| # Owner(s): ["oncall: quantization"] |
| |
| import torch |
| |
| from torch.testing._internal.common_quantization import ( |
| QuantizationTestCase, |
| ModelMultipleOps, |
| ModelMultipleOpsNoAvgPool, |
| ) |
| from torch.testing._internal.common_quantized import ( |
| override_quantized_engine, |
| supported_qengines, |
| ) |
| |
| class TestModelNumericsEager(QuantizationTestCase): |
| def test_float_quant_compare_per_tensor(self): |
| for qengine in supported_qengines: |
| with override_quantized_engine(qengine): |
| torch.manual_seed(42) |
| my_model = ModelMultipleOps().to(torch.float32) |
| my_model.eval() |
| calib_data = torch.rand(1024, 3, 15, 15, dtype=torch.float32) |
| eval_data = torch.rand(1, 3, 15, 15, dtype=torch.float32) |
| out_ref = my_model(eval_data) |
| qModel = torch.ao.quantization.QuantWrapper(my_model) |
| qModel.eval() |
| qModel.qconfig = torch.ao.quantization.default_qconfig |
| torch.ao.quantization.fuse_modules(qModel.module, [['conv1', 'bn1', 'relu1']], inplace=True) |
| torch.ao.quantization.prepare(qModel, inplace=True) |
| qModel(calib_data) |
| torch.ao.quantization.convert(qModel, inplace=True) |
| out_q = qModel(eval_data) |
| SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q)) |
| # Quantized model output should be close to floating point model output numerically |
| # Setting target SQNR to be 30 dB so that relative error is 1e-3 below the desired |
| # output |
| self.assertGreater(SQNRdB, 30, msg='Quantized model numerics diverge from float, expect SQNR > 30 dB') |
| |
| def test_float_quant_compare_per_channel(self): |
| # Test for per-channel Quant |
| torch.manual_seed(67) |
| my_model = ModelMultipleOps().to(torch.float32) |
| my_model.eval() |
| calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) |
| eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) |
| out_ref = my_model(eval_data) |
| q_model = torch.ao.quantization.QuantWrapper(my_model) |
| q_model.eval() |
| q_model.qconfig = torch.ao.quantization.default_per_channel_qconfig |
| torch.ao.quantization.fuse_modules(q_model.module, [['conv1', 'bn1', 'relu1']], inplace=True) |
| torch.ao.quantization.prepare(q_model) |
| q_model(calib_data) |
| torch.ao.quantization.convert(q_model) |
| out_q = q_model(eval_data) |
| SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_q)) |
| # Quantized model output should be close to floating point model output numerically |
| # Setting target SQNR to be 35 dB |
| self.assertGreater(SQNRdB, 35, msg='Quantized model numerics diverge from float, expect SQNR > 35 dB') |
| |
| def test_fake_quant_true_quant_compare(self): |
| for qengine in supported_qengines: |
| with override_quantized_engine(qengine): |
| torch.manual_seed(67) |
| my_model = ModelMultipleOpsNoAvgPool().to(torch.float32) |
| calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) |
| eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) |
| my_model.eval() |
| out_ref = my_model(eval_data) |
| fq_model = torch.ao.quantization.QuantWrapper(my_model) |
| fq_model.train() |
| fq_model.qconfig = torch.ao.quantization.default_qat_qconfig |
| torch.ao.quantization.fuse_modules_qat(fq_model.module, [['conv1', 'bn1', 'relu1']], inplace=True) |
| torch.ao.quantization.prepare_qat(fq_model) |
| fq_model.eval() |
| fq_model.apply(torch.ao.quantization.disable_fake_quant) |
| fq_model.apply(torch.ao.nn.intrinsic.qat.freeze_bn_stats) |
| fq_model(calib_data) |
| fq_model.apply(torch.ao.quantization.enable_fake_quant) |
| fq_model.apply(torch.ao.quantization.disable_observer) |
| out_fq = fq_model(eval_data) |
| SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_fq)) |
| # Quantized model output should be close to floating point model output numerically |
| # Setting target SQNR to be 35 dB |
| self.assertGreater(SQNRdB, 35, msg='Quantized model numerics diverge from float, expect SQNR > 35 dB') |
| torch.ao.quantization.convert(fq_model) |
| out_q = fq_model(eval_data) |
| SQNRdB = 20 * torch.log10(torch.norm(out_fq) / (torch.norm(out_fq - out_q) + 1e-10)) |
| self.assertGreater(SQNRdB, 60, msg='Fake quant and true quant numerics diverge, expect SQNR > 60 dB') |
| |
| # Test to compare weight only quantized model numerics and |
| # activation only quantized model numerics with float |
| def test_weight_only_activation_only_fakequant(self): |
| for qengine in supported_qengines: |
| with override_quantized_engine(qengine): |
| torch.manual_seed(67) |
| calib_data = torch.rand(2048, 3, 15, 15, dtype=torch.float32) |
| eval_data = torch.rand(10, 3, 15, 15, dtype=torch.float32) |
| qconfigset = {torch.ao.quantization.default_weight_only_qconfig, |
| torch.ao.quantization.default_activation_only_qconfig} |
| SQNRTarget = [35, 45] |
| for idx, qconfig in enumerate(qconfigset): |
| my_model = ModelMultipleOpsNoAvgPool().to(torch.float32) |
| my_model.eval() |
| out_ref = my_model(eval_data) |
| fq_model = torch.ao.quantization.QuantWrapper(my_model) |
| fq_model.train() |
| fq_model.qconfig = qconfig |
| torch.ao.quantization.fuse_modules_qat(fq_model.module, [['conv1', 'bn1', 'relu1']], inplace=True) |
| torch.ao.quantization.prepare_qat(fq_model) |
| fq_model.eval() |
| fq_model.apply(torch.ao.quantization.disable_fake_quant) |
| fq_model.apply(torch.ao.nn.intrinsic.qat.freeze_bn_stats) |
| fq_model(calib_data) |
| fq_model.apply(torch.ao.quantization.enable_fake_quant) |
| fq_model.apply(torch.ao.quantization.disable_observer) |
| out_fq = fq_model(eval_data) |
| SQNRdB = 20 * torch.log10(torch.norm(out_ref) / torch.norm(out_ref - out_fq)) |
| self.assertGreater(SQNRdB, SQNRTarget[idx], msg='Quantized model numerics diverge from float') |
| |
| |
| if __name__ == '__main__': |
| raise RuntimeError("This test file is not meant to be run directly, use:\n\n" |
| "\tpython test/test_quantization.py TESTNAME\n\n" |
| "instead.") |