blob: 270fc1d010ae55c0e320e461c97b9c7fa80c63c8 [file] [log] [blame]
# Owner(s): ["oncall: jit"]
from typing import Sequence
import torch
import functools
from torch.testing._internal.common_utils import run_tests, TestCase
from torch.testing._internal.jit_utils import JitTestCase
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_device_type import ops, instantiate_device_type_tests
import torch._lazy
import torch._lazy.config
import torch._lazy.metrics
import torch._lazy.ir_cache
import torch._lazy.ts_backend
import itertools
import yaml
import os
import pathlib
from unittest import skip
torch._lazy.ts_backend.init()
def get_test_device():
return 'cuda' if 'LTC_TS_CUDA' in os.environ else 'cpu'
def remove_suffixes(l):
return [x.split(".")[0] for x in l]
def init_lists():
path_to_script = pathlib.Path(os.path.abspath(os.path.dirname(__file__)))
TS_NATIVE_FUNCTIONS_PATH = path_to_script.parent.parent / "aten/src/ATen/native/ts_native_functions.yaml"
with open(TS_NATIVE_FUNCTIONS_PATH) as f:
yaml_ts = yaml.load(f, yaml.SafeLoader)
LAZY_OPS_LIST = set(remove_suffixes(itertools.chain(yaml_ts["full_codegen"], yaml_ts["supported"], yaml_ts["autograd"])))
HAS_SYMINT_SUFFIX = yaml_ts["symint"]
FALLBACK_LIST = {"clamp"}
SKIP_RUNTIME_ERROR_LIST = {
'index_select', # Empty output_sizes is not supported
'clone', # is clone decomposed?
# General ASAN Failure due to related to generating bool values.
# https://github.com/pytorch/pytorch/issues/74519
# https://github.com/pytorch/pytorch/issues/63034
'nonzero', # ASAN failure (paste: P501906539)
'all', # ASAN failure
'any', # ASAN failure
'logdet', # ASAN failure
}
SKIP_INCORRECT_RESULTS_LIST = {
'squeeze', # Value out of range
't', # Value out of range
'transpose', # Value out of range
'bernoulli', # incorrect results
'pow', # incorrect results
'addcdiv', # incorrect results (on CI not locally?)
}
# The following ops all show up directly in ts_native_functions.yaml,
# but run functionalized versions of the composite kernels in core.
# This means that we don't expect the ops to show directly in the LTC metrics.
FUNCTIONAL_DECOMPOSE_LIST = {
'diag_embed',
'block_diag',
'new_empty_strided',
'narrow_copy',
'pixel_shuffle',
'pixel_unshuffle',
'select_backward',
'_trilinear',
'linalg_inv_ex',
'linalg_pinv.atol_rtol_tensor',
'logsumexp',
}
# For some ops, we don't support all variants. Here we use formatted_name
# to uniquely identify the variant.
SKIP_VARIANT_LIST = {
'norm_nuc',
'min_reduction_with_dim'
}
return (LAZY_OPS_LIST,
FALLBACK_LIST,
SKIP_RUNTIME_ERROR_LIST,
SKIP_INCORRECT_RESULTS_LIST,
FUNCTIONAL_DECOMPOSE_LIST,
HAS_SYMINT_SUFFIX,
SKIP_VARIANT_LIST)
(LAZY_OPS_LIST,
FALLBACK_LIST,
SKIP_RUNTIME_ERROR_LIST,
SKIP_INCORRECT_RESULTS_LIST,
FUNCTIONAL_DECOMPOSE_LIST,
HAS_SYMINT_SUFFIX,
SKIP_VARIANT_LIST) = init_lists()
torch.manual_seed(42)
def clone_move(t):
dev = 'lazy'
copy_t = t.detach().clone().requires_grad_(True).to(device=dev)
return copy_t
class TestLazyTensor(JitTestCase):
@skip("Disable until autograd supports symints")
def testConvolutionBackward(self):
test_device = get_test_device()
inp = torch.rand(1, 3, 128, 128, device=test_device, requires_grad=True)
inp_copy = clone_move(inp)
grad = torch.rand(1, 32, 121, 121, device=test_device) # no requires_grad
grad_copy = clone_move(grad)
weight = torch.rand(32, 3, 8, 8, device=test_device, requires_grad=True)
weight_copy = clone_move(weight)
bias = torch.rand(32, device=test_device, requires_grad=True)
bias_copy = clone_move(bias)
# run eager
conv_out = torch.nn.functional.conv2d(inp, weight, bias)
(inp_grad, weight_grad, bias_grad) = torch.autograd.grad([conv_out], [inp, weight, bias], [grad])
# run lazy
conv_copy_out = torch.nn.functional.conv2d(inp_copy, weight_copy, bias_copy)
(inp_copy_grad, weight_copy_grad, bias_copy_grad) = torch.autograd.grad(
[conv_copy_out], [inp_copy, weight_copy, bias_copy], [grad_copy])
# check numerics
torch.testing.assert_close(bias_copy_grad.cpu(), bias_grad.cpu())
torch.testing.assert_close(weight_copy_grad.cpu(), weight_grad.cpu())
torch.testing.assert_close(inp_copy_grad.cpu(), inp_grad.cpu())
def test_view_mark_step_preserved(self):
test_device = get_test_device()
inp = torch.rand(4, device=test_device)
inp_lazy = clone_move(inp)
def foo(x, *, mark_step):
y = x.view(2, 2)
y.add_(1)
z = x + x
if mark_step:
torch._lazy.mark_step()
# y and x should contiue to be aliased after the mark_step call.
y.add_(1)
return x
out_ref = foo(inp, mark_step=False)
out = foo(inp_lazy, mark_step=True)
# out will have some pending mutations, which will be synced by the .cpu() call.
torch.testing.assert_close(out_ref.cpu(), out.cpu())
def test_tensor_ctr(self):
test_device = get_test_device()
inp = torch.tensor([[1, 2, 3, 4, 5]], device=test_device)
inp_lazy = torch.tensor([[1, 2, 3, 4, 5]], device='lazy')
def foo(x):
# Calling a view op to ensure that functionalization wrapping occurs.
return x.view(-1)
out_ref = foo(inp)
out = foo(inp_lazy)
torch.testing.assert_close(out_ref.cpu(), out.cpu())
class TestLazyOpInfo(TestCase):
@ops([op for op in op_db
if op.name in LAZY_OPS_LIST
and op.name not in SKIP_RUNTIME_ERROR_LIST
and op.name not in FUNCTIONAL_DECOMPOSE_LIST
and op.formatted_name not in SKIP_VARIANT_LIST
], allowed_dtypes=(torch.float,))
def test_dispatched_to_lazy(self, device, dtype, op):
def get_name(op):
l = [op.name]
if op.variant_test_name != '':
l.append(op.variant_test_name)
return '.'.join(l)
global HAS_SYMINT_SUFFIX, FALLBACK_LIST
samples = op.sample_inputs("lazy", dtype, requires_grad=False)
sample = list(samples)[0]
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
torch._lazy.mark_step()
torch._lazy.wait_device_ops()
torch._lazy.metrics.reset()
r = op(*args, **kwargs)
torch._lazy.mark_step()
torch._lazy.wait_device_ops()
prefix = "aten" if op.name in FALLBACK_LIST else "lazy"
symint_suffix = "_symint" if op.name in HAS_SYMINT_SUFFIX else ""
found = f"{prefix}::{op.name}{symint_suffix}" in remove_suffixes(torch._lazy.metrics.counter_names())
# check aliases
if not found:
for alias in op.aliases:
alias_found = f"{prefix}::{alias.name}{symint_suffix}" in remove_suffixes(torch._lazy.metrics.counter_names())
found = found or alias_found
if found:
break
self.assertTrue(found)
@ops([op for op in op_db if op.name in LAZY_OPS_LIST and op.name not in SKIP_RUNTIME_ERROR_LIST | SKIP_INCORRECT_RESULTS_LIST], allowed_dtypes=(torch.float,)) # noqa: B950
def test_correctness(self, device, dtype, op):
test_device = get_test_device()
def clone_to_device(input, dev):
if isinstance(input, torch.Tensor):
return input.detach().clone().to(device=dev)
if isinstance(input, Sequence) and not isinstance(input, str):
return tuple(map(functools.partial(clone_to_device, dev=dev), input))
return input
def assert_allclose_rec(t):
a, b = t
self.assertEqual(type(a), type(b))
if isinstance(a, torch.Tensor):
self.assertTrue(torch.allclose(clone_to_device(a, test_device), b, atol=1e-4))
if isinstance(a, Sequence):
map(assert_allclose_rec, zip(a, b))
samples = op.sample_inputs("lazy", dtype, requires_grad=False)
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
copy_args = clone_to_device(args, test_device)
r_exp = op(*copy_args, **kwargs)
r_actual = op(*args, **kwargs)
assert_allclose_rec((r_actual, r_exp))
@ops([op for op in op_db if op.name in LAZY_OPS_LIST and op.name not in SKIP_RUNTIME_ERROR_LIST | SKIP_INCORRECT_RESULTS_LIST], allowed_dtypes=(torch.float,)) # noqa: B950
def test_correctness_with_reusing_ir(self, device, dtype, op):
torch._lazy.config.set_reuse_ir(True)
test_device = get_test_device()
def clone_to_device(input, dev):
if isinstance(input, torch.Tensor):
return input.detach().clone().to(device=dev)
if isinstance(input, Sequence) and not isinstance(input, str):
return tuple(map(functools.partial(clone_to_device, dev=dev), input))
return input
def assert_allclose_rec(t):
a, b = t
self.assertEqual(type(a), type(b))
if isinstance(a, torch.Tensor):
self.assertTrue(torch.allclose(clone_to_device(a, test_device), b, atol=1e-4))
if isinstance(a, Sequence):
map(assert_allclose_rec, zip(a, b))
samples = op.sample_inputs("lazy", dtype, requires_grad=False)
for sample in samples:
args = [sample.input] + list(sample.args)
kwargs = sample.kwargs
copy_args = clone_to_device(args, test_device)
r_exp = op(*copy_args, **kwargs)
r_actual = op(*args, **kwargs)
torch._lazy.mark_step()
assert_allclose_rec((r_actual, r_exp))
torch._lazy.ir_cache.reset()
torch._lazy.config.set_reuse_ir(False)
# TODO: after we move to master, add Lazy as a new Device here:
# https://github.com/pytorch/pytorch/blob/master/torch/testing/_internal/common_device_type.py#L532
instantiate_device_type_tests(TestLazyOpInfo, globals(), only_for="cpu")
class TestLazyDynamicOps(TestCase):
@classmethod
def setUpClass(cls) -> None:
# Setup the dynamic shape mode
cls.old_ssa_mode = torch._C._lazy._get_symbolic_shape_mode()
torch._C._lazy._set_symbolic_shape_mode(True)
return super().setUpClass()
@classmethod
def tearDownClass(cls) -> None:
torch._C._lazy._set_symbolic_shape_mode(cls.old_ssa_mode)
return super().tearDownClass()
def test_nonzero_dynamic(self):
# Test that nonzero gives upper bounds sizes when symbolic shape mode is enabled
test_device = get_test_device()
x1 = torch.tensor([[0, 1.0, 2.0], [3.0, 0, 0]], device=test_device, requires_grad=True)
x1_lazy = clone_move(x1)
x2_lazy = torch.nonzero(x1_lazy)
# FIXME: Add bindings to get upper bounds
# self.assertEqual(tuple(x2_lazy.size()), (6, 2))
# We should still be able to instantiate it and get the actual result
x2_eager = x2_lazy.cpu()
self.assertEqual(tuple(x2_eager.size()), (3, 2))
if __name__ == '__main__':
run_tests()