blob: 6151d4ed360fa2bb0e2c4ebcad29346b0409f9a8 [file] [log] [blame]
# Owner(s): ["module: dynamo"]
import io
import pathlib
import tempfile
import unittest
import zipfile
import torch
import torch._dynamo as torchdynamo
from torch._export import dynamic_dim, export, save, load
from torch._export.constraints import constrain_as_size
from torch._export.db.case import ExportCase, normalize_inputs, SupportLevel
from torch._export.db.examples import all_examples
from torch._export.serde.serialize import (
ExportedProgramDeserializer,
ExportedProgramSerializer,
deserialize,
serialize,
SerializeError,
)
from torch._subclasses.fake_tensor import FakeTensor
from torch.fx.experimental.symbolic_shapes import is_concrete_int
import torch.utils._pytree as pytree
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
TemporaryFileName,
IS_FBCODE,
IS_MACOS,
IS_SANDCASTLE,
IS_WINDOWS,
find_library_location,
)
def get_filtered_export_db_tests():
unsupported_test_names = {
"dynamic_shape_constructor", # 'NoneType' object has no attribute 'from_tensor'
"dictionary", # Graph output must be a tuple()
"fn_with_kwargs", # export doesn't support kwargs yet
"scalar_output", # Tracing through 'f' must produce a single graph
}
return [
(name, case)
for name, case in all_examples().items()
if (
case.support_level == SupportLevel.SUPPORTED and
name not in unsupported_test_names
)
]
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSerialize(TestCase):
def test_serialize_multiple_returns_from_node(self) -> None:
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, w, b):
return torch.nn.functional.layer_norm(
x,
x.size()[1:],
weight=w,
bias=b,
eps=1e-5,
)
exported_module = export(
MyModule(),
(
torch.ones([512, 512], requires_grad=True),
torch.ones([512]),
torch.ones([512]),
),
)
serialized, _ = ExportedProgramSerializer().serialize(exported_module)
node = serialized.graph_module.graph.nodes[-1]
self.assertEqual(node.target, "torch.ops.aten.native_layer_norm.default")
# aten::native_layer_norm returns 3 tensnors
self.assertEqual(len(node.outputs), 3)
# check the names are unique
seen = set()
for output in node.outputs:
name = output.as_tensor.name
self.assertNotIn(name, seen)
seen.add(name)
def test_serialize_list_returns(self) -> None:
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.split(x, 2)
input = torch.arange(10.0).reshape(5, 2)
input.requires_grad = True
exported_module = export(MyModule(), (input,))
serialized, _ = ExportedProgramSerializer().serialize(exported_module)
node = serialized.graph_module.graph.nodes[-1]
self.assertEqual(node.target, "torch.ops.aten.split.Tensor")
self.assertEqual(len(node.outputs), 1)
# Input looks like:
# tensor([[0, 1],
# [2, 3],
# [4, 5],
# [6, 7],
# [8, 9]])
# Output looks like:
# (tensor([[0, 1],
# [2, 3]]),
# tensor([[4, 5],
# [6, 7]]),
# tensor([[8, 9]]))
self.assertEqual(len(node.outputs[0].as_tensors), 3)
# check the names are unique
seen = set()
for output in node.outputs[0].as_tensors:
name = output.name
self.assertNotIn(name, seen)
seen.add(name)
def test_multi_return_some_unused(self) -> None:
"""
Make sure the serialized output matches the op schema, even if some of
the arguments are never used in the graph.
"""
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.ops.aten.var_mean.correction(x, [1])[0]
exported_module = export(
MyModule(),
(torch.ones([512, 512], requires_grad=True),),
)
serialized, _ = ExportedProgramSerializer().serialize(exported_module)
node = serialized.graph_module.graph.nodes[-1]
self.assertEqual(node.target, "torch.ops.aten.var_mean.correction")
self.assertEqual(len(node.outputs), 2)
# check the names are unique
seen = set()
for output in node.outputs:
name = output.as_tensor.name
self.assertNotIn(name, seen)
seen.add(name)
def test_kwargs_default(self) -> None:
"""
Tests that the kwargs default values are serialized even if they are not
specified
"""
def f(x: torch.Tensor) -> torch.Tensor:
values = torch.randn(3, 2)
return torch.searchsorted(x, values, side="right", right=True)
x, _ = torch.sort(torch.randn(3, 4))
exported_module = export(f, (x,))
serialized, _ = ExportedProgramSerializer().serialize(exported_module)
node = serialized.graph_module.graph.nodes[-1]
self.assertEqual(node.target, "torch.ops.aten.searchsorted.Tensor")
self.assertEqual(len(node.inputs), 6)
self.assertEqual(node.inputs[2].arg.as_bool, False)
self.assertEqual(node.inputs[3].arg.as_bool, True)
self.assertEqual(node.inputs[4].arg.as_string, "right")
self.assertEqual(node.inputs[5].arg.as_none, ())
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestDeserialize(TestCase):
def check_graph(self, fn, inputs, constraints=None, _check_meta=True) -> None:
"""Export a graph, serialize it, deserialize it, and compare the results."""
# TODO(angelayi): test better with some sort of wrapper
constraints = [] if constraints is None else constraints
ep = export(fn, inputs, {}, constraints)
ep.graph.eliminate_dead_code()
serialized_struct, state_dict = serialize(ep, opset_version={"aten": 0})
deserialized_ep = deserialize(serialized_struct, state_dict, expected_opset_version={"aten": 0})
deserialized_ep.graph.eliminate_dead_code()
orig_outputs = ep(*inputs)
loaded_outputs = deserialized_ep(*inputs)
flat_orig_outputs, _ = pytree.tree_flatten(orig_outputs)
flat_loaded_outputs, _ = pytree.tree_flatten(loaded_outputs)
for orig, loaded in zip(flat_orig_outputs, flat_loaded_outputs):
self.assertEqual(type(orig), type(loaded))
if isinstance(orig, torch.Tensor):
self.assertTrue(torch.allclose(orig, loaded))
else:
self.assertEqual(orig, loaded)
def _check_graph_nodes(gm1, gm2, _check_meta=True):
# TODO: The _check_meta flag bypasses checking for
# source_fn/nn_module_stack as there is an issue with
# roundtripping the source_fn value on torch.ops.map nodes
# original source_fn: <functorch.experimental._map.MapWrapper object at 0x7f80a0549930>
# deserialized source_fn: 'functorch.experimental._map.map'
self.assertEqual(len(gm1.graph.nodes), len(gm2.graph.nodes))
for node1, node2 in zip(gm1.graph.nodes, gm2.graph.nodes):
self.assertEqual(node1.op, node2.op)
if node1.op == "call_function":
# Check "val" metadata
val1 = node1.meta.get("val", None)
val2 = node2.meta.get("val", None)
if val1 is None or val2 is None:
# Either both are None
self.assertEqual(val1, val2)
elif isinstance(val1, FakeTensor) and isinstance(val2, FakeTensor):
# Or both are fake tensors with the same shape/dtype
self.assertEqual(len(val1.shape), len(val2.shape))
for s1, s2 in zip(val1.shape, val2.shape):
if is_concrete_int(s1) and is_concrete_int(s2):
self.assertEqual(s1, s2)
else:
self.assertEqual(str(s1), str(s2))
self.assertEqual(val1.dtype, val2.dtype)
elif isinstance(val1, (list, tuple)) and isinstance(val2, (list, tuple)):
# Or both are fake tensors lists with one element and with the
# same shape/dtype
for v1, v2 in zip(val1, val2):
self.assertEqual(v1.shape, v2.shape)
self.assertEqual(v1.dtype, v2.dtype)
else:
# For expressions like 's0 < 10' can only compare through string
self.assertEqual(str(val1), str(val2))
# Check "stack_trace" metadata
self.assertEqual(
node1.meta.get("stack_trace", None),
node2.meta.get("stack_trace", None),
)
if node1.target == torch.ops.higher_order.cond:
true_graph1 = getattr(gm1, node1.args[1].target)
true_graph2 = getattr(gm2, node2.args[1].target)
_check_graph_nodes(true_graph1, true_graph2)
false_graph1 = getattr(gm1, node1.args[2].target)
false_graph2 = getattr(gm2, node2.args[2].target)
_check_graph_nodes(false_graph1, false_graph2)
elif node1.target == torch.ops.map_impl:
map_graph1 = getattr(gm1, node1.args[0].target)
map_graph2 = getattr(gm2, node2.args[0].target)
_check_graph_nodes(map_graph1, map_graph2, False)
if (
_check_meta and
node1.op not in ("get_attr", "placeholder", "output")
):
# Check "nn_module_stack" metadata
# TODO nn_module_stack is not roundtrippable.
# self.assertEqual(
# node1.meta.get("nn_module_stack", None),
# node2.meta.get("nn_module_stack", None),
# )
# Check "source_fn" metadata
self.assertEqual(
node1.meta.get("source_fn", None),
node2.meta.get("source_fn", None),
)
_check_graph_nodes(ep.graph_module, deserialized_ep.graph_module, _check_meta)
def test_multi_return(self) -> None:
"""
Test multiple return from a single node (ex. layer_norm has 2 outputs)
"""
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, w, b):
return torch.nn.functional.layer_norm(
x,
x.size()[1:],
weight=w,
bias=b,
eps=1e-5,
)
inputs = (
torch.ones([512, 512], requires_grad=True),
torch.ones([512]),
torch.ones([512]),
)
self.check_graph(MyModule(), inputs)
def test_basic(self) -> None:
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x = x + x
x = x * x
x = x / x
return x, x.clone()
inputs = (torch.ones([512], requires_grad=True),)
self.check_graph(MyModule(), inputs)
def test_dynamic(self) -> None:
class DynamicShapeSimpleModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a, b, c) -> torch.Tensor:
d = (torch.matmul(a, b) + c) / 2
d_s0 = d.shape[0]
d_s1 = d.shape[1]
d_s3 = d_s0 * d_s1
e = d.view(d_s3)
return torch.cat([e, e])
inputs = (torch.randn(2, 4), torch.randn(4, 7), torch.randn(2, 7))
constraints = [
dynamic_dim(inputs[0], 0),
dynamic_dim(inputs[2], 0),
dynamic_dim(inputs[2], 0) == dynamic_dim(inputs[0], 0),
]
self.check_graph(DynamicShapeSimpleModel(), inputs, constraints)
def test_sym_bool(self):
def f(x, y):
return x.size(0) in y
self.check_graph(f, (torch.ones(2), torch.ones(3)))
def test_shape(self):
def f(x):
z, y = x.size()
return z + y + x[0], z
inputs = (torch.ones(2, 3),)
constraints = [
dynamic_dim(inputs[0], 0),
dynamic_dim(inputs[0], 1),
]
self.check_graph(f, inputs, constraints)
def test_module(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(3, 3)
self.relu = torch.nn.ReLU()
self.linear2 = torch.nn.Linear(3, 5)
def forward(self, x):
x = self.linear1(x)
x = self.linear1(x)
x = torch.nn.functional.relu(x)
x = self.linear2(x)
return x
inputs = (torch.randn(3, 3),)
self.check_graph(M(), inputs)
def test_cond(self):
from functorch.experimental.control_flow import cond
inputs = torch.ones(4, 3), torch.zeros(4, 3)
class M(torch.nn.Module):
def forward(self, x, y):
def t(x, y):
return x + y
def f(x, y):
return x - y
return cond(x[0][0] > 4, t, f, [x, y])
self.check_graph(M(), inputs)
def test_map(self):
from functorch.experimental import control_flow
def f(x, y):
return x + y
def g(xs, y):
return control_flow.map(f, xs, y)
inputs = (torch.ones(3, 2, 2), torch.ones(2))
self.check_graph(g, inputs, _check_meta=False)
@parametrize(
"name,case",
get_filtered_export_db_tests(),
name_fn=lambda name, case: f"case_{name}",
)
def test_exportdb_supported(self, name: str, case: ExportCase) -> None:
model = case.model
inputs = normalize_inputs(case.example_inputs)
_check_meta = "map" not in name
self.check_graph(model, inputs.args, _check_meta=_check_meta)
def test_constraints(self):
def f(x, y):
n = x.item()
constrain_as_size(n, min=2)
return y.sum() + torch.ones(n, 5).sum()
self.check_graph(f, (torch.tensor(3), torch.randn(4, 5)))
def test_get_attr(self) -> None:
def f(x):
return x + torch.tensor(3)
self.check_graph(f, (torch.tensor(3),))
def test_get_attr_list(self) -> None:
def f(x):
return torch.cat([x, torch.tensor([1, 1])])
self.check_graph(f, (torch.tensor([1, 1]),))
instantiate_parametrized_tests(TestDeserialize)
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSchemaVersioning(TestCase):
def test_error(self):
def f(x):
return x + x
ep = export(f, (torch.randn(1, 3),))
serialized_ep, serialized_state_dict = ExportedProgramSerializer().serialize(ep)
serialized_ep.schema_version = -1
with self.assertRaisesRegex(SerializeError, r"Serialized schema version -1 does not match our current"):
ExportedProgramDeserializer().deserialize(serialized_ep, serialized_state_dict)
class TestOpVersioning(TestCase):
"""Test if serializer/deserializer behaves correctly if version mismatch."""
def test_empty_model_opset_version_raises(self):
compiler_opset_version = {"aten": 4}
model_opset_version = None
deserializer = ExportedProgramDeserializer(compiler_opset_version)
with self.assertRaises(RuntimeError):
deserializer._validate_model_opset_version(model_opset_version)
def test_opset_mismatch_raises(self):
compiler_opset_version = {"aten": 4}
model_opset_version = {"aten": 3}
deserializer = ExportedProgramDeserializer(compiler_opset_version)
with self.assertRaises(NotImplementedError):
deserializer._validate_model_opset_version(model_opset_version)
def test_model_op_namespace_version_missing_from_deserializer_do_not_raises(self):
compiler_opset_version = {"aten": 3}
model_opset_version = {"aten": 3, "custom": 4}
deserializer = ExportedProgramDeserializer(compiler_opset_version)
with self.assertLogs(level='WARN') as log:
deserializer._validate_model_opset_version(model_opset_version)
self.assertIn("Compiler doesn't have a version table for op namespace", log.output[0])
unittest.expectedFailure(
TestDeserialize.test_exportdb_supported_case_tensor_setattr
)
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSaveLoad(TestCase):
def test_save_buffer(self):
inp = (torch.tensor([0.1, 0.1]),)
linear = torch.nn.Linear(2, 2)
class Module(torch.nn.Module):
def forward(self, x):
x = x + 1
y = x.t()
y = y.relu()
y = linear(y)
return y
ep = export(Module(), inp)
buffer = io.BytesIO()
save(ep, buffer)
buffer.seek(0)
loaded_ep = load(buffer)
self.assertTrue(torch.allclose(ep(*inp), loaded_ep(*inp)))
def test_save_file(self):
def f(x):
return x * x
inp = (torch.randn(2, 2),)
ep = export(f, inp)
with tempfile.NamedTemporaryFile() as f:
save(ep, f)
f.seek(0)
loaded_ep = load(f)
self.assertTrue(torch.allclose(ep(*inp), loaded_ep(*inp)))
def test_save_path(self):
def f(x, y):
return x + y
inp = (torch.tensor([6]), torch.tensor([7]))
ep = export(f, inp)
with TemporaryFileName() as fname:
path = pathlib.Path(fname)
save(ep, path)
loaded_ep = load(path)
self.assertTrue(torch.allclose(ep(*inp), loaded_ep(*inp)))
def test_save_extra(self):
inp = (torch.tensor([0.1, 0.1]),)
def f(x):
return x * x + x
ep = export(f, inp)
buffer = io.BytesIO()
save(ep, buffer, extra_files={"extra.txt": "moo"})
buffer.seek(0)
extra_files = {"extra.txt": ""}
loaded_ep = load(buffer, extra_files=extra_files)
self.assertTrue(torch.allclose(ep(*inp), loaded_ep(*inp)))
self.assertEqual(extra_files["extra.txt"], "moo")
def test_version_error(self):
def f(x):
return x + x
ep = export(f, (torch.randn(1, 3),))
with tempfile.NamedTemporaryFile() as f:
save(ep, f)
f.seek(0)
# Modify the version
with zipfile.ZipFile(f, 'a') as zipf:
zipf.writestr('version', "-1")
with self.assertRaisesRegex(RuntimeError, r"Serialized version -1 does not match our current"):
f.seek(0)
loaded_ep = load(f)
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo doesn't support")
class TestSerializeCustomClass(TestCase):
def setUp(self):
if IS_SANDCASTLE or IS_MACOS or IS_FBCODE:
raise unittest.SkipTest("non-portable load_library call used in test")
lib_file_path = find_library_location('libtorchbind_test.so')
if IS_WINDOWS:
lib_file_path = find_library_location('torchbind_test.dll')
torch.ops.load_library(str(lib_file_path))
def test_custom_class(self):
custom_obj = torch.classes._TorchScriptTesting._PickleTester([3, 4])
def f(x):
return x + x
inputs = (torch.zeros(4, 4),)
ep = export(f, inputs)
# Replace one of the values with an instance of our custom class
for node in ep.graph.nodes:
if node.op == "call_function" and node.target == torch.ops.aten.add.Tensor:
with ep.graph.inserting_before(node):
custom_node = ep.graph.call_function(
torch.ops._TorchScriptTesting.take_an_instance.default,
(custom_obj,),
)
custom_node.meta["val"] = torch.ones(4, 4)
arg0, _ = node.args
node.args = (arg0, custom_node)
serialized_vals = serialize(ep)
deserialized_ep = deserialize(*serialized_vals)
for node in deserialized_ep.graph.nodes:
if (
node.op == "call_function" and
node.target == torch.ops._TorchScriptTesting.take_an_instance.default
):
arg = node.args[0]
self.assertTrue(isinstance(arg, torch._C.ScriptObject))
self.assertEqual(arg.__getstate__(), custom_obj.__getstate__())
self.assertEqual(arg.top(), 7)
if __name__ == '__main__':
run_tests()