blob: 664c27181cc81ec97d8ffb12f34c997bcebac143 [file] [log] [blame]
# Owner(s): ["module: complex"]
import torch
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
dtypes,
onlyCPU,
)
from torch.testing._internal.common_utils import TestCase, run_tests, set_default_dtype
from torch.testing._internal.common_dtype import complex_types
devices = (torch.device('cpu'), torch.device('cuda:0'))
class TestComplexTensor(TestCase):
@dtypes(*complex_types())
def test_to_list(self, device, dtype):
# test that the complex float tensor has expected values and
# there's no garbage value in the resultant list
self.assertEqual(torch.zeros((2, 2), device=device, dtype=dtype).tolist(), [[0j, 0j], [0j, 0j]])
@dtypes(torch.float32, torch.float64)
def test_dtype_inference(self, device, dtype):
# issue: https://github.com/pytorch/pytorch/issues/36834
with set_default_dtype(dtype):
x = torch.tensor([3., 3. + 5.j], device=device)
self.assertEqual(x.dtype, torch.cdouble if dtype == torch.float64 else torch.cfloat)
@dtypes(*complex_types())
def test_conj_copy(self, device, dtype):
# issue: https://github.com/pytorch/pytorch/issues/106051
x1 = torch.tensor([5 + 1j, 2 + 2j], device=device, dtype=dtype)
xc1 = torch.conj(x1)
x1.copy_(xc1)
self.assertEqual(x1, torch.tensor([5 - 1j, 2 - 2j], device=device, dtype=dtype))
@onlyCPU
@dtypes(*complex_types())
def test_eq(self, device, dtype):
"Test eq on complex types"
nan = float("nan")
# Non-vectorized operations
for a, b in (
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
torch.tensor([-6.1278 - 8.5019j], device=device, dtype=dtype)),
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
torch.tensor([-6.1278 - 2.1172j], device=device, dtype=dtype)),
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
torch.tensor([-0.0610 - 8.5019j], device=device, dtype=dtype)),
):
actual = torch.eq(a, b)
expected = torch.tensor([False], device=device, dtype=torch.bool)
self.assertEqual(actual, expected, msg=f"\neq\nactual {actual}\nexpected {expected}")
actual = torch.eq(a, a)
expected = torch.tensor([True], device=device, dtype=torch.bool)
self.assertEqual(actual, expected, msg=f"\neq\nactual {actual}\nexpected {expected}")
actual = torch.full_like(b, complex(2, 2))
torch.eq(a, b, out=actual)
expected = torch.tensor([complex(0)], device=device, dtype=dtype)
self.assertEqual(actual, expected, msg=f"\neq(out)\nactual {actual}\nexpected {expected}")
actual = torch.full_like(b, complex(2, 2))
torch.eq(a, a, out=actual)
expected = torch.tensor([complex(1)], device=device, dtype=dtype)
self.assertEqual(actual, expected, msg=f"\neq(out)\nactual {actual}\nexpected {expected}")
# Vectorized operations
for a, b in (
(torch.tensor([
-0.0610 - 2.1172j, 5.1576 + 5.4775j, complex(2.8871, nan), -6.6545 - 3.7655j, -2.7036 - 1.4470j, 0.3712 + 7.989j,
-0.0610 - 2.1172j, 5.1576 + 5.4775j, complex(nan, -3.2650), -6.6545 - 3.7655j, -2.7036 - 1.4470j, 0.3712 + 7.989j],
device=device, dtype=dtype),
torch.tensor([
-6.1278 - 8.5019j, 0.5886 + 8.8816j, complex(2.8871, nan), 6.3505 + 2.2683j, 0.3712 + 7.9659j, 0.3712 + 7.989j,
-6.1278 - 2.1172j, 5.1576 + 8.8816j, complex(nan, -3.2650), 6.3505 + 2.2683j, 0.3712 + 7.9659j, 0.3712 + 7.989j],
device=device, dtype=dtype)),
):
actual = torch.eq(a, b)
expected = torch.tensor([False, False, False, False, False, True,
False, False, False, False, False, True],
device=device, dtype=torch.bool)
self.assertEqual(actual, expected, msg=f"\neq\nactual {actual}\nexpected {expected}")
actual = torch.eq(a, a)
expected = torch.tensor([True, True, False, True, True, True,
True, True, False, True, True, True],
device=device, dtype=torch.bool)
self.assertEqual(actual, expected, msg=f"\neq\nactual {actual}\nexpected {expected}")
actual = torch.full_like(b, complex(2, 2))
torch.eq(a, b, out=actual)
expected = torch.tensor([complex(0), complex(0), complex(0), complex(0), complex(0), complex(1),
complex(0), complex(0), complex(0), complex(0), complex(0), complex(1)],
device=device, dtype=dtype)
self.assertEqual(actual, expected, msg=f"\neq(out)\nactual {actual}\nexpected {expected}")
actual = torch.full_like(b, complex(2, 2))
torch.eq(a, a, out=actual)
expected = torch.tensor([complex(1), complex(1), complex(0), complex(1), complex(1), complex(1),
complex(1), complex(1), complex(0), complex(1), complex(1), complex(1)],
device=device, dtype=dtype)
self.assertEqual(actual, expected, msg=f"\neq(out)\nactual {actual}\nexpected {expected}")
@onlyCPU
@dtypes(*complex_types())
def test_ne(self, device, dtype):
"Test ne on complex types"
nan = float("nan")
# Non-vectorized operations
for a, b in (
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
torch.tensor([-6.1278 - 8.5019j], device=device, dtype=dtype)),
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
torch.tensor([-6.1278 - 2.1172j], device=device, dtype=dtype)),
(torch.tensor([-0.0610 - 2.1172j], device=device, dtype=dtype),
torch.tensor([-0.0610 - 8.5019j], device=device, dtype=dtype)),
):
actual = torch.ne(a, b)
expected = torch.tensor([True], device=device, dtype=torch.bool)
self.assertEqual(actual, expected, msg=f"\nne\nactual {actual}\nexpected {expected}")
actual = torch.ne(a, a)
expected = torch.tensor([False], device=device, dtype=torch.bool)
self.assertEqual(actual, expected, msg=f"\nne\nactual {actual}\nexpected {expected}")
actual = torch.full_like(b, complex(2, 2))
torch.ne(a, b, out=actual)
expected = torch.tensor([complex(1)], device=device, dtype=dtype)
self.assertEqual(actual, expected, msg=f"\nne(out)\nactual {actual}\nexpected {expected}")
actual = torch.full_like(b, complex(2, 2))
torch.ne(a, a, out=actual)
expected = torch.tensor([complex(0)], device=device, dtype=dtype)
self.assertEqual(actual, expected, msg=f"\nne(out)\nactual {actual}\nexpected {expected}")
# Vectorized operations
for a, b in (
(torch.tensor([
-0.0610 - 2.1172j, 5.1576 + 5.4775j, complex(2.8871, nan), -6.6545 - 3.7655j, -2.7036 - 1.4470j, 0.3712 + 7.989j,
-0.0610 - 2.1172j, 5.1576 + 5.4775j, complex(nan, -3.2650), -6.6545 - 3.7655j, -2.7036 - 1.4470j, 0.3712 + 7.989j],
device=device, dtype=dtype),
torch.tensor([
-6.1278 - 8.5019j, 0.5886 + 8.8816j, complex(2.8871, nan), 6.3505 + 2.2683j, 0.3712 + 7.9659j, 0.3712 + 7.989j,
-6.1278 - 2.1172j, 5.1576 + 8.8816j, complex(nan, -3.2650), 6.3505 + 2.2683j, 0.3712 + 7.9659j, 0.3712 + 7.989j],
device=device, dtype=dtype)),
):
actual = torch.ne(a, b)
expected = torch.tensor([True, True, True, True, True, False,
True, True, True, True, True, False],
device=device, dtype=torch.bool)
self.assertEqual(actual, expected, msg=f"\nne\nactual {actual}\nexpected {expected}")
actual = torch.ne(a, a)
expected = torch.tensor([False, False, True, False, False, False,
False, False, True, False, False, False],
device=device, dtype=torch.bool)
self.assertEqual(actual, expected, msg=f"\nne\nactual {actual}\nexpected {expected}")
actual = torch.full_like(b, complex(2, 2))
torch.ne(a, b, out=actual)
expected = torch.tensor([complex(1), complex(1), complex(1), complex(1), complex(1), complex(0),
complex(1), complex(1), complex(1), complex(1), complex(1), complex(0)],
device=device, dtype=dtype)
self.assertEqual(actual, expected, msg=f"\nne(out)\nactual {actual}\nexpected {expected}")
actual = torch.full_like(b, complex(2, 2))
torch.ne(a, a, out=actual)
expected = torch.tensor([complex(0), complex(0), complex(1), complex(0), complex(0), complex(0),
complex(0), complex(0), complex(1), complex(0), complex(0), complex(0)],
device=device, dtype=dtype)
self.assertEqual(actual, expected, msg=f"\nne(out)\nactual {actual}\nexpected {expected}")
instantiate_device_type_tests(TestComplexTensor, globals())
if __name__ == '__main__':
TestCase._default_dtype_check_enabled = True
run_tests()