_w: int, skip_empty: bool = True):
# from detectron2 mask_ops.py
device = masks.device
if skip_empty and not torch.jit.is_scripting():
x0_int, y0_int = torch.clamp(boxes.min(dim=0).values.floor()[:2] - 1, min=0).to(
dtype=torch.int32
)
x1_int = torch.clamp(boxes[:, 2].max().ceil() + 1, max=img_w).to(
dtype=torch.int32
)
y1_int = torch.clamp(boxes[:, 3].max().ceil() + 1, max=img_h).to(
dtype=torch.int32
)
else:
x0_int, y0_int = 0, 0
x1_int, y1_int = img_w, img_h
x0, y0, x1, y1 = torch.split(boxes, 1, dim=1) # each is Nx1
N = masks.shape[0]
img_y = torch.arange(y0_int, y1_int, device=device, dtype=torch.float32) + 0.5
img_x = torch.arange(x0_int, x1_int, device=device, dtype=torch.float32) + 0.5
img_y = (img_y - y0) / (y1 - y0) * 2 - 1
img_x = (img_x - x0) / (x1 - x0) * 2 - 1
# img_x, img_y have shapes (N, w), (N, h)
gx = img_x[:, None, :].expand(N, img_y.size(1), img_x.size(1))
gy = img_y[:, :, None].expand(N, img_y.size(1), img_x.size(1))
grid = torch.stack([gx, gy], dim=3)
if not torch.jit.is_scripting():
if not masks.dtype.is_floating_point:
masks = masks.float()
img_masks = F.grid_sample(masks, grid.to(masks.dtype), align_corners=False)
if skip_empty and not torch.jit.is_scripting():
return img_masks[:, 0], (slice(y0_int, y1_int), slice(x0_int, x1_int))
else:
return img_masks[:, 0], ()
def cat(tensors, dim=0):
# from detectron2 wrappers.py
assert isinstance(tensors, (list, tuple))
if len(tensors) == 1:
return tensors[0]
return torch.cat(tensors, dim)
def shapes_to_tensor(x, device=None):
# from detectron2 wrappers.py
if torch.jit.is_scripting():
return torch.as_tensor(x, device=device)
if torch.jit.is_tracing():
assert all(
isinstance(t, torch.Tensor) for t in x
), "Shape should be tensor during tracing!"
# as_tensor should not be used in tracing because it records a constant
ret = torch.stack(x)
if ret.device != device: # avoid recording a hard-coded device if not necessary
ret = ret.to(device=device)
return ret
return torch.as_tensor(x, device=device)
class Boxes:
# from detectron2 poolers.py
def __init__(self, tensor: torch.Tensor):
"""
Args:
tensor (Tensor[float]): a Nx4 matrix. Each row is (x1, y1, x2, y2).
"""
device = (
tensor.device if isinstance(tensor, torch.Tensor) else torch.device("cpu")
)
tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
if tensor.numel() == 0:
# Use reshape, so we don't end up creating a new tensor that does not depend on
# the inputs (and consequently confuses jit)
tensor = tensor.reshape((-1, 4)).to(dtype=torch.float32, device=device)
assert tensor.dim() == 2 and tensor.size(-1) == 4, tensor.size()
self.tensor = tensor
def __len__(self) -> int:
return self.tensor.shape[0]
@property
def device(self):
return self.tensor.device
def convert_boxes_to_pooler_format(box_lists):
# from detectron2 structures.py
boxes = torch.cat([x.tensor for x in box_lists], dim=0)
# __len__ returns Tensor in tracing.
sizes = shapes_to_tensor([x.__len__() for x in box_lists], device=boxes.device)
indices = torch.repeat_interleave(
torch.arange(len(box_lists), dtype=boxes.dtype, device=boxes.device), sizes
)
return cat([indices[:, None], boxes], dim=1)
ReformerBackwardOutput = namedtuple(
"ReformerBackwardOutput",
["attn_output", "hidden_states", "grad_attn_output", "grad_hidden_states"],
)
ReformerEncoderOutput = namedtuple(
"ReformerEncoderOutput",
["hidden_states", "all_hidden_states", "all_attentions", "past_buckets_states"],
)
class _ReversibleFunction(torch.autograd.Function):
# taken from modeling_reformer.py in huggingface
@staticmethod
def forward(
ctx,
hidden_states,
layers,
attention_mask,
head_mask,
num_hashes,
all_hidden_states,
all_attentions,
past_buckets_states,
use_cache,
orig_sequence_length,
output_hidden_states,
output_attentions,
):
all_buckets = ()
# split duplicated tensor
hidden_states, attn_output = torch.chunk(hidden_states, 2, dim=-1)
for layer_id, (layer, layer_head_mask) in enumerate(zip(layers, head_mask)):
if output_hidden_states is True:
all_hidden_states.append(hidden_states)
attn_output = layer(attn_output)
# Add last layer
if output_hidden_states is True:
all_hidden_states.append(hidden_states)
# attach params to ctx for backward
ctx.save_for_backward(attn_output.detach(), hidden_states.detach())
ctx.layers = layers
ctx.all_buckets = all_buckets
ctx.head_mask = head_mask
ctx.attention_mask = attention_mask
# Concatenate 2 RevNet outputs
return torch.cat([attn_output, hidden_states], dim=-1)
@staticmethod
def backward(ctx, grad_hidden_states):
grad_attn_output, grad_hidden_states = torch.chunk(
grad_hidden_states, 2, dim=-1
)
# retrieve params from ctx for backward
attn_output, hidden_states = ctx.saved_tensors
# create tuple
output = ReformerBackwardOutput(
attn_output=attn_output,
hidden_states=hidden_states,
grad_attn_output=grad_attn_output,
grad_hidden_states=grad_hidden_states,
)
# free memory
del grad_attn_output, grad_hidden_states, attn_output, hidden_states
layers = ctx.layers
all_buckets = ctx.all_buckets
head_mask = ctx.head_mask
attention_mask = ctx.attention_mask
for idx, layer in enumerate(layers[::-1]):
# pop last buckets from stack
buckets = all_buckets[-1]
all_buckets = all_buckets[:-1]
# backprop
output = layer.backward_pass(
next_attn_output=output.attn_output,
hidden_states=output.hidden_states,
grad_attn_output=output.grad_attn_output,
grad_hidden_states=output.grad_hidden_states,
head_mask=head_mask[len(layers) - idx - 1],
attention_mask=attention_mask,
buckets=buckets,
)
assert all_buckets == (), "buckets have to be empty after backpropagation"
grad_hidden_states = torch.cat(
[output.grad_attn_output, output.grad_hidden_states], dim=-1
)
# num of return vars has to match num of forward() args
# return gradient for hidden_states arg and None for other args
return (
grad_hidden_states,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
)
class ReformerEncoder(torch.nn.Module):
def __init__(self):
super().__init__()
self.dropout = 0.5
self.layer_norm = torch.nn.LayerNorm(512, eps=1.0e-12)
self.layers = [torch.nn.Linear(256, 256)]
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=[None] * 6,
num_hashes=None,
use_cache=False,
orig_sequence_length=64,
output_hidden_states=False,
output_attentions=False,
):
# hidden_states and attention lists to be filled if wished
all_hidden_states = []
all_attentions = []
past_buckets_states = [((None), (None)) for i in range(len(self.layers))]
# concat same tensor for reversible ResNet
hidden_states = torch.cat([hidden_states, hidden_states], dim=-1)
hidden_states = _ReversibleFunction.apply(
hidden_states,
self.layers,
attention_mask,
head_mask,
num_hashes,
all_hidden_states,
all_attentions,
past_buckets_states,
use_cache,
orig_sequence_length,
output_hidden_states,
output_attentions,
)
# Apply layer norm to concatenated hidden states
hidden_states = self.layer_norm(hidden_states)
# Apply dropout
hidden_states = torch.nn.functional.dropout(
hidden_states, p=self.dropout, training=self.training
)
return ReformerEncoderOutput(
hidden_states=hidden_states,
all_hidden_states=all_hidden_states,
all_attentions=all_attentions,
past_buckets_states=past_buckets_states,
)
def longformer_chunk(hidden_states, window_overlap=256):
"""convert into overlapping chunks. Chunk size = 2w, overlap size = w"""
# non-overlapping chunks of size = 2w
hidden_states = hidden_states.view(
hidden_states.size(0),
hidden_states.size(1) // (window_overlap * 2),
window_overlap * 2,
hidden_states.size(2),
)
# use `as_strided` to make the chunks overlap with an overlap size = window_overlap
chunk_size = list(hidden_states.size())
chunk_size[1] = chunk_size[1] * 2 - 1
chunk_stride = list(hidden_states.stride())
chunk_stride[1] = chunk_stride[1] // 2
return hidden_states.as_strided(size=chunk_size, stride=chunk_stride)
class PartialT5(torch.nn.Module):
# Highly simplified T5Attention prefix
def __init__(self):
super().__init__()
self.q = torch.nn.Linear(512, 512)
self.k = torch.nn.Linear(512, 512)
self.v = torch.nn.Linear(512, 512)
def forward(
self,
hidden_states,
key_value_states=None,
past_key_value=None,
query_length=None,
):
batch_size, seq_length = hidden_states.shape[:2]
real_seq_length = seq_length
if past_key_value is not None:
assert (
len(past_key_value) == 2
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
real_seq_length += (
past_key_value[0].shape[2] if query_length is None else query_length
)
def shape(states):
"""projection"""
return states.view(batch_size, -1, 8, 64).transpose(1, 2)
def project(hidden_states, proj_layer, key_value_states, past_key_value):
"""projects hidden states correctly to key/query states"""
if key_value_states is None:
# self-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(hidden_states))
elif past_key_value is None:
# cross-attn
# (batch_size, n_heads, seq_length, dim_per_head)
hidden_states = shape(proj_layer(key_value_states))
if past_key_value is not None:
if key_value_states is None:
# self-attn
# (batch_size, n_heads, key_length, dim_per_head)
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
else:
# cross-attn
hidden_states = past_key_value
return hidden_states
# get query states
query_states = shape(
self.q(hidden_states)
) # (batch_size, n_heads, seq_length, dim_per_head)
# get key/value states
key_states = project(
hidden_states,
self.k,
key_value_states,
past_key_value[0] if past_key_value is not None else None,
)
value_states = project(
hidden_states,
self.v,
key_value_states,
past_key_value[1] if past_key_value is not None else None,
)
# compute scores
scores = torch.matmul(query_states, key_states.transpose(3, 2))
# (truncated here )
return scores, value_states
class ChunkReformerFeedForward(torch.nn.Module):
# simplified from HF modeling_reformer.py
def __init__(self):
super().__init__()
self.layer_norm = torch.nn.LayerNorm(256, eps=1e-12)
self.dense = torch.nn.Linear(256, 256)
self.output = torch.nn.Linear(256, 256)
def forward(self, attention_output):
return apply_chunking_to_forward(
self.forward_chunk,
attention_output + 1,
)
def forward_chunk(self, hidden_states):
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dense(hidden_states)
return self.output(hidden_states)
def apply_chunking_to_forward(forward_fn, *input_tensors):
# simplified from HF model_utils.py
assert len(input_tensors) > 0
tensor_shape = input_tensors[0].shape[1]
assert all(input_tensor.shape[1] == tensor_shape for input_tensor in input_tensors)
num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
if num_args_in_forward_chunk_fn != len(input_tensors):
raise ValueError()
return forward_fn(*input_tensors)
class FakeMamlInner(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(784, 5)
def forward(self, x, ignored=None, bn_training=False):
return self.linear(x.view(x.shape[0], -1))
class PartialMaml(torch.nn.Module):
# Highly simplified version of maml.meta.Meta.finetuning
def __init__(self):
super().__init__()
self.net = FakeMamlInner()
self.update_step_test = 10
self.update_lr = 0.4
def forward(self, x_spt, y_spt, x_qry, y_qry):
querysz = x_qry.size(0)
corrects = [0 for _ in range(self.update_step_test + 1)]
# in order to not ruin the state of running_mean/variance and bn_weight/bias
# we finetunning on the copied model instead of self.net
net = deepcopy(self.net)
# 1. run the i-th task and compute loss for k=0
logits = net(x_spt)
loss = F.cross_entropy(logits, y_spt)
grad = torch.autograd.grad(loss, net.parameters())
fast_weights = [
p[1] - self.update_lr * p[0] for p in zip(grad, net.parameters())
]
# this is the loss and accuracy before first update
with torch.no_grad():
# [setsz, nway]
logits_q = net(x_qry, net.parameters(), bn_training=True)
# [setsz]
pred_q = F.softmax(logits_q, dim=1).argmax(dim=1)
# scalar
correct = torch.eq(pred_q, y_qry).sum().item()
corrects[0] = corrects[0] + correct
# this is the loss and accuracy after the first update
with torch.no_grad():
# [setsz, nway]
logits_q = net(x_qry, fast_weights, bn_training=True)
# [setsz]
pred_q = F.softmax(logits_q, dim=1).argmax(dim=1)
# scalar
correct = torch.eq(pred_q, y_qry).sum().item()
corrects[1] = corrects[1] + correct
del net
accs = torch.tensor(corrects) / querysz
return accs
def softmax_backward_data(parent, grad_output, output, dim, self):
from torch import _softmax_backward_data
return _softmax_backward_data(grad_output, output, parent.dim, self.dtype)
class XSoftmax(torch.autograd.Function):
# transformers.models.deberta.modeling_deberta.XSoftmax
@staticmethod
def forward(self, input, mask, dim):
self.dim = dim
rmask = ~(mask.to(torch.bool))
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
output = torch.softmax(output, self.dim)
output.masked_fill_(rmask, 0)
self.save_for_backward(output, rmask)
return output
@staticmethod
def backward(self, grad_output):
(output, rmask) = self.saved_tensors
inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
return inputGrad, None, None
class ModelOutput(collections.OrderedDict):
"""based on file_utils.py in HuggingFace"""
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = dict(self.items())
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name, value):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
# Will raise a KeyException if needed
super().__setitem__(key, value)
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(key, value)
def to_tuple(self):
return tuple(self[k] for k in self.keys())
def create_rand_mask_from_inputs(
from_blocked_mask,
to_blocked_mask,
rand_attn,
num_attention_heads,
num_rand_blocks,
batch_size,
from_seq_length,
from_block_size,
):
"""taken from HF modeling_big_bird.py"""
num_windows = from_seq_length // from_block_size - 2
rand_mask = torch.stack(
[p1[i1.flatten()] for p1, i1 in zip(to_blocked_mask, rand_attn)]
)
rand_mask = rand_mask.view(
batch_size, num_attention_heads, num_windows, num_rand_blocks * from_block_size
)
rand_mask = torch.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask)
return rand_mask
class SequentialAppendList(torch.nn.Sequential):
"""from timm/models/vovnet.py"""
def forward(self, x: torch.Tensor, concat_list: List[torch.Tensor]) -> torch.Tensor:
for i, module in enumerate(self):
if i == 0:
concat_list.append(module(x))
else:
concat_list.append(module(concat_list[-1]))
x = torch.cat(concat_list, dim=1)
return x, concat_list
class BatchNormAct2d(torch.nn.BatchNorm2d):
"""Taken from timm"""
def __init__(
self,
num_features,
eps=1e-5,
momentum=0.1,
affine=True,
track_running_stats=True,
act_layer=torch.nn.ReLU,
inplace=True,
):
super().__init__(
num_features,
eps=eps,
momentum=momentum,
affine=affine,
track_running_stats=track_running_stats,
)
self.act = act_layer(inplace=inplace)
@torch.jit.ignore
def _forward_python(self, x):
return super().forward(x)
def forward(self, x):
if torch.jit.is_scripting():
x = self._forward_jit(x)
else:
x = self._forward_python(x)
x = self.act(x)
return x
def get_parameter_dtype(parameter):
"""from huggingface model_utils.py"""
try:
return next(parameter.parameters()).dtype
except StopIteration:
# For nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module):
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
class DummyConfig:
attn_layers = ["local", "lsh", "local", "lsh", "local", "lsh"]
lsh_attn_chunk_length = 64
local_attn_chunk_length = 64
def _get_min_chunk_len(config):
"""from hf_Reformer"""
attn_types = config.attn_layers
attn_types_set = set(attn_types)
if len(attn_types_set) == 1 and attn_types[0] == "lsh":
return config.lsh_attn_chunk_length
elif len(attn_types_set) == 1 and attn_types[0] == "local":
return config.local_attn_chunk_length
elif len(attn_types_set) == 2 and attn_types_set == set( # noqa: C405
["lsh", "local"]
):
return min(config.lsh_attn_chunk_length, config.local_attn_chunk_length)
else:
raise NotImplementedError(
f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select "
"attn layer types from ['lsh', 'local'] only."
)
def _stable_argsort(vector, dim):
"""from hf_Reformer"""
# this function scales the vector so that torch.argsort is stable.
# torch.argsort is not stable on its own
scale_offset = torch.arange(vector.shape[dim], device=vector.device).view(1, 1, -1)
scale_offset = scale_offset.expand(vector.shape)
scaled_vector = vector.shape[dim] * vector + (scale_offset % vector.shape[dim])
return torch.argsort(scaled_vector, dim=dim)
def _get_sorted_bucket_idx_and_undo_sorted_bucket_idx(buckets):
"""from hf_Reformer"""
# no gradients are needed
with torch.no_grad():
# hash-based sort
sorted_bucket_idx = _stable_argsort(buckets, dim=-1)
# create simple indices to scatter to, to have undo sort
indices = (
torch.arange(sorted_bucket_idx.shape[-1], device=buckets.device)
.view(1, 1, -1)
.expand(sorted_bucket_idx.shape)
)
# get undo sort
undo_sorted_bucket_idx = sorted_bucket_idx.new(*sorted_bucket_idx.size())
undo_sorted_bucket_idx.scatter_(-1, sorted_bucket_idx, indices)
return sorted_bucket_idx, undo_sorted_bucket_idx
class FeedForwardLayer(nn.Module):
def __init__(self, d_model, dim_feedforward, activation, dropout) -> None:
super().__init__()
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.activation = activation
self.dropout1 = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x):
return self.dropout2(
self.linear2(self.dropout1(self.activation(self.linear1(x))))
)
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation=nn.ReLU(),
layer_norm_eps=1e-5,
):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.dropout = nn.Dropout(dropout)
self.ff_block = FeedForwardLayer(d_model, dim_feedforward, activation, dropout)
def forward(self, src, src_mask=None, src_key_padding_mask=None):
x = src
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask))
x = self.norm2(x + self._ff_block(x))
return x
# self-attention block
def _sa_block(self, x, attn_mask, key_padding_mask):
x = self.self_attn(
x,
x,
x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False,
)[0]
return self.dropout(x)
# feed forward block
def _ff_block(self, x):
return self.ff_block(x)
class MockModule(torch.nn.Module):
def inner_fn(self, left, right):
return tuple(left) == tuple(right)
def fn(self, tensor):
if type(tensor) is int:
return False
torch.add(tensor, tensor)
return self.inner_fn(tensor.shape, (1, 2, 3))
class ReproTests(torch._dynamo.test_case.TestCase):
def test_do_paste_mask(self):
torch._dynamo.utils.counters.clear()
opt__do_paste_mask = torch._dynamo.optimize(
torch._dynamo.testing.CompileCounter()
)(_do_paste_mask)
opt__do_paste_mask(
torch.randn(1, 1, 28, 28),
torch.tensor([[0.0, 1, 2, 4]]) * 1,
427,
640,
True,
)
opt__do_paste_mask(
torch.randn(1, 1, 28, 28),
torch.tensor([[0.0, 1, 2, 4]]) * 2,
427,
640,
True,
)
opt__do_paste_mask(
torch.randn(1, 1, 28, 28),
torch.tensor([[0.0, 1, 2, 4]]) * 3,
612,
612,
True,
)
opt__do_paste_mask(
torch.randn(1, 1, 28, 28),
torch.tensor([[0.0, 1, 2, 4]]) * 4,
612,
612,
True,
)
opt__do_paste_mask(
torch.randn(1, 1, 28, 28),
torch.tensor([[0.0, 1, 2, 4]]) * 2,
427,
640,
False,
)
self.assertGreaterEqual(torch._dynamo.utils.counters["frames"]["ok"], 3)
self.assertEqual(
torch._dynamo.utils.counters["frames"]["total"],
torch._dynamo.utils.counters["frames"]["ok"] + 1,
)
def test_convert_boxes_to_pooler_format(self):
boxes1 = [
Boxes(torch.arange(0, 8).reshape((2, 4))),
Boxes(torch.arange(8, 16).reshape((2, 4))),
]
boxes2 = [
Boxes(torch.arange(16, 20).reshape((1, 4))),
Boxes(torch.arange(20, 24).reshape((1, 4))),
]
correct1 = convert_boxes_to_pooler_format(boxes1)
correct2 = convert_boxes_to_pooler_format(boxes2)
fn = convert_boxes_to_pooler_format
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt)(fn)
self.assertTrue(same(opt_fn(boxes1), correct1))
self.assertTrue(same(opt_fn(boxes2), correct2))
# repeat_interleave is a dynamic shape operator we do not execute/
# In the future, we could reduce the frame_count down to 1
# by guarding on the exact values of `Tensor repeats` arg
if torch._dynamo.config.assume_static_by_default:
self.assertExpectedInline(cnt.frame_count, """4""")
self.assertExpectedInline(cnt.op_count, """10""")
else:
self.assertExpectedInline(cnt.frame_count, """4""")
self.assertExpectedInline(cnt.op_count, """16""")
def test_boxes_len(self):
def fn(boxes):
return len(boxes) + boxes.__len__() + boxes.tensor
boxes1 = Boxes(torch.arange(0, 8).reshape((2, 4)))
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize_assert(cnt)(fn)
self.assertTrue(same(opt_fn(boxes1), boxes1.tensor + 4.0))
if torch._dynamo.config.assume_static_by_default:
self.assertExpectedInline(cnt.frame_count, """1""")
self.assertExpectedInline(cnt.op_count, """1""")
else:
self.assertExpectedInline(cnt.frame_count, """1""")
self.assertExpectedInline(cnt.op_count, """6""")
def _reformer(self, nopython):
input = torch.randn([1, 64, 256])
model = ReformerEncoder()
torch.manual_seed(1337)
correct = copy.deepcopy(model)(input)
cnt = torch._dynamo.testing.CompileCounter()
torch.manual_seed(1337)
opt_model = torch._dynamo.optimize(cnt, nopython=nopython)(model)
self.assertTrue(same(opt_model(input), correct))
return cnt
@requires_cuda()
def test_sub_alpha_scalar_repro(self):
@torch.compile(backend="aot_eager")
def f(x):
return x.sub(1, alpha=2)
f(torch.ones(2, device="cuda", dtype=torch.float64))
# See https://github.com/pytorch/pytorch/issues/97745
def test_gan_repro_trying_to_backward_through_the_graph_a_second_time(self):
def f(a, b):
c = torch.ones(2, 2)
d = torch.ones(2, 2)
e = torch.matmul(a, c)
g_loss = torch.abs(e - d).mean()
g_loss.backward()
fake_d_pred = torch.matmul(b, e.detach())
d_loss = fake_d_pred.mean()
d_loss.backward()
a_ref = torch.randn(2, 2, requires_grad=True)
b_ref = torch.randn(2, 2, requires_grad=True)
out_ref = f(a_ref, b_ref)
a_test = a_ref.clone().detach().requires_grad_(True)
b_test = b_ref.clone().detach().requires_grad_(True)
out_test = torch.compile(f, backend="aot_eager")(a_test, b_test)
self.assertEqual(out_ref, out_test)
self.assertEqual(a_ref.grad, a_test.grad)
self.assertEqual(b_ref.grad, b_test.grad)
def test_embedding_backward_broadcasting_decomp(self):
def f(grad_output, indices):
num_weights = 10
padding_idx = 1
scale_grad_by_freq = True
return torch.ops.aten.embedding_dense_backward(
grad_output, indices, num_weights, padding_idx, scale_grad_by_freq
)
f_compiled = torch.compile(f, backend="aot_eager")
grad_output = torch.ones(2, 4, 3, dtype=torch.float16)
indices = torch.ones(2, 4, dtype=torch.int64)
out_ref = f(grad_output, indices)
out_test = f_compiled(grad_output, indices)
self.assertEqual(out_ref, out_test)
def test_reformer_eval(self):
with torch.no_grad():
cnt = self._reformer(nopython=True)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 11)
def test_reformer_train(self):
with torch.enable_grad():
cnt = self._reformer(nopython=False)
# cant inline torch.autograd.Function means graph break
if torch._dynamo.config.assume_static_by_default:
self.assertExpectedInline(cnt.frame_count, """3""")
self.assertExpectedInline(cnt.op_count, """10""")
else:
self.assertExpectedInline(cnt.frame_count, """3""")
self.assertExpectedInline(cnt.op_count, """10""")
@disable_translation_validation_if_dynamic_shapes
def test_longformer_chunk(self):
input1 = torch.randn([1, 4096, 1])
input2 = torch.randn([12, 4096, 64])
correct1 = longformer_chunk(input1)
correct2 = longformer_chunk(input2)
fn = longformer_chunk
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize_assert(cnt)(fn)
self.assertTrue(same(opt_fn(input1), correct1))
self.assertTrue(same(opt_fn(input2), correct2))
self.assertTrue(same(opt_fn(input1), correct1))
self.assertTrue(same(opt_fn(input2), correct2))
if torch._dynamo.config.assume_static_by_default:
if torch._dynamo.config.automatic_dynamic_shapes:
self.assertExpectedInline(cnt.frame_count, """2""")
self.assertExpectedInline(cnt.op_count, """14""")
else:
self.assertExpectedInline(cnt.frame_count, """2""")
self.assertExpectedInline(cnt.op_count, """4""")
else:
self.assertExpectedInline(cnt.frame_count, """2""")
self.assertExpectedInline(cnt.op_count, """35""")
def test_hf_t5_forward(self):
input = torch.randn([1, 2048, 512])
model = PartialT5()
correct = model(input)
cnt = torch._dynamo.testing.CompileCounter()
opt_model = torch._dynamo.optimize_assert(cnt)(model)
self.assertTrue(same(opt_model(input), correct))
if torch._dynamo.config.assume_static_by_default:
self.assertExpectedInline(cnt.frame_count, """1""")
self.assertExpectedInline(cnt.op_count, """11""")
else:
self.assertExpectedInline(cnt.frame_count, """1""")
self.assertExpectedInline(cnt.op_count, """12""")
def test_module_in_skipfiles(self):
model = nn.Linear(10, 10)
cnt = torch._dynamo.testing.CompileCounter()
torch.compile(model, backend=cnt, fullgraph=True)(torch.randn([5, 10]))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
def test_function_in_skipfiles(self):
cnt = torch._dynamo.testing.CompileCounter()
torch.compile(torch.sin, backend=cnt, fullgraph=True)(torch.randn([5, 10]))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
def test_slicing_dynamic_shape(self):
def fn(y):
x = torch.ones(8)
idx = y[0]
out = x[idx:]
return (out + 3) * 5
counter = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(counter)(fn)
out = opt_fn(torch.ones(10, dtype=torch.long))
# idx should be 1 -> slicing off [1:] of 8 elem tensor
self.assertEqual(list(out.shape), [7])
self.assertEqual(counter.op_count, 2)
self.assertEqual(counter.frame_count, 1)
self.assertEqual(list(opt_fn(torch.tensor([4])).shape), [4])
def test_slicing_dynamic_shape_setitem(self):
def fn(input_lengths: torch.Tensor, new_ones_1):
getitem_13 = input_lengths[3]
new_ones_1[(3, slice(getitem_13, None, None))] = 0
setitem_13 = new_ones_1
return (setitem_13,)
x = torch.randn(10).to(dtype=torch.int64)
y = torch.randn(10, 204)
ref = fn(x, y)
opt_fn = torch._dynamo.optimize("aot_eager")(fn)
res = opt_fn(x, y)
self.assertTrue(same(ref, res))
# https://github.com/pytorch/pytorch/issues/103620
@expectedFailureDynamic
def test_chunk_reformer_ff(self):
input = torch.randn([1, 4096, 256])
model = ChunkReformerFeedForward()
correct = model(input)
cnt = torch._dynamo.testing.CompileCounter()
opt_model = torch._dynamo.optimize_assert(cnt)(model)
self.assertTrue(same(opt_model(input), correct))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 4)
# see: https://github.com/pytorch/pytorch/issues/80067
# NB: When you remove the expectedFailure, don't forget to
# uncomment/adjust the assertEqual below
@unittest.expectedFailure
@torch._dynamo.config.patch(
fake_tensor_propagation=True, capture_scalar_outputs=True
)
def test_maml_item_capture(self):
a = torch.randn(5, 1, 28, 28)
b = torch.zeros(5, dtype=torch.int64)
c = torch.randn(75, 1, 28, 28)
d = torch.zeros(75, dtype=torch.int64)
model = PartialMaml()
correct = model(a, b, c, d)
cnt = torch._dynamo.testing.CompileCounter()
opt_model = torch._dynamo.optimize(cnt)(model)
for _ in range(10):
self.assertTrue(same(opt_model(a, b, c, d), correct))
# if torch._dynamo.config.assume_static_by_default:
# self.assertExpectedInline(cnt.frame_count, """2""")
# else:
# self.assertExpectedInline(cnt.frame_count, """3""")
# TODO(jansel): figure out why op count depends on imports
self.assertIn(cnt.op_count, (36, 35, 34, 29, 28, 27))
# see: https://github.com/pytorch/pytorch/issues/80067
@torch._dynamo.config.patch(capture_scalar_outputs=False)
def test_maml_no_item_capture(self):
a = torch.randn(5, 1, 28, 28)
b = torch.zeros(5, dtype=torch.int64)
c = torch.randn(75, 1, 28, 28)
d = torch.zeros(75, dtype=torch.int64)
model = PartialMaml()
correct = model(a, b, c, d)
cnt = torch._dynamo.testing.CompileCounter()
opt_model = torch._dynamo.optimize(cnt)(model)
for _ in range(10):
self.assertTrue(same(opt_model(a, b, c, d), correct))
if torch._dynamo.config.assume_static_by_default:
self.assertExpectedInline(cnt.frame_count, """2""")
else:
self.assertExpectedInline(cnt.frame_count, """3""")
def test_hf_model_output(self):
ex = ModelOutput(a=torch.randn(10), b=torch.randn(10), c=torch.randn(10))
def fn1(x):
return x["a"] + 1
def fn2(x):
return x.a + 1
def fn3(x):
return x.to_tuple()[0] + 1
def fn4(x):
return x[0] + 1
cnt = torch._dynamo.testing.CompileCounter()
for fn in (fn1, fn2, fn3, fn4):
cnt.clear()
opt_fn = torch._dynamo.optimize_assert(cnt)(fn)
self.assertTrue(same(opt_fn(ex), ex.a + 1))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
@disable_translation_validation_if_dynamic_shapes
def test_create_rand_mask_from_inputs(self):
args = [
torch.randn([1, 64, 64]),
torch.randn([1, 64, 64]),
torch.zeros([1, 12, 62, 3], dtype=torch.int64),
12,
3,
1,
4096,
64,
]
correct = create_rand_mask_from_inputs(*args)
fn = create_rand_mask_from_inputs
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize_assert(cnt)(fn)
self.assertTrue(same(opt_fn(*args), correct))
if torch._dynamo.config.assume_static_by_default:
self.assertExpectedInline(cnt.frame_count, """1""")
self.assertExpectedInline(cnt.op_count, """8""")
else:
self.assertExpectedInline(cnt.frame_count, """1""")
self.assertExpectedInline(cnt.op_count, """11""")
def test_rng_state(self):
def fn():
state = torch.get_rng_state()
before = torch.rand(1000)
torch.set_rng_state(state)
after = torch.rand(1000)
return before, after
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt)(fn)
before, after = opt_fn()
self.assertTrue(same(before, after))
self.assertEqual(cnt.frame_count, 2)
self.assertEqual(cnt.op_count, 3) # rand, rand
try:
graph, _ = torch._dynamo.export(fn)()
# See https://github.com/pytorch/pytorch/pull/87490
self.fail("unexpected export success")
except torch._dynamo.exc.Unsupported:
pass
def test_threading_local(self):
import threading
foo = threading.local()
foo.x = torch.rand(1)
def f(x):
return torch.cat([x, foo.x])
cnt = torch._dynamo.testing.CompileCounter()
opt_f = torch._dynamo.optimize(cnt, nopython=True)(f)
inp = torch.ones(1)
out = f(inp)
opt_out = opt_f(inp)
self.assertEqual(opt_out, out)
self.assertEqual(cnt.frame_count, 1)
def test_seq_append_list(self):
x = torch.randn(4, 10)
model = SequentialAppendList(
torch.nn.Linear(10, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 10),
torch.nn.ReLU(),
)
# this one is tricky because it mutates the list provided as an input
l1 = [x]
l2 = [x]
correct, _ = model(x, l1)
cnt = torch._dynamo.testing.CompileCounter()
opt_model = torch._dynamo.optimize_assert(cnt)(model)
result, l3 = opt_model(x, l2)
self.assertTrue(same(result, correct))
self.assertTrue(same(l1, l2))
self.assertIs(l2, l3)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 5)
def test_batch_norm_act(self):
a = torch.randn(5, 1, 28, 28)
model = BatchNormAct2d(1).eval()
correct = model(a)
cnt = torch._dynamo.testing.CompileCounter()
if not torch._dynamo.config.specialize_int:
# _local_scalar_dense causes graph break w 0-dim tensor
opt_model = torch._dynamo.optimize(cnt)(model)
self.assertTrue(same(opt_model(a), correct))
return
opt_model = torch._dynamo.optimize_assert(cnt)(model)
self.assertTrue(same(opt_model(a), correct))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 2)
def test_get_parameter_dtype(self):
model = SequentialAppendList(
torch.nn.Linear(10, 10),
torch.nn.ReLU(),
)
def fn(model, x):
return x + torch.randn(10, dtype=get_parameter_dtype(model))
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize_assert(cnt)(fn)
self.assertEqual(opt_fn(model, torch.randn(10)).dtype, torch.float32)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 2)
def test_nn_parameter(self):
def test_fn():
a = torch.nn.Parameter(torch.randn(5, 5))
# Checks that TensorVariable stores the type information correctly
self.assertTrue(isinstance(a, torch.nn.Parameter))
return a
cnt = torch._dynamo.testing.CompileCounter()
opt_test_fn = torch._dynamo.optimize(cnt)(test_fn)
out = opt_test_fn()
self.assertTrue(isinstance(out, torch.nn.Parameter))
def test_Size(self):
def test_fn():
a = torch.randn(4)
x = torch.Size([1, 2, 3])
# Checks that SizeVariable return torch.Size object
assert isinstance(x, torch.Size)
# Causes graph breaks and checks reconstruction of SizeVariable
# object
self.assertIsInstance(x, torch.Size)
return a
cnt = torch._dynamo.testing.CompileCounter()
opt_test_fn = torch._dynamo.optimize(cnt)(test_fn)
opt_test_fn()
# See https://github.com/pytorch/pytorch/issues/100067
def test_copy_weird_strides(self):
# This test requires inductor's copy() decomp to preserve strides properly.
def test_fn(a):
b = torch.zeros(48, 4, 256, 513)
b[:, 0, 1:256, 1:256] = a
c = b.view(4, 12, 1024, 513)
d = c.transpose(2, 1)
d.add_(1)
return d
sh, st, dt, dev, rg = (
(48, 255, 255),
(787968, 513, 1),
torch.float16,
"cpu",
True,
)
a = rand_strided(sh, st, dt, dev).requires_grad_(rg)
compiled_f = torch.compile(test_fn, backend="aot_eager_decomp_partition")
out1 = test_fn(a)
out2 = compiled_f(a)
self.assertEqual(out1, out2)
def test_indexing_with_list(self):
def test_fn():
def run_test(tensor, *idx):
npt = tensor.numpy()
assert npt[idx].shape == tensor[idx].shape
x = torch.arange(0, 10)
cases = [
[None, None],
[1, None],
]
for case in cases:
run_test(x, *case)
return torch.randn(4)
cnt = torch._dynamo.testing.CompileCounter()
opt_test_fn = torch._dynamo.optimize(cnt)(test_fn)
opt_test_fn()
def test_reformer_min_chunk_len(self):
def fn(cfg):
t = torch.empty(10)
t.fill_(_get_min_chunk_len(cfg))
return t[0]
cfg = DummyConfig()
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize_assert(cnt)(fn)
self.assertEqual(opt_fn(cfg), 64)
# With unspec int, maximum computation is preserved
if torch._dynamo.config.assume_static_by_default:
self.assertExpectedInline(cnt.frame_count, """1""")
self.assertExpectedInline(cnt.op_count, """3""")
else:
self.assertExpectedInline(cnt.frame_count, """1""")
self.assertExpectedInline(cnt.op_count, """4""")
def test_reformer_sorting(self):
x = torch.zeros([1, 12, 4096], dtype=torch.int64)
correct = _get_sorted_bucket_idx_and_undo_sorted_bucket_idx(x)
fn = _get_sorted_bucket_idx_and_undo_sorted_bucket_idx
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize_assert(cnt)(fn)
self.assertTrue(same(opt_fn(x), correct))
if torch._dynamo.config.assume_static_by_default:
self.assertExpectedInline(cnt.frame_count, """1""")
self.assertExpectedInline(cnt.op_count, """14""")
else:
self.assertExpectedInline(cnt.frame_count, """1""")
self.assertExpectedInline(cnt.op_count, """27""")
def test_recursive_map(self):
# https://github.com/pytorch/torchdynamo/issues/132
def _recursive_map(struct, batch_dim=0):
for k, v in struct.items():
if v is not None:
if isinstance(v, dict):
_recursive_map(v)
else:
struct[k] = v
def toy_example(a, b, v):
x = a / (torch.abs(a) + 1)
if v is not None:
_recursive_map(v)
return x * b
cnt = torch._dynamo.testing.CompileCounter()
opt_toy_example = torch._dynamo.optimize(cnt)(toy_example)
opt_toy_example(
torch.randn(10),
torch.randn(10),
{"layer0": {"memory_keys": torch.randn(10)}},
)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 4)
def test_issue175(self):
n_heads = 2
d_model = 64
model = TransformerEncoderLayer(d_model, n_heads)
inp = torch.randn(1, d_model)
cnt = torch._dynamo.testing.CompileCounter()
opt_model = torch._dynamo.optimize(cnt, nopython=True)(model)
opt_model(inp)
opt_model(inp)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 12)
def test_exec_import(self):
def fn1():
exec("import math")
def fn2():
try:
math.sqrt(4)
return False
except NameError:
return True
def fn3():
fn1()
return fn2()
self.assertTrue(fn3())
opt_fn3 = torch._dynamo.optimize("eager")(fn3)
self.assertTrue(opt_fn3())
def test_exec_wildcard_import(self):
# Test that globals are not carried over from frame to frame
def fn1():
exec("from torch import *")
def fn2():
x = torch.zeros(4)
for i in range(5):
x = x + i
return x
def fn3():
fn1()
return fn2()
ref = fn3()
opt_fn3 = torch._dynamo.optimize("eager")(fn3)
res = opt_fn3()
self.assertTrue(same(ref, res))
def test_with_on_graph_break_inst(self):
def reversible(x):
print("Hello world") # Cause graph break so inline fails
return torch.sin(torch.cos(x))
def fn(x):
with torch.enable_grad():
a = torch.sin(x)
b = reversible(a)
c = torch.sigmoid(b)
c.sum().backward()
return x.grad
x = torch.randn(3, requires_grad=True)
x.grad = None
with torch.no_grad():
ref = fn(x)
x.grad = None
opt_fn = torch._dynamo.optimize("eager")(fn)
with torch.no_grad():
res = opt_fn(x)
self.assertTrue(same(ref, res))
def test_with_on_graph_break_nested(self):
def reversible(x):
torch._dynamo.graph_break() # Cause graph break so inline fails
return torch.sin(torch.cos(x))
def fn(x):
# nested context manager failed previously
with torch.no_grad():
with torch.enable_grad():
a = torch.sin(x)
b = reversible(a)
c = torch.sigmoid(b)
c.sum().backward()
return x.grad
x = torch.randn(3, requires_grad=True)
x.grad = None
with torch.no_grad():
ref = fn(x)
x.grad = None
opt_fn = torch._dynamo.optimize("eager")(fn)
with torch.no_grad():
res = opt_fn(x)
self.assertTrue(same(ref, res))
# https://github.com/pytorch/torchdynamo/issues/1446
def test_grad_mode_carrying_correct_state_after_graph_break(self):
def fn(x):
with torch.no_grad():
y = x * 3
print("Break")
z = x + 2
return y, z
x = torch.randn(3, requires_grad=True)
opt_fn = torch._dynamo.optimize("eager")(fn)
y, z = opt_fn(x)
self.assertFalse(y.requires_grad)
self.assertFalse(z.requires_grad)
def test_abc_setattr(self):
# tests that we correctly bail out of __setattr__ calls
# TODO: does not ensure ABC classes are correctly inferred as ClassVariables
# (doesn't test the fix for 'super()')
class BaseModule(torch.nn.Module, ABC):
def blah(self, x):
return x + 1
class Derived(BaseModule):
def __setattr__(self, name, value) -> None:
super().__setattr__(name, value)
def forward(self, x):
# expect a graph break on __setattr__
self.foo = 0
return self.blah(x)
def blah(self, x):
return super().blah(x)
x = torch.randn(3, requires_grad=True)
mod = Derived()
opt_mod = torch._dynamo.optimize("eager")(mod)
opt_mod(x)
self.assertGreaterEqual(torch._dynamo.utils.counters["frames"]["ok"], 2)
self.assertGreaterEqual(torch._dynamo.utils.counters["frames"]["total"], 2)
@torch._dynamo.config.patch("suppress_errors", True)
def test_guard_fail_tensor_bool(self):
@torch._dynamo.disable(recursive=False)
def fn():
condition_shape = (5, 5)
dtypes = (torch.bool,)
shapes = (
(),
(5,),
(1, 5),
)
tensors = [
torch.empty(shape, dtype=dtype).fill_(17)
for shape, dtype in itertools.product(shapes, dtypes)
]
x_vals = (5.0, *tensors)
y_vals = (6.0, *tensors)
@torch._dynamo.disable
def get_expected(condition, x, y):
x_np = x.cpu().numpy() if isinstance(x, torch.Tensor) else x
y_np = y.cpu().numpy() if isinstance(y, torch.Tensor) else y
return torch.from_numpy(
np.where(condition.cpu().numpy(), x_np, y_np)
).to(common_dtype)
for x, y in zip(x_vals, y_vals):
condition = torch.empty(*condition_shape, dtype=torch.bool).bernoulli_()
common_dtype = torch.result_type(x, y)
def check_equal(condition, x, y):
# NumPy aggressively promotes to double, hence cast to output to correct dtype
expected = get_expected(condition, x, y)
result = torch.where(condition, x, y)
assert torch.allclose(expected, result)
check_equal(condition, x, y)
check_equal(condition, y, x)
fn()
opt_fn = torch._dynamo.optimize("eager")(fn)
opt_fn()
def test_guard_fail_nested_tuple(self):
def fn(args):
return torch.ones(()), args[0] * 2
# This adds a tensor check on args[1][0] and args[1][1]
args1 = (torch.ones(1), (torch.ones(1), torch.ones(1)))
args2 = (torch.ones(1), torch.ones(1))
opt_fn = torch._dynamo.optimize("eager")(fn)
ref = opt_fn(args1)
res = opt_fn(args2)
self.assertTrue(same(ref, res))
def test_nullcontext1(self):
@torch.compile(fullgraph=True, backend="eager")
def fn(x, ctx):
x = x.sin()
with ctx:
x = x.cos()
x = x.sin()
return x
y = torch.randn(10)
self.assertTrue(same(fn(y, contextlib.nullcontext()), y.sin().cos().sin()))
def test_nullcontext2(self):
@torch.compile(fullgraph=True, backend="eager")
def fn(x, ctx):
x = x.sin()
with ctx():
x = x.cos()
x = x.sin()
return x
y = torch.randn(10)
self.assertTrue(same(fn(y, contextlib.nullcontext), y.sin().cos().sin()))
def test_no_grad_inline(self):
@torch.no_grad()
def a(x):
return x.sin()
@torch.compile(backend="eager", fullgraph=True)
def b(x):
return a(x).cos()
y = torch.randn(10)
self.assertTrue(same(b(y), y.sin().cos()))
# AssertionError: ABCMeta
@unittest.expectedFailure
def test_numpy_list(self):
@torch._dynamo.disable
def rand_gen():
return list(np.array([random.randint(5, 10) for _ in range(10)]))
def fn(x):
random_list = rand_gen()
z = torch.LongTensor(random_list)
return x * z
x = torch.ones(10) * 2
random.seed(0)
ref0 = fn(x)
ref1 = fn(x)
random.seed(0)
opt_fn = torch._dynamo.optimize("eager")(fn)
res0 = opt_fn(x)
res1 = opt_fn(x)
self.assertTrue(same(ref0, res0))
self.assertTrue(same(ref1, res1))
def test_primtorch(self):
@torch._dynamo.optimize("eager")
def fn(x):
torch._refs.abs(x)
fn(torch.randn(3))
@unittest.expectedFailure
# inline_call [('inline in skipfiles: bind ...python3.10/inspect.py', 1)]
def test_primtorch_no_graph_break(self):
@torch._dynamo.optimize("eager", nopython=True)
def fn(x):
torch._refs.abs(x)
fn(torch.randn(3))
def test_torch_tensor_ops_no_graph_break(self):
@torch._dynamo.optimize("eager", nopython=True)
def fn(x):
torch.Tensor.abs_(x)
fn(torch.randn(3))
@unittest.skipIf(
not isinstance(torch.ops.aten.abs, torch._ops.OpOverloadPacket),
"old pt doesn't work",
)
def test_torch_ops_aten(self):
# Picked an op that doesn't show up in the default list
@torch._dynamo.optimize("eager", nopython=True)
def fn(x):
return torch.ops.aten.absolute(x)
fn(torch.randn(3))
def test_hf_gelu_inline(self):
class GELUActivation(nn.Module):
def __init__(self):
super().__init__()
self.act = nn.functional.gelu
def forward(self, input):
return self.act(input)
@torch._dynamo.optimize("eager", nopython=True)
def fn(x):
return GELUActivation()(x)
y = torch.randn(10)
self.assertTrue(same(fn(y), nn.functional.gelu(y)))
@torch._dynamo.optimize("eager", nopython=True)
def fn_returns(x):
return GELUActivation(), x + 1
act, _ = fn_returns(y)
self.assertIsInstance(act, GELUActivation)
self.assertIs(act.act, nn.functional.gelu)
self.assertTrue(hasattr(act, "_buffers")) # check that __init__ got called
def test_dropout_inline(self):
@torch._dynamo.optimize("eager")
def fn(x):
return torch.nn.Dropout(0.1)(x)
y = torch.randn(10)
torch.manual_seed(1337)
ref = nn.functional.dropout(y, 0.1)
torch.manual_seed(1337)
res = fn(y)
self.assertTrue(same(ref, res))
def test_setitem_boolean_mask_diff(self):
def fn(x, b, y):
x = x.clone()
x[b] = y
return x
opt_fn = torch._dynamo.optimize("aot_eager")(fn)
x = torch.randn(4, requires_grad=True)
b = torch.tensor([True, False, True, False])
y = torch.randn(2, requires_grad=True)
opt_fn(x, b, y)
def test_setitem_tuple_boolean_mask_diff(self):
def fn(x, b, y):
x = x.clone()
x[:, b] = y
return x
opt_fn = torch._dynamo.optimize("aot_eager")(fn)
x = torch.randn(8, 4, requires_grad=True)
b = torch.tensor([True, False, True, False])
y = torch.randn(2, requires_grad=True)
opt_fn(x, b, y)
def test_torch_tensor_ops(self):
def fn(x):
return torch.Tensor.abs_(x)
x = torch.randn(3)
opt_fn = torch._dynamo.optimize("eager", nopython=True)(fn)
y = fn(x)
y_ = opt_fn(x)
self.assertTrue(same(y, y_))
def test_guard_ordering_shape_fail(self):
# If a function which takes a tensor has an inner function which
# is compiled and generates a guard on its shape,
# they are evaluated in the wrong order. So if on a subsequent call
# an int is passed instead of a tensor, guard evaluation will crash
# with a "no attribute: shape" error
m = MockModule()
opt_m = torch._dynamo.optimize("eager")(m)
opt_m.fn(torch.ones((5, 5)))
opt_m.fn(-3)
def test_tensor_isinstance_tuple(self):
@torch._dynamo.optimize("eager")
def fn():
t = torch.ones(5, 5)
if not isinstance(t, (int, torch.Tensor)):
msg = str.format(
"{0} is not an instance of {1}",
type(t),
(int, torch.Tensor),
)
raise ValueError(msg)
return True
fn()
def test_isinstance_dtype(self):
@torch._dynamo.optimize("eager", nopython=True)
def fn(x):
isinstance(torch.bfloat16, torch.dtype)
return x
fn(torch.randn(3))
def test_isinstance_storage(self):
@torch._dynamo.optimize("eager")
def fn(x):
f = bytearray([0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x10, 0x40])
bools = torch.BoolStorage.from_buffer(f, "big")
assert isinstance(bools, torch.BoolStorage)
return x
fn(torch.randn(3))
def test_dict_list_values(self):
def inner_fn(args):
return [x[1].shape for x in args]
@torch._dynamo.optimize("eager")
def fn(tensors):
return inner_fn(zip(itertools.count(), tensors["args"]))
fn({"args": [torch.ones(5, 5), torch.ones(5, 6), torch.ones(5, 7)]})
fn({"args": [torch.ones(5, 5)]})
def test_dict_iter(self):
class MyMod(torch.nn.Module):
def forward(self, x):
z = {"my": 1, "const": 2, "dict": 3, "variable": 4}
tot = 0
for key in z:
tot += z[key]
return tot
x = torch.tensor([0])
model = MyMod()
opt_model = torch._dynamo.optimize("eager", nopython=True)(model)
y = opt_model(x)
self.assertEqual(y, 10)
def test_sort_out(self):
dtype = torch.float32
device = "cpu"
def fn():
tensor = torch.randn((3, 5), dtype=dtype, device=device)[:, 0]
values1 = torch.tensor(0, dtype=dtype, device=device)
indices1 = torch.tensor(0, dtype=torch.long, device=device)
torch.sort(tensor, out=(values1, indices1))
self.assertEqual(values1.stride(), (1,))
self.assertEqual(indices1.stride(), (1,))
fn()
opt_fn = torch._dynamo.optimize("eager")(fn)
opt_fn()
def test_sort_out2(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("sorted", torch.ones(4, 4))
self.register_buffer("indices", torch.ones(4, 4, dtype=torch.long))
def forward(self, x):
torch.sort(x, out=(self.sorted, self.indices))
return (x + 1, self.sorted, self.indices)
x = torch.randn(4, 4)
m = MyModule()
ref = m(x)
opt_m = torch._dynamo.optimize("eager")(m)
res = opt_m(x)
self.assertTrue(same(ref, res))
def test_sigmoid_out(self):
dtype = torch.float32
device = "cpu"
def fn():
inp = torch.randn((3, 5), dtype=dtype, device=device)
out1 = torch.tensor(0, dtype=dtype, device=device)
torch.sigmoid(inp, out=out1)
self.assertEqual(out1.numel(), 15)
fn()
opt_fn = torch._dynamo.optimize("eager")(fn)
opt_fn()
def test_sigmoid_out2(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("base", torch.ones(4, 4))
def forward(self, x):
torch.sigmoid(x, out=self.base)
return x + self.base
x = torch.randn(4, 4)
m = MyModule()
ref = m(x)
opt_m = torch._dynamo.optimize("eager")(m)
res = opt_m(x)
self.assertTrue(same(ref, res))
def test_slice_into_list_mutable(self):
class Mod(torch.nn.Module):
def forward(self, listy):
x = listy[3:5]
for i in range(10):
z = torch.abs(torch.randn(10)) + 1
x[0] = z
return x
m = Mod()
listy = [torch.randn(10)] * 10
cnt = torch._dynamo.testing.CompileCounter()
opt_m = torch._dynamo.optimize(cnt, nopython=True)(m)
opt_m.forward(listy)
self.assertEqual(cnt.frame_count, 1)
def test_vdd_duplicate_error(self):
def fn(a, dt):
keys = list(dt._jt_dict.keys())
p = torch.cos(dt._jt_dict[keys[0]]._value)
q = torch.sin(a)
r = torch.sigmoid(dt._jt_dict[keys[0]]._value)
return p + q + r
class Value:
def __init__(self):
self._value = torch.randn(4)
class Sample:
def __init__(self):
self._jt_dict = {}
self._jt_dict["POSITION_ID"] = Value()
a = torch.randn(4)
sample = Sample()
ref = fn(a, sample)
optimized_fn = torch._dynamo.optimize("eager", nopython=True)(fn)
res = optimized_fn(a, sample)
self.assertTrue(same(ref, res))
def test_specialized_stride(self):
def f():
e = torch.empty(4)
x = e[::2]
return x.stride()
self.assertEqual(f(), torch._dynamo.optimize("eager")(f)())
def test_out_none(self):
# https://github.com/pytorch/pytorch/issues/92814
def fn(input):
return torch.nn.functional.normalize(input, dim=0, out=None)
x = torch.rand([1])
self.assertEqual(fn(x), torch._dynamo.optimize("eager")(fn)(x))
@unittest.skipIf(not has_detectron2(), "requires detectron2")
def test_multi_import(self):
@torch._dynamo.optimize("eager", nopython=True)
def to_bitmasks(boxes):
from detectron2.layers.mask_ops import (
_paste_masks_tensor_shape,
paste_masks_in_image,
)
if (
paste_masks_in_image is not None
and _paste_masks_tensor_shape is not None
):
return boxes + 1
self.assertTrue((to_bitmasks(torch.zeros(10)) == torch.ones(10)).all())
def test_multi_dot_import(self):
def fn1(x):
return torch.sin(x)
def fn(x):
import torch.fx
_ = torch.fx.symbolic_trace(fn1)
return x * 2
x = torch.randn(10)
fn(x)
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt)(fn)
opt_fn(x)
self.assertEqual(cnt.frame_count, 1)
def test_relative_import(self):
try:
from . import utils as _ # noqa: F401
def fn(x):
from .utils import tensor_for_import_testing
return x * 2 * tensor_for_import_testing
except ImportError:
def fn(x):
from utils import tensor_for_import_testing
return x * 2 * tensor_for_import_testing
x = torch.randn(10)
fn(x)
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt, nopython=True)(fn)
opt_fn(x)
self.assertEqual(cnt.frame_count, 1)
def test_relative_import_no_modulename(self):
try:
from . import utils as _ # noqa: F401
def fn(x):
from . import utils
return x * 2 * utils.tensor_for_import_testing
except ImportError:
def fn(x):
import utils
return x * 2 * utils.tensor_for_import_testing
x = torch.randn(10)
fn(x)
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt, nopython=True)(fn)
opt_fn(x)
self.assertEqual(cnt.frame_count, 1)
def test_bigbird_unsqueeze_inplace(self):
def fn(reshape_2):
view_2 = reshape_2.clone()
view_2.unsqueeze_(2)
cat_11 = torch.cat([view_2], dim=2)
view_13 = cat_11.view((2, 12, 64, -1))
return (view_13,)
x = torch.randn(2, 12, 64, 64, requires_grad=True)
ref = fn(x)
opt_fn = torch._dynamo.optimize("aot_eager")(fn)
res = opt_fn(x)
self.assertTrue(same(ref, res))
def test_issue1466_size_aot_autograd(self):
def fn(x):
# do a tensor op and a size compute
y = x * 2
x_size = x.size()
# trigger a graph break
print("arf")
# use the tensor op and size compute
z = y.view(x_size) + 1
return z
x = torch.randn(2, 3, requires_grad=True)
ref = fn(x)
opt_fn = torch._dynamo.optimize("aot_eager")(fn)
res = opt_fn(x)
self.assertTrue(same(ref, res))
def test_ellipsis(self):
class Repro(torch.nn.Module):
def __init__(self):
super().__init__()
self.lnorm = torch.nn.LayerNorm(
(256,), eps=1e-06, elementwise_affine=True
)
self.linear = torch.nn.Linear(
in_features=256, out_features=256, bias=True
)
def forward(self, cat_10):
lnorm = self.lnorm(cat_10)
getitem_64 = lnorm[
(slice(None, None, None), slice(0, 1, None), Ellipsis)
]
linear = self.linear(getitem_64)
return (linear,)
args = [torch.randn(2, 197, 256)]
mod = Repro()
opt_mod = torch._dynamo.optimize("eager", nopython=True)(mod)
self.assertTrue(same(mod(*args), opt_mod(*args)))
def test_reinplacing(self):
class MockModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.self_layoutlm_embeddings_x_position_embeddings = (
torch.nn.Embedding(1024, 768)
)
self.self_layoutlm_embeddings_y_position_embeddings = (
torch.nn.Embedding(1024, 768)
)
def forward(self, getitem_1, getitem_2, add):
self_layoutlm_embeddings_x_position_embeddings = (
self.self_layoutlm_embeddings_x_position_embeddings(getitem_1)
)
self_layoutlm_embeddings_y_position_embeddings = (
self.self_layoutlm_embeddings_y_position_embeddings(getitem_2)
)
add_1 = add + self_layoutlm_embeddings_x_position_embeddings
add_2 = add_1 + self_layoutlm_embeddings_y_position_embeddings
return (add_2,)
mod = MockModule()
opt_mod = torch._dynamo.optimize("aot_eager_decomp_partition")(mod)
args = [
((2, 512), (2048, 4), torch.int64, "cpu", False),
((2, 512), (2048, 4), torch.int64, "cpu", False),
((2, 512, 768), (393216, 768, 1), torch.float32, "cpu", True),
]
args = [
rand_strided(sh, st, dt, dev).requires_grad_(rg)
for (sh, st, dt, dev, rg) in args
]
self.assertTrue(same_two_models(mod, opt_mod, args))
def test_optimized_deepcopy(self):
# See https://github.com/pytorch/pytorch/pull/88629
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Linear(in_features=2, out_features=3, bias=True)
def forward(self, x):
return self.fc(x)
mod = Foo()
opt_mod = torch._dynamo.optimize("eager")(mod)
args = [torch.randn(1, 2)]
self.assertTrue(same_two_models(mod, opt_mod, args))
def test_class_member(self):
class Foo(torch.nn.Module):
a = 4
b = torch.ones(3, 4)
def __init__(self):
super().__init__()
self.c = 4
def forward(self, x):
return x.cos() + self.a + self.b + self.c
mod = Foo()
opt_mod = torch._dynamo.optimize("eager", nopython=True)(mod)
args = (torch.randn(3, 4),)
self.assertTrue(same(mod(*args), opt_mod(*args)))
def test_named_buffers(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("x", torch.ones(3))
self.register_buffer("y", torch.ones(3))
def forward(self, inp):
res = 0
for name, buffer in self.named_buffers():
res += buffer.sum()
return inp.cos() + res
mod = Foo()
opt_mod = torch._dynamo.optimize("eager", nopython=True)(mod)
args = (torch.randn(3, 4),)
self.assertTrue(same(mod(*args), opt_mod(*args)))
def test_requires_grad_guards_with_grad_mode1(self):
def f(x):
if x.requires_grad:
return x + 1
else:
return x + 2
x = torch.ones(2, requires_grad=True)
f_compiled = torch.compile(f)
with torch.no_grad():
# compile an inference graph
f_compiled(x)
# Test: we should fail guards and recompile (even though it's still an inference graph)
out_ref = f(x.detach())
out = f_compiled(x.detach())
self.assertEqual(out_ref, out)
self.assertEqual(out_ref.requires_grad, out.requires_grad)
def test_requires_grad_guards_with_grad_mode2(self):
x = torch.ones(2, requires_grad=True)
x_ref = x.clone().detach().requires_grad_(True)
m = torch.nn.Linear(2, 2)
m_compiled = torch.compile(m)
with torch.no_grad():
# compile an inference graph
m_compiled(x)
# Test: we should fail guards and recompile a training graph
out_ref = m(x_ref)
out = m_compiled(x)
self.assertEqual(out_ref, out)
self.assertEqual(out_ref.requires_grad, out.requires_grad)
def test_is_symbolic_tracing(self):
# Ensure no graph break here
def fn(x):
if is_fx_tracing_test():
return x * 2
return x * 4
a = torch.randn(4)
ref = fn(a)
opt_fn = torch._dynamo.optimize("eager", nopython=True)(fn)
res = opt_fn(a)
self.assertTrue(same(ref, res))
def test_tokenization(self):
from collections import UserDict
class BatchEncoding(UserDict):
"""
Copied from tokenization
"""
def __init__(
self,
data,
):
super().__init__(data)
def __getattr__(self, item: str):
try:
return self.data[item]
except KeyError as e:
raise AttributeError from e
def tokenization(x):
encoding = BatchEncoding({"key": x})
return encoding["key"]
opt_fn = torch._dynamo.optimize("eager")(tokenization)
x = torch.rand((1, 4))
ref = tokenization(x)
res = opt_fn(x)
self.assertTrue(same(ref, res))
def test_modules(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Linear(4, 3)
def forward(self, inp):
res = torch.zeros(3, 3)
for mod in self.modules():
res += self.fc(inp)
return res
mod = Foo()
args = (torch.ones(3, 4),)
cnt = torch._dynamo.testing.CompileCounter()
opt_mod = torch._dynamo.optimize(cnt, nopython=True)(mod)
self.assertTrue(same(mod(*args), opt_mod(*args)))
self.assertEqual(cnt.op_count, 5)
self.assertEqual(cnt.frame_count, 1)
def test_tensor_data_kwarg(self):
# https://github.com/pytorch/pytorch/issues/96278
def f():
return torch.tensor(data=[[1.0, -1.0]])
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt, nopython=True)(f)
self.assertTrue(same(f(), opt_fn()))
self.assertEqual(cnt.frame_count, 1)
@requires_cuda()
def test_norm_dtype(self):
def foo(_stack0):
getitem = _stack0[(slice(None, None, None), -1)]
_stack0 = None
normalize = torch.nn.functional.normalize(getitem, p=2, dim=1)
getitem = None
return (normalize,)
args = [((2, 50, 256), (1, 256, 1), torch.float16, "cuda", False)]
args = [
rand_strided(sh, st, dt, dev).requires_grad_(rg)
for (sh, st, dt, dev, rg) in args
]
opt_foo = torch._dynamo.optimize("aot_eager_decomp_partition")(foo)
with torch.cuda.amp.autocast(enabled=True):
ref = foo(*args)[0]
res = foo(*args)[0]
self.assertEqual(ref.dtype, res.dtype)
self.assertTrue(same(res, ref))
def test_for_loop_graph_break(self):
def inner(x):
return torch.sin(x)
def fn(x):
for _ in range(100):
inner(x)
torch._dynamo.graph_break()
return x
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt)(fn)
x = torch.randn(4)
opt_fn(x)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
def test_for_loop_graph_break_before(self):
# Checks that the backedge is calculated correctly
def inner(x):
return torch.sin(x)
def fn(x):
torch._dynamo.graph_break()
for _ in range(100):
inner(x)
return x
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt)(fn)
x = torch.randn(4)
opt_fn(x)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 100)
def test_avoid_dupe_specialization(self):
def f(x, y):
return (x + y) * 1
opt_f = torch._dynamo.optimize("aot_eager")(f)
for b in [True, False]:
x = torch.randn(4, requires_grad=b)
y = torch.randn(4, requires_grad=b)
self.assertEqual(f(x, x), opt_f(x, x))
self.assertEqual(f(x, y), opt_f(x, y))
def test_reformer_remove_unused_args(self):
# This test case is very interesting. First, let's describe
# the bug this is testing for. The bug we fixed is twofold:
#
# - We prune GraphArgs that aren't used in the output graph.
# However, sometimes it is possible for those GraphArgs to be
# utilized in shape guards (you could imagine this happening if
# dynamo poked some shape variables without recording them in the
# graph.) If we prune those GraphArgs, we get a
# "s1 not in ..." error as we can no longer codegen the
# requested guards.
#
# - But in practice, Dynamo usually traces size accesses into the
# graph, preventing the GraphArg from getting pruned. So how
# come we were running into this in practice with hf_Reformer?
# The answer is checkpointing!
#
# This brings us to the following test case. Here's what it does:
#
# 1. It traces some operations, and then checkpoints before inlining
# the function call to g
#
# 2. g traces some more operations (triggering the shape guard
# to be created), but then it graph breaks
#
# 3. Because you can't graph break in an inlining function, we roll
# back to the outer checkpoint ("undoing" the operation that
# induced the shape guard) and then immediately generate a
# subgraph at that point.
#
# If we failed to checkpoint the ShapeEnv, it can still have guards
# from the aborted speculation, which we will then still attempt to
# codegen.
#
# There's an additional nuance: suppose x is used but y is not.
# If you create a guard like y == x * 2, you will accidentally avoid
# the "s1 not in ..." error, as y will get substituted with x * 2,
# but x is still a GraphArg (it's used) and you don't end up with
# the error. This is why we must show y + y == x, not vice versa.
# Similarly, it is also why we must not do a simple guard like x == y
#
# Can we actually demonstrate that checkpointing the ShapeEnv is
# necessary? It's not so easy to induce this case. Dynamo is very
# eager about adding locals to GraphArgs; any local that is in scope,
# even if it isn't used, is added to GraphArgs (see also
# https://github.com/pytorch/torchdynamo/issues/1925 ). So long
# as Dynamo eagerly guards in this way, we have an invariant that
# all locals are guaranteed to show up in GraphArgs before the
# inlining function call, in which case we will always have enough
# information to codegen our guards so long as we don't prune the
# unused GraphArgs away (and indeed, the direct fix for this bug
# was to make sure we use original GraphArgs). Non locals,
# conversely, typically are static, and so won't have guards allocated
# for them. That being said, there may still be a way to trigger
# this error.
def g(x, y):
r = torch.cat((y, y)) + x
print("foo")
return r
def f(x, y):
x = x * 3
return g(x, y)
opt_f = torch._dynamo.optimize("aot_eager")(f)
x = torch.randn(4)
y = torch.randn(2)
self.assertEqual(f(x, y), opt_f(x, y))
def test_swin_base_tensor_attr(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
# NB: not a parameter or buffer
self.t = torch.randn(3)
def forward(self, x):
return x + torch.cat((self.t, self.t))
mod = Foo()
opt_mod = torch._dynamo.optimize("eager")(mod)
args = [torch.randn(6)]
self.assertTrue(same_two_models(mod, opt_mod, args))
opt_mod(*args)
def test_pointless_graph_removal(self):
cnt = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnt)
def fn(x):
with torch.no_grad():
torch._dynamo.graph_break()
return x + 1
fn(torch.randn(4))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 3)
def test_output_aliases_intermediate(self):
def f(x):
intermediate = x.mul(2)
return intermediate.view(-1), intermediate
opt_f = torch._dynamo.optimize("aot_eager")(f)
for b in [True, False]:
x = torch.randn(4, requires_grad=b)
out = f(x)
out_test = opt_f(x)
self.assertEqual(out[0], out_test[0])
self.assertEqual(out[1], out_test[1])
self.assertEqual(out[0].requires_grad, out_test[0].requires_grad)
self.assertEqual(out[1].requires_grad, out_test[1].requires_grad)
# test that the aliasing relationship of outputs is preserved
out[0].mul_(2)
out_test[0].mul_(2)
self.assertEqual(out[0], out_test[0])
self.assertEqual(out[1], out_test[1])
def test_while_loop_graph_break(self):
# Repro of tacotron2 cache_size_recompilation
def inner(x):
return torch.sin(x)
def fn(x):
i = 20
while i > 10:
x = inner(x)
i -= 1
torch._dynamo.graph_break()
return x
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt)(fn)
x = torch.randn(4)
opt_fn(x)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
def test_nested_while_loop_graph_break(self):
def inner_loop(x):
i = 3
while i > 0:
i -= 1
x += 1
torch._dynamo.graph_break()
return x
def inner(x):
inner_loop(x)
return torch.sin(x)
def fn(x):
i = 20
while i > 10:
x = inner(x)
i -= 1
torch._dynamo.graph_break()
return x
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt)(fn)
x = torch.randn(4)
opt_fn(x)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
def test_while_loop_graph_break_inside_call_function(self):
# Repro of huggingface graph break inside loop in `get_parameter_dtype`.
# Skip only the inner frame that has loop that contains graph break.
def inner(x):
for i in range(3):
x += 1
torch._dynamo.graph_break()
return x
def fn(x):
x += 2
inner(x)
x += 3
return x
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt)(fn)
x = torch.randn(4)
opt_fn(x)
self.assertEqual(cnt.frame_count, 2)
self.assertEqual(cnt.op_count, 2)
def test_exception_in_dynamo_handling(self):
hit_handler = False
# See https://github.com/pytorch/pytorch/pull/96488
@contextlib.contextmanager
def ctx():
try:
yield
except RuntimeError:
nonlocal hit_handler
hit_handler = True
@torch._dynamo.optimize("eager")
def f():
with ctx():
h()
def h():
raise RuntimeError("boof")
# Should not error
f()
self.assertTrue(hit_handler)
def test_generator_dealloc(self):
# See https://github.com/pytorch/pytorch/pull/96488
#
# NB: yes, [(...)] is intentional, this is a list containing a
# generator
generator_box = [(x for x in [1, 2, 3])]
counter = torch._dynamo.testing.CompileCounter()
def g(x):
return x + 2
# TODO: This test is pretty delicate. To test if it's actually doing
# anything, rebuild eval_frame.c with '#define TORCHDYNAMO_DEBUG 1'
# and then look at the logs for:
#
# TRACE[_custom_eval_frame:650] begin <genexpr> test_repros.py 2276 -1 0 0
# TRACE[_custom_eval_frame:664] throw <genexpr>
#
# This means we're actually hitting the relevant codepath
# NB: Make sure we don't actually Dynamo this frame; if we do Dynamo
# this frame, Dynamo actually DOES understand list.clear and will
# arrange for the generator deallocation to happen when the eval frame
# handler is disabled, which will prevent the bug from happening (we
# specifically want to trigger the generator deallocation WHILE the
# dynamo eval frame handler is active), as that will cause the
# generator to become exhausted and trigger the throw_flag == TRUE
# case.
@torch._dynamo.disable(recursive=False)
def f(x):
generator_box.clear()
return g(x)
self.assertNoUnraisable(
lambda: torch._dynamo.optimize(counter)(f)(torch.randn(3))
)
# Make sure the x + 2 is captured (a previous incorrect implementation
# of this fix would have disabled the eval frame callback, which means
# g wouldn't get traced
self.assertEqual(counter.op_count, 1)
def test_error_return_without_exception_set(self):
# https://github.com/pytorch/pytorch/issues/93781
@torch.compile
def f():
_generator_type = type(_ for _ in ())
self.assertNoUnraisable(f)
def test_rewrite_assert_with_msg(self):
def f(x):
b = x.sin()
assert x[0] == 3, "First dim need to be 3"
return x.cos() + b
args = (torch.Tensor([3, 4, 5]),)
cnt = torch._dynamo.testing.CompileCounter()
opt_f = torch._dynamo.optimize(cnt, nopython=True)(f)
self.assertTrue(same(f(*args), opt_f(*args)))
self.assertEqual(cnt.op_count, 6)
self.assertEqual(cnt.frame_count, 1)
exported, _ = torch._dynamo.export(f)(torch.Tensor([3, 4, 5]))
self.assertTrue(same(exported(*args), f(*args)))
def test_not_rewrite_assert_for_other_errors(self):
def f(x):
b = x.sin()
if not x.sum() <= 3:
raise ValueError("input sum needs to be 3")
return x.cos() + b
args = (torch.Tensor([3, 4, 5]),)
opt_fn = torch._dynamo.optimize("eager")(f)
with self.assertRaisesRegex(ValueError, "input sum needs to be 3"):
opt_fn(*args)
def test_rewrite_assert_dont_change_bytecode(self):
def fn(x):
with torch.no_grad():
assert x.max() < 5, f"invalid max {x.max()}"
x = torch.sin(x)
return x
x = torch.ones(4)
opt_fn = torch._dynamo.optimize("eager")(fn)
self.assertTrue(same(fn(x), opt_fn(x)))
def test_rewrite_assert_without_msg(self):
def f(x):
b = x.sin()
assert x[0] == 3
return x.cos() + b
args = (torch.Tensor([3, 4, 5]),)
exported, _ = torch._dynamo.export(f)(torch.Tensor([3, 4, 5]))
self.assertTrue(same(exported(*args), f(*args)))
with self.assertRaisesRegex(RuntimeError, "assertion error"):
exported(torch.Tensor([5, 6, 7]))
def test_rewrite_assert_with_non_string_msg(self):
def f(x):
b = x.sin()
assert x[0] == 2, x.size()
return x.cos() + b
torch._dynamo.utils.counters.clear()
args = torch.Tensor([3, 4, 5])
opt_f = torch._dynamo.optimize("eager")(f)
with self.assertRaisesRegex(AssertionError, "torch.Size"):
opt_f(args)
self.assertEqual(
torch._dynamo.utils.counters["unimplemented"][
"assert with non-string message"
],
1,
)
def test_rewrite_assert_noop(self):
def f(x):
b = x.sin()
assert True
assert x.dtype == torch.float32
return x.cos() + b
args = (torch.Tensor([3, 4, 5]),)
exported, _ = torch._dynamo.export(f)(torch.Tensor([3, 4, 5]))
self.assertTrue(same(exported(*args), f(*args)))
cnt = torch._dynamo.testing.CompileCounter()
opt_f = torch._dynamo.optimize(cnt, nopython=True)(f)
self.assertTrue(same(f(*args), opt_f(*args)))
# torch._assert shouldn't be in the graph
self.assertEqual(cnt.op_count, 3)
self.assertEqual(cnt.frame_count, 1)
exported, _ = torch._dynamo.export(f)(torch.Tensor([4, 4, 5]))
self.assertTrue(same(exported(*args), f(*args)))
def test_size_typematch(self):
def f(x, y):
if isinstance(x, torch.Size):
return y + 1
else:
return y + 2
y = torch.zeros(1)
x1 = torch.Size((3,))
x2 = (3,)
cnt = torch._dynamo.testing.CompileCounter()
opt_f = torch._dynamo.optimize(cnt, nopython=True)(f)
self.assertTrue(same(f(x1, y), opt_f(x1, y)))
self.assertTrue(same(f(x2, y), opt_f(x2, y)))
self.assertEqual(cnt.frame_count, 2)
def test_dict_subclass_contains(self):
# pattern from huggingface
class ClassInstantier(collections.OrderedDict):
pass
@torch.compile(fullgraph=True, backend="eager")
def f(x, d):
if "key1" in d:
x = x + 2
if "key2" in d:
x = x + 4
x = x + 8
return x
result = f(torch.ones(8), ClassInstantier({"key1": torch.ones(8)}))
self.assertTrue(same(result, torch.full([8], 11.0)))
result = f(torch.ones(8), ClassInstantier({"key2": torch.ones(8)}))
self.assertTrue(same(result, torch.full([8], 13.0)))
def test_hf_classinstantier(self):
# hf activations.py
class ClassInstantier(collections.OrderedDict):
def __getitem__(self, key):
content = super().__getitem__(key)
cls, kwargs = content if isinstance(content, tuple) else (content, {})
return cls(**kwargs)
ACT2CLS = ClassInstantier(
{
"relu": (nn.ReLU, {"inplace": False}),
"tanh": nn.Tanh,
}
)
@torch.compile(fullgraph=True, backend="eager")
def f(x, act):
return ACT2CLS[act](x)
y = torch.randn(10)
self.assertTrue(same(f(y, "tanh"), torch.tanh(y)))
self.assertTrue(same(f(y, "relu"), torch.relu(y)))
def test_ephemeral_module(self):
# hf activations.py
class ReLUSquaredActivation(nn.Module):
def forward(self, input):
relu_applied = torch.nn.functional.relu(input)
squared = torch.square(relu_applied)
return squared
@torch.compile(fullgraph=True, backend="eager")
def f(x):
x = x + 0.2
x = ReLUSquaredActivation()(x)
x = x + 1
return x
y = torch.randn(10)
self.assertTrue(same(f(y), ReLUSquaredActivation()(y + 0.2) + 1))
def test_inplace_unsqueeze_input(self):
def backend(gm, example_inputs):
self.assertEqual(example_inputs[-1].size(), torch.Size([1, 3, 4]))
return gm
@torch.compile(backend=backend)
def fn(x):
x.unsqueeze_(0)
return x + 1
inputs = [torch.randn(3, 4)]
self.assertEqual(fn(*inputs).size(), torch.Size([1, 3, 4]))
self.assertEqual(inputs[0].size(), torch.Size([1, 3, 4]))
def test_batchnorm_e2e(self):
class Repro(torch.nn.Module):
def __init__(self):
super().__init__()
self.bn = torch.nn.BatchNorm2d(
64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
)
self.conv1 = torch.nn.Conv2d(
64,
64,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False,
)
def forward(self, x):
x1 = self.bn(x)
x2 = self.conv1(x1)
out = torch.nn.functional.relu(x2)
return (out,)
torch.manual_seed(1337)
m_ref = Repro()
m_test = deepcopy(m_ref)
@torch._dynamo.optimize("aot_eager_decomp_partition")
def compiled_fn(x):
return m_test(x)
x_ref = torch.randn(2, 64, 32, 32, requires_grad=True)
x_test = x_ref.clone()
# Loop multiple times: each iteration the running_mean/var on batchnorm will update,
# which changes the output of the next iteration
for _ in range(3):
ref = m_ref(x_ref)
res = compiled_fn(x_test)
self.assertTrue(same(ref, res))
for r in ref:
if r.requires_grad:
r.sum().backward()
for r in res:
if r.requires_grad:
r.sum().backward()
for param_ref, param_test in zip(m_ref.parameters(), m_test.parameters()):
self.assertTrue(same(param_ref, param_test))
# Assert running_mean/var
for buffer_ref, buffer_test in zip(m_ref.buffers(), m_test.buffers()):
self.assertTrue(same(buffer_ref, buffer_test))
@torch._dynamo.config.patch("assume_static_by_default", False)
def test_dynamic_shapes_right_side(self):
def f(x):
return torch.ones(5 * x.shape[0])
inp = torch.randn(6, 5)
gm, _ = torch._dynamo.export(f, aten_graph=True)(torch.randn(4, 5))
self.assertEqual(gm(inp).shape, f(inp).shape)
@torch._dynamo.config.patch("specialize_int", False)
def test_maybe_multiply_symint(self):
# https://github.com/pytorch/pytorch/issues/97346
from torch._functorch.aot_autograd import aot_module_simplified
def my_aot_compiler(gm, example_inputs):
def my_compiler(gm, example_inputs):
return gm.forward
# Invoke AOTAutograd
return aot_module_simplified(gm, example_inputs, fw_compiler=my_compiler)
def my_example(t1, t2, d):
out = torch.add(t1, t2, alpha=d)
return out
compiled_fn = torch.compile(backend=my_aot_compiler, dynamic=True)(my_example)
t1 = torch.arange(3, dtype=torch.float32).requires_grad_(True)
t2 = torch.arange(3, dtype=torch.float32).requires_grad_(True)
ra = compiled_fn(t1, t2, 5)
self.assertEqual(ra, torch.tensor([0.0, 6.0, 12.0]))
ra = compiled_fn(t1, t2, 6)
self.assertEqual(ra, torch.tensor([0.0, 7.0, 14.0]))
def test_build_map_unpack_with_call(self):
def forward_with_cond_scale(x, t, cond_scale, self_cond, other1, other2):
return x.sin() + t + cond_scale + self_cond + other1 + other2
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
d1 = dict(other1=5)
d2 = dict(other2=4)
text_cond = {**d1, **d2}
return forward_with_cond_scale(x, 1, cond_scale=2, self_cond=3, **text_cond)
self.assertTrue(same(fn(torch.ones(4)), torch.ones(4).sin() + 15))
def test_graph_break_unsupported_fake(self):
counter = torch._dynamo.testing.CompileCounter()
torch._dynamo.config.verbose = True
@torch._dynamo.optimize(counter)
def f(x):
return torch.ops.test_sample.foo(x + 1) + 1
f(torch.randn(3))
self.assertEqual(counter.op_count, 2)
self.assertEqual(counter.frame_count, 2)
def test_delattr(self):
class MyObj:
def __init__(self, a, b):
self.a = a
self.b = b
@torch.compile(backend="eager", fullgraph=True)
def fn(x, obj):
del obj.a
obj.c = x + 1
del obj.c
tmp = MyObj(x + 2, x + 3)
del tmp.b
if hasattr(obj, "a"):
return x + 1
return tmp
x = torch.zeros([])
obj1 = MyObj(x, x)
obj2 = fn(x, obj1)
self.assertFalse(hasattr(obj1, "a"))
self.assertFalse(hasattr(obj1, "c"))
self.assertFalse(hasattr(obj2, "b"))
self.assertEqual(obj1.b.item(), 0)
self.assertEqual(obj2.a.item(), 2)
def test_delattr_raises(self):
class MyObj:
def __init__(self, a, b):
self.a = a
self.b = b
@torch.compile(backend="eager")
def fn(x, obj):
del obj.a
x = x + 1
obj.a # will raise
return x
x = torch.zeros([])
obj1 = MyObj(x, x)
self.assertRaises(AttributeError, lambda: fn(x, obj1))
def test_attached_attribute_in_dir(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(16, 16)
self.relu = torch.nn.ReLU()
def forward(self, x):
return self.relu(self.linear(x))
mod = torch.compile(MyModule(), backend="eager")
mod.is_compiled = True
self.assertTrue("is_compiled" in dir(mod))
@torch._dynamo.config.patch("automatic_dynamic_shapes", False)
def test_dynamic_shapes_implicit_guard(self):
def f(x):
y = x * x.size(x.shape[0])
torch.sum(y, [y.shape[0]])
return y
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt, nopython=True)(f)
opt_fn(torch.randn(3, 1, 1, 1, 1))
self.assertEqual(cnt.frame_count, 1)
def test_dalle2_maybe(self):
def normalize(x):
return x.cos()
@torch.compile(backend="eager", fullgraph=True)
def fn(x, normalize_img):
lowres_cond_img = x.sin()
lowres_cond_img = maybe(normalize_img)(lowres_cond_img)
return lowres_cond_img
self.assertEqual(fn(torch.ones([]), normalize), torch.ones([]).sin().cos())
def test_functools_wraps(self):
def cool_name(x):
return x.sin()
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
y = x.cos()
@functools.wraps(cool_name)
def uncool_name():
return cool_name(y)
return uncool_name
result = fn(torch.ones([]))
self.assertEqual(result.__name__, "cool_name")
self.assertEqual(result(), torch.ones([]).cos().sin())
def test_dynamic_shapes_float_guard(self):
def f(x):
return torch.nn.functional.dropout(x, x.shape[0] / 6)
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt, nopython=True)(f)
opt_fn(torch.randn(3))
self.assertEqual(cnt.frame_count, 1)
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_tensor_item(self):
def f(x, y):
val = y.item()
return x.sum() + val
gm, _ = torch._dynamo.export(
f,
aten_graph=True,
)(
torch.zeros(6, 4),
torch.tensor(1),
)
self.assertEqual(
f(torch.zeros(6, 4), torch.tensor(1)),
gm(torch.zeros(6, 4), torch.tensor(1)),
)
self.assertEqual(
f(torch.zeros(6, 4), torch.tensor(2)),
gm(torch.zeros(6, 4), torch.tensor(2)),
)
def test_hf_xsoftmax_inference(self):
def fn(input, mask):
return XSoftmax.apply(input + 1, mask, 1) + 2
fn_opt = torch.compile(fn, backend="eager", fullgraph=True)
inputs = [
torch.randn(4, 10),
torch.randn(4, 10) < 0,
]
expected = fn(*inputs)
actual = fn_opt(*inputs)
self.assertTrue(same(actual, expected))
def test_hf_xsoftmax_training(self):
from torch._dynamo.utils import counters
counters.clear()
def fn(input, mask):
return XSoftmax.apply(input, mask, 1)
cnt = torch._dynamo.testing.CompileCounter()
fn_opt = torch.compile(fn, backend=cnt, fullgraph=False)
torch.manual_seed(1234)
inputs1 = [
torch.randn(4, 10, requires_grad=True),
torch.randn(4, 10) < 0,
]
torch.manual_seed(1234)
inputs2 = [
torch.randn(4, 10, requires_grad=True),
torch.randn(4, 10) < 0,
]
expected = fn(*inputs1)
actual = fn_opt(*inputs2)
self.assertTrue(same(actual, expected))
self.assertEqual(dict(counters["frames"]), {"total": 1, "ok": 1})
self.assertEqual(cnt.op_count, 2)
self.assertEqual(cnt.frame_count, 1)
cnt.clear()
counters.clear()
expected.sum().backward()
actual.sum().backward()
self.assertTrue(same(inputs1[0].grad, inputs2[0].grad))
# currently we don't capture the backwards frame
self.assertEqual(cnt.frame_count, 0)
self.assertEqual(cnt.op_count, 0)
self.assertEqual(dict(counters["frames"]), {})
self.assertEqual(dict(counters["graph_break"]), {})
def test_autograd_function_graph_break(self):
class MySin(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
torch._dynamo.graph_break()
ctx.save_for_backward(x)
return x.sin()
@staticmethod
def backward(ctx, gx):
(x,) = ctx.saved_tensors
return gx * x.cos()
x = torch.randn([], requires_grad=True)
@torch.compile(backend="eager")
def fn(x):
return MySin.apply(x)
y = fn(x)
self.assertEqual(y, x.sin())
(gx,) = torch.autograd.grad(y, x)
self.assertEqual(gx, x.cos())
@torch._dynamo.config.patch("assume_static_by_default", False)
def test_tensor_split(self):
def f(x):
return torch.split(x, x.shape[0] // 2, dim=0)[0]
gm, _ = torch._dynamo.export(
f,
aten_graph=True,
)(
torch.zeros(6, 4),
)
self.assertEqual(f(torch.ones(8, 4)), gm(torch.ones(8, 4)))
def test_optim_state_references_cleared(self):
model = torch.nn.Linear(2048, 2048, bias=False)
x = torch.ones(2048)
state_ref = 0
optimizer = torch.optim.Adadelta(model.parameters(), lr=0.01)
def opt_step():
optimizer.step()
compiled_opt_step = torch._dynamo.optimize("eager")(opt_step)
def compiled_model_step(x):
optimizer.zero_grad()
y = model(x)
torch.sum(y).backward()
compiled_opt_step()
compiled_model_step(x)
# Picked "square_avg" arbitrarily to check that
# optimizer state tensors are deallocated
state_ref = weakref.ref(
optimizer.state[optimizer.param_groups[0]["params"][0]]["square_avg"]
)
optimizer = None
self.assertIsNone(state_ref())
def test_grad_references_cleared(self):
model = torch.nn.Linear(2048, 2048, bias=False)
x = torch.ones(2048)
optimizer = torch.optim.Adadelta(model.parameters(), lr=0.01)
def opt_step():
optimizer.step()
compiled_opt_step = torch._dynamo.optimize("eager")(opt_step)
def compiled_model_step(x):
optimizer.zero_grad(True)
y = model(x)
torch.sum(y).backward()
compiled_opt_step()
compiled_model_step(x)
param_grad_ref = weakref.ref(list(model.parameters())[0].grad)
optimizer.zero_grad(True)
self.assertIsNone(param_grad_ref())
def test_batch_encoding_clone_inputs(self):
class BatchEncoding(dict):
"""
Copied from test_tokenization
"""
def __init__(
self,
data,
):
super().__init__(data)
def __getattr__(self, item: str):
try:
return self.data[item]
except KeyError as e:
raise AttributeError from e
encoding = BatchEncoding({"key": torch.rand((1, 4))})
cloned_encoding = torch._dynamo.utils.clone_inputs(encoding)
self.assertTrue(type(cloned_encoding) is not dict)
def test_iadd_graph_break(self):
def fn(x):
a = ()
x = torch.sin(x)
a += (x,)
return a
x = torch.randn(4)
ref = fn(x)
opt_fn = torch._dynamo.optimize("eager", nopython=True)(fn)
res = opt_fn(x)
self.assertTrue(same(ref, res))
def test_odict_get_item_index_name(self):
d = {float: torch.float32, np.float16: torch.float16}
@torch.compile
def f(x, y1, y2):
return torch.zeros(5, dtype=d[y1]), torch.zeros(5, dtype=d[y2])
f(torch.zeros(4), float, np.float16)
def test_dedup_global(self):
@torch.compile()
def f():
return _GLOBAL_CPU_TENSOR + _GLOBAL_CPU_TENSOR
self.assertEqual(f(), _GLOBAL_CPU_TENSOR + _GLOBAL_CPU_TENSOR)
@requires_cuda()
def test_guard_default_device(self):
try:
torch.set_default_device("cuda")
counter = torch._dynamo.testing.CompileCounter()
@torch._dynamo.optimize(counter)
def f():
x = torch.randn(3)
return x * 2
self.assertEqual(f().device.type, "cuda")
self.assertEqual(counter.frame_count, 1)
torch.set_default_device("cpu")
self.assertEqual(f().device.type, "cpu")
self.assertEqual(counter.frame_count, 2)
finally:
torch.set_default_device(None)
def test_list_self_reference(self):
# Issue - https://github.com/pytorch/pytorch/issues/100150
root = []
root[:] = [root, root, None, None]
@torch._dynamo.optimize("eager")
def test_bug():
return root
test_bug()
def test_hf_bigbird_unsqueeze(self):
def torch_bmm_nd(inp_1, inp_2, ndim=None):
torch._dynamo.graph_break()
return torch.bmm(inp1, inp2)
def fn(inp1, inp2, inp3, inp4, c):
a = torch_bmm_nd(inp1, inp2, 4)
a.unsqueeze_(2)
a = a * 2
b = torch_bmm_nd(inp3, inp4, 4)
b.unsqueeze_(2)
l = a + b
out = torch.cat([a, b, c], dim=2)
return out, l
inp1 = torch.rand(1, 64, 448)
inp2 = torch.rand(1, 448, 64)
inp3 = torch.rand(1, 64, 448)
inp4 = torch.rand(1, 448, 64)
c = torch.rand(1, 64, 1, 64)
cnt = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnt)(fn)
opt_fn(inp1, inp2, inp3, inp4, c)
self.assertEqual(cnt.frame_count, 3)
def test_torch_variable_type(self):
# from torchvision
def check_type(obj, types_or_checks):
for type_or_check in types_or_checks:
if (
isinstance(obj, type_or_check)
if isinstance(type_or_check, type)
else type_or_check(obj)
):
return True
return False
opt_check_type = torch._dynamo.optimize("eager")(check_type)
ref = check_type(torch.randn(4), [torch.Tensor])
res = opt_check_type(torch.randn(4), [torch.Tensor])
self.assertEqual(ref, res)
# Test for https://github.com/pytorch/pytorch/issues/103132
@torch._dynamo.config.patch("assume_static_by_default", False)
def test_inference_mode_dynamic_shapes(self):
class Repro(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, param):
z = torch.matmul(param, param)
return z
model = Repro()
# Need a 3d tensor to actually cause the error:
# we go down a path of the C++ matmul decomp that calls sizes().
inp = torch.randn(4, 4, 4, requires_grad=True)
model = torch.compile(model, backend="aot_eager", dynamic=True)
with torch.inference_mode():
model(inp)
def test_kwargs_out_list_variable(self):
class Repro(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, param):
z = torch.frexp(**param)
return z
model = Repro()
params = {"input": torch.tensor([[0.0, 1, 2, 4]])}
params["out"] = [
torch.empty(0, dtype=torch.float32), # mantissa
torch.empty(0, dtype=torch.int32), # exponent
]
model = torch.compile(model, backend="eager")
mantissa, exponent = model(params)
ref_mantissa = torch.tensor([[0.0000, 0.5000, 0.5000, 0.5000]])
ref_exponent = torch.tensor([[0, 1, 2, 3]], dtype=torch.int32)
self.assertEqual(ref_mantissa, mantissa)
self.assertEqual(ref_exponent, exponent)
def test_unspecialized_nn_module_with_torch_variable_attribute(self):
"""
In this case self.fn = something that should be a TorchVariable.
When it's not a TorchVariable, dynamo tries to trace through and fails.
This makes sure that the self.fn is handled as a TorchVariable.
"""
class UserModule(torch.nn.Module):
torchdynamo_force_dynamic = True # forced to be a UnspecializedNNModule
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, **inp):
return self.fn(**inp)
inputs = {
"input": torch.randn([2, 9]).uniform_(0, 1),
"target": torch.randn([2, 9]).uniform_(0, 1),
"reduction": "mean",
}
mod = UserModule(torch.nn.functional.binary_cross_entropy)
ref = mod(**inputs)
res = torch._dynamo.optimize("eager", nopython=True)(mod)(**inputs)
self.assertEqual(ref, res)
def test_call_finally_python_3_8(self):
# Issue - https://github.com/pytorch/pytorch/issues/97811
def make_fn(g):
def fn():
while True:
try:
print(g)
break
except Exception as _:
break
return torch.compile(fn, backend="eager")
make_fn(None)()
def test_string_format(self):
s = "temp{i}"
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
if s.format(i=4) == "temp4":
return torch.sin(x)
return torch.cos(x)
x = torch.randn(4)
self.assertEqual(fn(x), torch.sin(x))
# Repro of torch._dynamo.exc.InternalTorchDynamoError: 'NoneType' object has no attribute 'guards'
# due to bad empty list handling
def test_empty_list_contains_with_jump(self):
def fn(x, l):
if x in l:
return x.cos()
return x.sin()
counter = CompileCounter()
compiled_fn = torch._dynamo.optimize(counter)(fn)(torch.randn([2, 2]), [])
self.assertEqual(counter.frame_count, 1)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()