blob: a6253b0cbcedb40e44c3408e1764835488a120ac [file] [log] [blame]
# Owner(s): ["module: tensor creation"]
import torch
import numpy as np
import sys
import math
import warnings
import unittest
from itertools import product, combinations, combinations_with_replacement, permutations
import random
from typing import Any, Dict, List, Tuple
from torch.testing import make_tensor
from torch.testing._internal.common_utils import (
TestCase, run_tests, do_test_empty_full, TEST_WITH_ROCM, suppress_warnings,
torch_to_numpy_dtype_dict, numpy_to_torch_dtype_dict, slowTest,
set_default_dtype, set_default_tensor_type,
TEST_SCIPY, IS_MACOS, IS_PPC, IS_JETSON, IS_WINDOWS, parametrize, skipIfTorchDynamo)
from torch.testing._internal.common_device_type import (
expectedFailureMeta, instantiate_device_type_tests, deviceCountAtLeast, onlyNativeDeviceTypes,
onlyCPU, largeTensorTest, precisionOverride, dtypes,
onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta)
from torch.testing._internal.common_dtype import (
all_types_and_complex, all_types_and_complex_and, all_types_and, floating_and_complex_types, complex_types,
floating_types, floating_and_complex_types_and, integral_types, integral_types_and, get_all_dtypes,
float_to_corresponding_complex_type_map
)
from torch.utils.dlpack import to_dlpack
# TODO: replace with make_tensor
def _generate_input(shape, dtype, device, with_extremal):
if shape == ():
x = torch.tensor((), dtype=dtype, device=device)
else:
if dtype.is_floating_point or dtype.is_complex:
# work around torch.randn not being implemented for bfloat16
if dtype == torch.bfloat16:
x = torch.randn(*shape, device=device) * random.randint(30, 100)
x = x.to(torch.bfloat16)
else:
x = torch.randn(*shape, dtype=dtype, device=device) * random.randint(30, 100)
x[torch.randn(*shape) > 0.5] = 0
if with_extremal and dtype.is_floating_point:
# Use extremal values
x[torch.randn(*shape) > 0.5] = float('nan')
x[torch.randn(*shape) > 0.5] = float('inf')
x[torch.randn(*shape) > 0.5] = float('-inf')
elif with_extremal and dtype.is_complex:
x[torch.randn(*shape) > 0.5] = complex('nan')
x[torch.randn(*shape) > 0.5] = complex('inf')
x[torch.randn(*shape) > 0.5] = complex('-inf')
elif dtype == torch.bool:
x = torch.zeros(shape, dtype=dtype, device=device)
x[torch.randn(*shape) > 0.5] = True
else:
x = torch.randint(15, 100, shape, dtype=dtype, device=device)
return x
# TODO: replace with make_tensor
def _rand_shape(dim, min_size, max_size):
shape = []
for i in range(dim):
shape.append(random.randint(min_size, max_size))
return tuple(shape)
# Test suite for tensor creation ops
#
# Includes creation functions like torch.eye, random creation functions like
# torch.rand, and *like functions like torch.ones_like.
# DOES NOT INCLUDE view ops, which are tested in TestViewOps (currently in
# test_torch.py) OR numpy interop (which is also still tested in test_torch.py)
#
# See https://pytorch.org/docs/master/torch.html#creation-ops
class TestTensorCreation(TestCase):
exact_dtype = True
@onlyCPU
@dtypes(torch.float)
def test_diag_embed(self, device, dtype):
x = torch.arange(3 * 4, dtype=dtype, device=device).view(3, 4)
result = torch.diag_embed(x)
expected = torch.stack([torch.diag(r) for r in x], 0)
self.assertEqual(result, expected)
result = torch.diag_embed(x, offset=1, dim1=0, dim2=2)
expected = torch.stack([torch.diag(r, 1) for r in x], 1)
self.assertEqual(result, expected)
def test_cat_mem_overlap(self, device):
x = torch.rand((1, 3), device=device).expand((6, 3))
y = torch.rand((3, 3), device=device)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.cat([y, y], out=x)
@onlyNativeDeviceTypes
def test_vander(self, device):
x = torch.tensor([1, 2, 3, 5], device=device)
self.assertEqual((0, 0), torch.vander(torch.tensor([]), 0).shape)
with self.assertRaisesRegex(RuntimeError, "N must be non-negative."):
torch.vander(x, N=-1)
with self.assertRaisesRegex(RuntimeError, "x must be a one-dimensional tensor."):
torch.vander(torch.stack((x, x)))
@onlyNativeDeviceTypes
@dtypes(torch.bool, torch.uint8, torch.int8, torch.short, torch.int, torch.long,
torch.float, torch.double,
torch.cfloat, torch.cdouble)
def test_vander_types(self, device, dtype):
if dtype is torch.uint8:
# Note: no negative uint8 values
X = [[1, 2, 3, 5], [0, 1 / 3, 1, math.pi, 3 / 7]]
elif dtype is torch.bool:
# Note: see https://github.com/pytorch/pytorch/issues/37398
# for why this is necessary.
X = [[True, True, True, True], [False, True, True, True, True]]
elif dtype in [torch.cfloat, torch.cdouble]:
X = [[1 + 1j, 1 + 0j, 0 + 1j, 0 + 0j],
[2 + 2j, 3 + 2j, 4 + 3j, 5 + 4j]]
else:
X = [[1, 2, 3, 5], [-math.pi, 0, 1 / 3, 1, math.pi, 3 / 7]]
N = [None, 0, 1, 3]
increasing = [False, True]
for x, n, inc in product(X, N, increasing):
numpy_dtype = torch_to_numpy_dtype_dict[dtype]
pt_x = torch.tensor(x, device=device, dtype=dtype)
np_x = np.array(x, dtype=numpy_dtype)
pt_res = torch.vander(pt_x, increasing=inc) if n is None else torch.vander(pt_x, n, inc)
np_res = np.vander(np_x, n, inc)
self.assertEqual(
pt_res,
torch.from_numpy(np_res),
atol=1e-3,
rtol=0,
exact_dtype=False)
def test_cat_all_dtypes_and_devices(self, device):
for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf):
x = torch.tensor([[1, 2], [3, 4]], dtype=dt, device=device)
expected1 = torch.tensor([[1, 2], [3, 4], [1, 2], [3, 4]], dtype=dt, device=device)
self.assertEqual(torch.cat((x, x), 0), expected1)
expected2 = torch.tensor([[1, 2, 1, 2], [3, 4, 3, 4]], dtype=dt, device=device)
self.assertEqual(torch.cat((x, x), 1), expected2)
def test_fill_all_dtypes_and_devices(self, device):
for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf):
for x in [torch.tensor((10, 10), dtype=dt, device=device),
torch.empty(10000, dtype=dt, device=device)]: # large tensor
numel = x.numel()
bound = 100 if dt in (torch.uint8, torch.int8) else 2000
for n in range(-bound, bound, bound // 10):
x.fill_(n)
self.assertEqual(x, torch.tensor([n] * numel, dtype=dt, device=device))
self.assertEqual(dt, x.dtype)
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
def test_roll(self, device):
numbers = torch.arange(1, 9, device=device)
single_roll = numbers.roll(1, 0)
expected = torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device)
self.assertEqual(single_roll, expected, msg=f"{single_roll} did not equal expected result")
roll_backwards = numbers.roll(-2, 0)
expected = torch.tensor([3, 4, 5, 6, 7, 8, 1, 2], device=device)
self.assertEqual(roll_backwards, expected, msg=f"{roll_backwards} did not equal expected result")
data = numbers.view(2, 2, 2)
rolled = data.roll(1, 0)
expected = torch.tensor([5, 6, 7, 8, 1, 2, 3, 4], device=device).view(2, 2, 2)
self.assertEqual(expected, rolled, msg=f"{rolled} did not equal expected result: {expected}")
data = data.view(2, 4)
# roll a loop until back where started
loop_rolled = data.roll(2, 0).roll(4, 1)
self.assertEqual(data, loop_rolled, msg=f"{loop_rolled} did not equal the original: {data}")
# multiple inverse loops
self.assertEqual(data, data.roll(-20, 0).roll(-40, 1))
self.assertEqual(torch.tensor([8, 1, 2, 3, 4, 5, 6, 7], device=device), numbers.roll(1, 0))
# test non-contiguous
# strided equivalent to numbers.as_strided(size=(4, 2), stride=(1, 4))
strided = numbers.view(2, 4).transpose(0, 1)
self.assertFalse(strided.is_contiguous(), "this test needs a non-contiguous tensor")
expected = torch.tensor([4, 8, 1, 5, 2, 6, 3, 7]).view(4, 2)
rolled = strided.roll(1, 0)
self.assertEqual(expected, rolled,
msg=f"non contiguous tensor rolled to {rolled} instead of {expected} ")
# test roll with no dimension specified
expected = numbers.roll(1, 0).view(2, 4)
self.assertEqual(expected, data.roll(1), msg="roll with no dims should flatten and roll.")
self.assertEqual(expected, data.roll(1, dims=None), msg="roll with no dims should flatten and roll.")
# test roll over multiple dimensions
expected = torch.tensor([[7, 8, 5, 6], [3, 4, 1, 2]], device=device)
double_rolled = data.roll(shifts=(2, -1), dims=(1, 0))
self.assertEqual(double_rolled, expected,
msg=f"should be able to roll over two dimensions, got {double_rolled}")
self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=()))
self.assertRaisesRegex(RuntimeError, "required", lambda: data.roll(shifts=(), dims=1))
# shifts/dims should align
self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1, 2), dims=(1,)))
self.assertRaisesRegex(RuntimeError, "align", lambda: data.roll(shifts=(1,), dims=(1, 2)))
# test bool tensor
t = torch.zeros(6, dtype=torch.bool, device=device)
t[0] = True
t[3] = True
self.assertEqual(torch.tensor([False, True, False, False, True, False]), t.roll(1, 0))
# test complex tensor
t = torch.tensor([1, 2 + 1j, 3.5, 4. + 2j, 5j, 6.], device=device)
t[0] = 1 + 0.5j
t[3] = 4.
expected = torch.tensor([6., 1 + 0.5j, 2 + 1j, 3.5, 4., 5j], device=device)
self.assertEqual(expected, t.roll(1, 0))
def test_diagflat(self, device):
dtype = torch.float32
# Basic sanity test
x = torch.randn((100,), dtype=dtype, device=device)
result = torch.diagflat(x)
expected = torch.diag(x)
self.assertEqual(result, expected)
# Test offset
x = torch.randn((100,), dtype=dtype, device=device)
result = torch.diagflat(x, 17)
expected = torch.diag(x, 17)
self.assertEqual(result, expected)
# Test where input has more than one dimension
x = torch.randn((2, 3, 4), dtype=dtype, device=device)
result = torch.diagflat(x)
expected = torch.diag(x.contiguous().view(-1))
self.assertEqual(result, expected)
# Noncontig input
x = torch.randn((2, 3, 4), dtype=dtype, device=device).transpose(2, 0)
self.assertFalse(x.is_contiguous())
result = torch.diagflat(x)
expected = torch.diag(x.contiguous().view(-1))
self.assertEqual(result, expected)
# Complex number support
result = torch.diagflat(torch.ones(4, dtype=torch.complex128))
expected = torch.eye(4, dtype=torch.complex128)
self.assertEqual(result, expected)
def test_block_diag(self, device):
def block_diag_workaround(*arrs):
arrs_expanded = []
for a in arrs:
if a.dim() == 2:
arrs_expanded.append(a)
elif a.dim() == 1:
arrs_expanded.append(a.expand(1, a.size(0)))
elif a.dim() == 0:
arrs_expanded.append(a.expand(1, 1))
shapes = torch.tensor([a.shape for a in arrs_expanded], device=device)
out = torch.zeros(
torch.sum(shapes, dim=0).tolist(),
dtype=arrs_expanded[0].dtype,
device=device
)
r, c = 0, 0
for i, (rr, cc) in enumerate(shapes):
out[r:r + rr, c:c + cc] = arrs_expanded[i]
r += rr
c += cc
return out
tensors = [
torch.rand((2, 2), device=device),
torch.rand((2, 3), device=device),
torch.rand(10, device=device),
torch.rand((8, 1), device=device),
torch.rand(1, device=device)[0]
]
result = torch.block_diag(*tensors)
result_check = block_diag_workaround(*tensors)
self.assertEqual(result, result_check)
tensor = torch.rand(1, device=device)[0]
result = torch.block_diag(tensor)
result_check = tensor.expand(1, 1)
self.assertEqual(result, result_check)
tensor = torch.rand(10, device=device)
result = torch.block_diag(tensor)
result_check = tensor.expand(1, tensor.size(0))
self.assertEqual(result, result_check)
result = torch.block_diag()
result_check = torch.empty(1, 0, device=device)
self.assertEqual(result, result_check)
self.assertEqual(result.device.type, 'cpu')
test_dtypes = [
torch.uint8,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.float32,
torch.float64,
torch.complex64,
torch.complex128
]
# Test pairs of different dtypes
for dtype1 in test_dtypes:
for dtype2 in test_dtypes:
a = torch.tensor(1, device=device, dtype=dtype1)
b = torch.tensor(2, device=device, dtype=dtype2)
result = torch.block_diag(a, b)
result_dtype = torch.result_type(a, b)
result_check = torch.tensor([[1, 0], [0, 2]], device=device, dtype=result_dtype)
self.assertEqual(result, result_check)
with self.assertRaisesRegex(
RuntimeError,
"torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 1 has 3 dimensions"
):
torch.block_diag(torch.tensor(5), torch.tensor([[[6]]]))
with self.assertRaisesRegex(
RuntimeError,
"torch.block_diag: Input tensors must have 2 or fewer dimensions. Input 0 has 4 dimensions"
):
torch.block_diag(torch.tensor([[[[6]]]]))
if device != 'cpu':
with self.assertRaisesRegex(
RuntimeError,
(
"torch.block_diag: input tensors must all be on the same device."
" Input 0 is on device cpu and input 1 is on device "
)
):
torch.block_diag(torch.ones(2, 2).cpu(), torch.ones(2, 2, device=device))
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
def test_block_diag_scipy(self, device):
import scipy.linalg
scipy_tensors_list = [
[
1,
[2],
[],
[3, 4, 5],
[[], []],
[[6], [7.3]]
],
[
[[1, 2], [3, 4]],
[1]
],
[
[[4, 9], [7, 10]],
[4.6, 9.12],
[1j + 3]
],
[]
]
expected_torch_types = [
torch.float32,
torch.int64,
torch.complex64,
torch.float32
]
expected_scipy_types = [
torch.float64,
# windows scipy block_diag returns int32 types
torch.int32 if IS_WINDOWS else torch.int64,
torch.complex128,
torch.float64
]
for scipy_tensors, torch_type, scipy_type in zip(scipy_tensors_list, expected_torch_types, expected_scipy_types):
torch_tensors = [torch.tensor(t, device=device) for t in scipy_tensors]
torch_result = torch.block_diag(*torch_tensors)
self.assertEqual(torch_result.dtype, torch_type)
scipy_result = torch.tensor(
scipy.linalg.block_diag(*scipy_tensors),
device=device
)
self.assertEqual(scipy_result.dtype, scipy_type)
scipy_result = scipy_result.to(torch_type)
self.assertEqual(torch_result, scipy_result)
@onlyNativeDeviceTypes
@dtypes(torch.half, torch.float32, torch.float64)
def test_torch_complex(self, device, dtype):
real = torch.tensor([1, 2], device=device, dtype=dtype)
imag = torch.tensor([3, 4], device=device, dtype=dtype)
z = torch.complex(real, imag)
complex_dtype = float_to_corresponding_complex_type_map[dtype]
self.assertEqual(torch.tensor([1.0 + 3.0j, 2.0 + 4.0j], dtype=complex_dtype), z)
@onlyNativeDeviceTypes
@dtypes(torch.float32, torch.float64)
def test_torch_polar(self, device, dtype):
abs = torch.tensor([1, 2, -3, -4.5, 1, 1], device=device, dtype=dtype)
angle = torch.tensor([math.pi / 2, 5 * math.pi / 4, 0, -11 * math.pi / 6, math.pi, -math.pi],
device=device, dtype=dtype)
z = torch.polar(abs, angle)
complex_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128
self.assertEqual(torch.tensor([1j, -1.41421356237 - 1.41421356237j, -3,
-3.89711431703 - 2.25j, -1, -1],
dtype=complex_dtype),
z, atol=1e-5, rtol=1e-5)
@onlyNativeDeviceTypes
@dtypes(torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64,
torch.complex64, torch.complex128, torch.bool)
def test_torch_complex_floating_dtype_error(self, device, dtype):
for op in (torch.complex, torch.polar):
a = torch.tensor([1, 2], device=device, dtype=dtype)
b = torch.tensor([3, 4], device=device, dtype=dtype)
error = r"Expected both inputs to be Half, Float or Double tensors but " \
r"got [A-Za-z]+ and [A-Za-z]+"
with self.assertRaisesRegex(RuntimeError, error):
op(a, b)
@onlyNativeDeviceTypes
@dtypes(torch.float32, torch.float64)
def test_torch_complex_same_dtype_error(self, device, dtype):
def dtype_name(dtype):
return 'Float' if dtype == torch.float32 else 'Double'
for op in (torch.complex, torch.polar):
other_dtype = torch.float64 if dtype == torch.float32 else torch.float32
a = torch.tensor([1, 2], device=device, dtype=dtype)
b = torch.tensor([3, 4], device=device, dtype=other_dtype)
error = f"Expected object of scalar type {dtype_name(dtype)} but got scalar type " \
f"{dtype_name(other_dtype)} for second argument"
with self.assertRaisesRegex(RuntimeError, error):
op(a, b)
@onlyNativeDeviceTypes
@dtypes(torch.float32, torch.float64)
def test_torch_complex_out_dtype_error(self, device, dtype):
def dtype_name(dtype):
return 'Float' if dtype == torch.float32 else 'Double'
def complex_dtype_name(dtype):
return 'ComplexFloat' if dtype == torch.complex64 else 'ComplexDouble'
for op in (torch.complex, torch.polar):
a = torch.tensor([1, 2], device=device, dtype=dtype)
b = torch.tensor([3, 4], device=device, dtype=dtype)
out = torch.zeros(2, device=device, dtype=dtype)
expected_dtype = torch.complex64 if dtype == torch.float32 else torch.complex128
error = f"Expected object of scalar type {complex_dtype_name(expected_dtype)} but got scalar type " \
f"{dtype_name(dtype)} for argument 'out'"
with self.assertRaisesRegex(RuntimeError, error):
op(a, b, out=out)
def test_cat_empty_legacy(self, device):
# FIXME: this is legacy behavior and should be removed
# when we support empty tensors with arbitrary sizes
dtype = torch.float32
x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device)
empty = torch.randn((0,), dtype=dtype, device=device)
res1 = torch.cat([x, empty], dim=1)
res2 = torch.cat([empty, x], dim=1)
self.assertEqual(res1, res2)
res1 = torch.cat([empty, empty], dim=1)
self.assertEqual(res1, empty)
def test_cat_empty(self, device):
dtype = torch.float32
x = torch.randn((4, 3, 32, 32), dtype=dtype, device=device)
empty = torch.randn((4, 0, 32, 32), dtype=dtype, device=device)
res1 = torch.cat([x, empty], dim=1)
res2 = torch.cat([empty, x], dim=1)
self.assertEqual(res1, res2)
res1 = torch.cat([empty, empty], dim=1)
self.assertEqual(res1, empty)
def test_cat_out(self, device):
x = torch.zeros((0), device=device)
y = torch.randn((4, 6), device=device)
w = y.view(-1).clone()
a = torch.cat([w[:2], w[4:6]])
b = torch.cat([w[:2], w[4:6]], out=w[6:10])
self.assertEqual(a, b)
self.assertEqual(a, w[6:10])
self.assertEqual(w[:6], y.view(-1)[:6])
# Case:
# Reference: https://github.com/pytorch/pytorch/issues/49878
for dim in [0, 1]:
x = torch.zeros((10, 5, 2), device=device)
random_length = random.randint(1, 4)
y = x.narrow(dim, 0, x.shape[dim] - random_length)
val = torch.full_like(y[0], 3., device=device)
if dim == 0:
self.assertTrue(y.is_contiguous())
else:
self.assertFalse(y.is_contiguous())
torch.cat((val[None],) * y.shape[0], dim=0, out=y)
expected_y = torch.cat((val[None],) * y.shape[0], dim=0)
expected_x = torch.zeros((10, 5, 2), device=device)
if dim == 0:
expected_x[:x.shape[dim] - random_length, :, :] = expected_y
elif dim == 1:
expected_x[:, :x.shape[dim] - random_length, :] = expected_y
self.assertEqual(y, expected_y)
self.assertEqual(x, expected_x)
@dtypes(*all_types_and_complex())
def test_cat_out_fast_path_dim0_dim1(self, device, dtype):
x = torch.zeros((0), device=device, dtype=dtype)
if dtype in integral_types():
y = torch.randint(low=0, high=100, size=(4, 6), device=device, dtype=dtype)
else:
y = torch.randn((4, 6), device=device, dtype=dtype)
# Test concat on dimension 0
w = y.view(-1).clone()
a = torch.cat([w[:2], w[4:6]])
b = torch.cat([w[:2], w[4:6]], out=w[6:10])
# Note that there is no guarantee that slicing here will result in
# contiguous tensors
self.assertEqual(a, b)
self.assertEqual(a, w[6:10])
self.assertEqual(w[:6], y.view(-1)[:6])
# If inputs are contiguous tensors, then fast concat paths will be invoked
a_fastcat = torch.cat([w[:2].contiguous(), w[4:6].contiguous()])
self.assertEqual(a_fastcat, a)
# Test concat on dimension 1
w = y.clone()
w_slices = torch.tensor_split(w, (2, 4), dim=1)
# Note that the tensor in w_slices[] here may not be a contiguous
# tensor and we need to make sure this is not broken by fast concat
b = torch.cat([w_slices[0], w_slices[1]], dim=1)
expected_b = torch.index_select(w, 1, torch.tensor([0, 1, 2, 3], device=device))
self.assertEqual(b, expected_b)
# If inputs are contiguous tensors, then fast concat paths will be invoked
b_fastcat = torch.cat([w_slices[0].contiguous(), w_slices[1].contiguous()], dim=1)
self.assertEqual(b_fastcat, expected_b)
# Finally, we need to make sure backward is not broken
# Integral types will not have grad
if dtype not in integral_types():
a = torch.randn((4, 3), device=device, dtype=dtype, requires_grad=True)
b = torch.randn((2, 3), device=device, dtype=dtype, requires_grad=True)
c = torch.randn((5, 3), device=device, dtype=dtype, requires_grad=True)
d = torch.randn((5, 2), device=device, dtype=dtype, requires_grad=True)
expected_a_grad = torch.ones((4, 3), device=device, dtype=dtype)
expected_b_grad = torch.ones((2, 3), device=device, dtype=dtype)
expected_c_grad = torch.ones((5, 3), device=device, dtype=dtype)
expected_d_grad = torch.ones((5, 2), device=device, dtype=dtype)
# All the new tensors should be contiguous here. Let us make sure
# to explicitly set them contiguous to enforce fast cat
dim0_cat = torch.cat([a.contiguous(), b.contiguous()], dim=0)
if dtype in complex_types():
dim0_cat.sum().abs().backward()
self.assertEqual(a.grad.abs(), expected_a_grad.abs())
self.assertEqual(b.grad.abs(), expected_b_grad.abs())
else:
dim0_cat.sum().backward()
self.assertEqual(a.grad, expected_a_grad)
self.assertEqual(b.grad, expected_b_grad)
dim1_cat = torch.cat([c.contiguous(), d.contiguous()], dim=1)
if dtype in complex_types():
dim1_cat.sum().abs().backward()
self.assertEqual(c.grad.abs(), expected_c_grad.abs())
self.assertEqual(d.grad.abs(), expected_d_grad.abs())
else:
dim1_cat.sum().backward()
self.assertEqual(c.grad, expected_c_grad)
self.assertEqual(d.grad, expected_d_grad)
def test_cat_out_channels_last(self, device):
x = torch.randn((4, 3, 8, 8))
y = torch.randn(x.shape)
res1 = torch.cat((x, y))
z = res1.clone().contiguous(memory_format=torch.channels_last)
res2 = torch.cat((x, y), out=z)
self.assertEqual(res1, res2)
@onlyNativeDeviceTypes
def test_cat_in_channels_last(self, device):
for dim in range(4):
x = torch.randn((4, 15, 8, 8), device=device)
y = torch.randn(x.shape, device=device)
res1 = torch.cat((x, y), dim=dim)
x = x.clone().contiguous(memory_format=torch.channels_last)
y = y.clone().contiguous(memory_format=torch.channels_last)
res2 = torch.cat((x, y), dim=dim)
self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last))
self.assertEqual(res1, res2)
# Size larger than grain size.
x = torch.randn((4, 15, 256, 256), device=device)
y = torch.randn(x.shape, device=device)
res1 = torch.cat((x, y), dim=dim)
x = x.clone().contiguous(memory_format=torch.channels_last)
y = y.clone().contiguous(memory_format=torch.channels_last)
res2 = torch.cat((x, y), dim=dim)
self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last))
self.assertEqual(res1, res2)
@onlyNativeDeviceTypes
def test_cat_preserve_channels_last(self, device):
x = torch.randn((4, 3, 8, 8), device=device)
y = torch.randn(x.shape, device=device)
res1 = torch.cat((x, y))
res2 = torch.cat((x.contiguous(memory_format=torch.channels_last), y.contiguous(memory_format=torch.channels_last)))
self.assertEqual(res1, res2)
self.assertTrue(res2.is_contiguous(memory_format=torch.channels_last))
# discontiguous channels-last inputs
x = torch.arange(24, dtype=torch.float, device=device).reshape(2, 2, 3, 2).to(memory_format=torch.channels_last)
x1 = x[:, :, :2]
x2 = x[:, :, 1:]
res1 = torch.cat((x1, x2), dim=-1)
res2 = torch.cat((x1.contiguous(), x2.contiguous()), dim=-1)
self.assertEqual(res1, res2)
self.assertTrue(res1.is_contiguous(memory_format=torch.channels_last))
@onlyCUDA
def test_cat_out_memory_format(self, device):
inp_size = (4, 4, 4, 4)
expected_size = (8, 4, 4, 4)
a_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.channels_last)
a_cpu = torch.randn(inp_size, device='cpu').contiguous(memory_format=torch.channels_last)
b_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.contiguous_format)
b_cpu = torch.randn(inp_size, device='cpu').contiguous(memory_format=torch.contiguous_format)
c_cuda = torch.randn(inp_size, device=device).contiguous(memory_format=torch.channels_last)
# Case 1: if out= is the correct shape then the memory format of out= is respected
out_cuda = torch.empty(expected_size, device=device).contiguous(memory_format=torch.contiguous_format)
res1_cuda = torch.cat((a_cuda, b_cuda), out=out_cuda)
out_cpu = torch.empty(expected_size, device='cpu').contiguous(memory_format=torch.contiguous_format)
res1_cpu = torch.cat((a_cpu, b_cpu), out=out_cpu)
self.assertTrue(res1_cuda.is_contiguous(memory_format=torch.contiguous_format))
self.assertTrue(res1_cpu.is_contiguous(memory_format=torch.contiguous_format))
# Case 2: if out= is not the correct shape then the output it is resized internally
# - For both CPU and CUDA variants, it only propagates memory format if all the tensors have
# the same memory format, otherwise it just uses contiguous_format as a default
out_cuda = torch.empty((0), device=device).contiguous(memory_format=torch.contiguous_format)
# a_cuda and b_cuda have different memory_format
res2_cuda = torch.cat((a_cuda, b_cuda), out=out_cuda)
out_cpu = torch.empty((0), device='cpu').contiguous(memory_format=torch.contiguous_format)
res2_cpu = torch.cat((a_cpu, b_cpu), out=out_cpu)
self.assertTrue(res2_cuda.is_contiguous(memory_format=torch.contiguous_format))
self.assertTrue(res2_cpu.is_contiguous(memory_format=torch.contiguous_format))
out_cuda = torch.empty((0), device=device).contiguous(memory_format=torch.contiguous_format)
# a_cuda and c_cuda have same memory_format
res3_cuda = torch.cat((a_cuda, c_cuda), out=out_cuda)
self.assertTrue(res3_cuda.is_contiguous(memory_format=torch.channels_last))
@onlyCUDA
def test_cat_stack_cross_devices(self, device):
cuda = torch.randn((3, 3), device=device)
cpu = torch.randn((3, 3), device='cpu')
# Stack
with self.assertRaisesRegex(RuntimeError,
"Expected all tensors to be on the same device"):
torch.stack((cuda, cpu))
with self.assertRaisesRegex(RuntimeError,
"Expected all tensors to be on the same device"):
torch.stack((cpu, cuda))
# TODO: reconcile with other cat tests
# TODO: Compare with a NumPy reference instead of CPU
@onlyCUDA
def test_cat(self, device):
SIZE = 10
for dim in range(-3, 3):
pos_dim = dim if dim >= 0 else 3 + dim
x = torch.rand(13, SIZE, SIZE, device=device).transpose(0, pos_dim)
y = torch.rand(17, SIZE, SIZE, device=device).transpose(0, pos_dim)
z = torch.rand(19, SIZE, SIZE, device=device).transpose(0, pos_dim)
res1 = torch.cat((x, y, z), dim)
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0)
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0)
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0)
x = torch.randn(20, SIZE, SIZE, device=device)
self.assertEqual(torch.cat(torch.split(x, 7)), x)
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
y = torch.randn(1, SIZE, SIZE, device=device)
z = torch.cat([x, y])
self.assertEqual(z.size(), (21, SIZE, SIZE))
# TODO: update this test to compare against NumPy instead of CPU
@onlyCUDA
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_device_rounding(self, device, dtype):
# test half-to-even
a = [-5.8, -3.5, -2.3, -1.5, -0.5, 0.5, 1.5, 2.3, 3.5, 5.8]
res = [-6., -4., -2., -2., 0., 0., 2., 2., 4., 6.]
a_tensor = torch.tensor(a, device=device).round()
res_tensor = torch.tensor(res, device='cpu')
self.assertEqual(a_tensor, res_tensor)
# Note: This test failed on XLA since its test cases are created by empty_strided which
# doesn't support overlapping sizes/strides in XLA impl
@skipIfTorchDynamo("TorchDynamo fails on this test for unknown reasons")
@onlyNativeDeviceTypes
def test_like_fn_stride_proparation_vs_tensoriterator_unary_op(self, device):
# Test like functions against tensoriterator based unary operator (exp) to
# make sure the returned tensor from like function follows the same stride propergation
# rule as what tensoriterator does for unary operator. The like function's output strides
# is computed on CPU side always, no need to test GPU here.
def compare_helper_(like_fn, t):
te = torch.exp(t)
tl = like_fn(t)
self.assertEqual(te.stride(), tl.stride())
self.assertEqual(te.size(), tl.size())
like_fns = [
lambda t, **kwargs: torch.zeros_like(t, **kwargs),
lambda t, **kwargs: torch.ones_like(t, **kwargs),
lambda t, **kwargs: torch.randint_like(t, 10, 100, **kwargs),
lambda t, **kwargs: torch.randint_like(t, 100, **kwargs),
lambda t, **kwargs: torch.randn_like(t, **kwargs),
lambda t, **kwargs: torch.rand_like(t, **kwargs),
lambda t, **kwargs: torch.full_like(t, 7, **kwargs),
lambda t, **kwargs: torch.empty_like(t, **kwargs)]
# dense non-overlapping tensor,
# non-dense non-overlapping sliced tensor
# non-dense non-overlapping gapped tensor
# non-dense non-overlapping 0 strided tensor
# non-dense overlapping general tensor
# non-dense overlapping sliced tensor
# non-dense overlapping gapped tensor
# non-dense overlapping 0 strided tensor
# non-dense overlapping equal strides
tset = (
torch.randn(4, 3, 2, device=device),
torch.randn(4, 3, 2, device=device)[:, :, ::2],
torch.empty_strided((4, 3, 2), (10, 3, 1), device=device).fill_(1.0),
torch.empty_strided((4, 3, 2), (10, 0, 3), device=device).fill_(1.0),
torch.empty_strided((4, 3, 2), (10, 1, 2), device=device).fill_(1.0),
torch.empty_strided((4, 3, 2), (4, 2, 1), device=device)[:, :, ::2].fill_(1.0),
torch.empty_strided((4, 3, 2), (10, 1, 1), device=device).fill_(1.0),
torch.empty_strided((4, 1, 1, 2), (10, 0, 0, 2), device=device).fill_(1.0),
torch.empty_strided((4, 2, 3), (10, 3, 3), device=device).fill_(1.0))
for like_fn in like_fns:
for t in tset:
for p in permutations(range(t.dim())):
tp = t.permute(p)
compare_helper_(like_fn, tp)
def _hvd_split_helper(self, torch_fn, np_fn, op_name, inputs, device, dtype, dim):
dimension_error_message = op_name + " requires a tensor with at least "
divisibiliy_error_message = op_name + " attempted to split along dimension "
for shape, arg in inputs:
direction = dim - (len(shape) == 1 and dim == 1)
bound = dim + 2 * (dim == 0) + (dim == 2)
error_expected = len(shape) < bound or (not isinstance(arg, list) and shape[direction] % arg != 0)
t = make_tensor(shape, dtype=dtype, device=device)
t_np = t.cpu().numpy()
if not error_expected:
self.assertEqual(torch_fn(t, arg), np_fn(t_np, arg))
else:
self.assertRaises(RuntimeError, lambda: torch_fn(t, arg))
self.assertRaises(ValueError, lambda: np_fn(t, arg))
expected_error_message = dimension_error_message if len(shape) < bound else divisibiliy_error_message
self.assertRaisesRegex(RuntimeError, expected_error_message, lambda: torch_fn(t, arg))
@onlyNativeDeviceTypes
@dtypes(torch.long, torch.float32, torch.complex64)
def test_hsplit(self, device, dtype):
inputs = (
((), 3),
((), [2, 4, 6]),
((6,), 2),
((6,), 4),
((6,), [2, 5]),
((6,), [7, 9]),
((3, 8), 4),
((3, 8), 5),
((3, 8), [1, 5]),
((3, 8), [3, 8]),
((5, 5, 5), 2),
((5, 5, 5), [1, 4]),
((5, 0, 5), 3),
((5, 5, 0), [2, 6]),
)
self._hvd_split_helper(torch.hsplit, np.hsplit, "torch.hsplit", inputs, device, dtype, 1)
@onlyNativeDeviceTypes
@dtypes(torch.long, torch.float32, torch.complex64)
def test_vsplit(self, device, dtype):
inputs = (
((6,), 2),
((6,), 4),
((6, 5), 2),
((6, 5), 4),
((6, 5), [1, 2, 3]),
((6, 5), [1, 5, 9]),
((6, 5, 5), 2),
((6, 0, 5), 2),
((5, 0, 5), [1, 5]),
)
self._hvd_split_helper(torch.vsplit, np.vsplit, "torch.vsplit", inputs, device, dtype, 0)
@onlyNativeDeviceTypes
@dtypes(torch.long, torch.float32, torch.complex64)
def test_dsplit(self, device, dtype):
inputs = (
((6,), 4),
((6, 6), 3),
((5, 5, 6), 2),
((5, 5, 6), 4),
((5, 5, 6), [1, 2, 3]),
((5, 5, 6), [1, 5, 9]),
((5, 5, 0), 2),
((5, 0, 6), 4),
((5, 0, 6), [1, 2, 3]),
((5, 5, 6), [1, 5, 9]),
)
self._hvd_split_helper(torch.dsplit, np.dsplit, "torch.dsplit", inputs, device, dtype, 2)
def _test_special_stacks(self, dim, at_least_dim, torch_fn, np_fn, device, dtype):
# Test error for non-tuple argument
t = torch.randn(10)
with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"):
torch_fn(t)
# Test error for a single array
with self.assertRaisesRegex(TypeError, "must be tuple of Tensors, not Tensor"):
torch_fn(t)
# Test 0-D
num_tensors = random.randint(1, 5)
input_t = [torch.tensor(random.uniform(0, 10), device=device, dtype=dtype) for i in range(num_tensors)]
actual = torch_fn(input_t)
expected = np_fn([input.cpu().numpy() for input in input_t])
self.assertEqual(actual, expected)
for ndims in range(1, 5):
base_shape = list(_rand_shape(ndims, min_size=1, max_size=5))
for i in range(ndims):
shape = list(base_shape)
num_tensors = random.randint(1, 5)
torch_input = []
# Create tensors with shape being different along one axis only
for param in range(num_tensors):
shape[i] = random.randint(1, 5)
torch_input.append(_generate_input(tuple(shape), dtype, device, with_extremal=False))
# Determine if input tensors have valid dimensions.
valid_dim = True
for k in range(len(torch_input) - 1):
for tdim in range(ndims):
# Test whether all tensors have the same shape except in concatenating dimension
# Unless the number of dimensions is less than the corresponding at_least function dimension
# Since the original concatenating dimension would shift after applying at_least and would no
# longer be the concatenating dimension
if (ndims < at_least_dim or tdim != dim) and torch_input[k].size()[tdim] != torch_input[k + 1].size()[tdim]:
valid_dim = False
# Special case for hstack is needed since hstack works differently when ndims is 1
if valid_dim or (torch_fn is torch.hstack and ndims == 1):
# Valid dimensions, test against numpy
np_input = [input.cpu().numpy() for input in torch_input]
actual = torch_fn(torch_input)
expected = np_fn(np_input)
self.assertEqual(actual, expected)
else:
# Invalid dimensions, test for error
with self.assertRaisesRegex(RuntimeError, "Sizes of tensors must match except in dimension"):
torch_fn(torch_input)
with self.assertRaises(ValueError):
np_input = [input.cpu().numpy() for input in torch_input]
np_fn(np_input)
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half))
def test_hstack_column_stack(self, device, dtype):
ops = ((torch.hstack, np.hstack), (torch.column_stack, np.column_stack))
for torch_op, np_op in ops:
self._test_special_stacks(1, 1, torch_op, np_op, device, dtype)
# Test torch.column_stack with combinations of 1D and 2D tensors input
one_dim_tensor = torch.arange(0, 10).to(dtype=dtype, device=device)
two_dim_tensor = torch.arange(0, 100).to(dtype=dtype, device=device).reshape(10, 10)
inputs = two_dim_tensor, one_dim_tensor, two_dim_tensor, one_dim_tensor
torch_result = torch.column_stack(inputs)
np_inputs = [input.cpu().numpy() for input in inputs]
np_result = np.column_stack(np_inputs)
self.assertEqual(np_result,
torch_result)
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half))
def test_vstack_row_stack(self, device, dtype):
ops = ((torch.vstack, np.vstack), (torch.row_stack, np.row_stack))
for torch_op, np_op in ops:
self._test_special_stacks(0, 2, torch_op, np_op, device, dtype)
for i in range(5):
# Test dimension change for 1D tensor of size (N) and 2D tensor of size (1, N)
n = random.randint(1, 10)
input_a = _generate_input((n,), dtype, device, with_extremal=False)
input_b = _generate_input((1, n), dtype, device, with_extremal=False)
torch_input = [input_a, input_b]
np_input = [input.cpu().numpy() for input in torch_input]
actual = torch_op(torch_input)
expected = np_op(np_input)
self.assertEqual(actual, expected)
@onlyNativeDeviceTypes
@dtypes(*all_types_and_complex_and(torch.half))
def test_dstack(self, device, dtype):
self._test_special_stacks(2, 3, torch.dstack, np.dstack, device, dtype)
for i in range(5):
# Test dimension change for 1D tensor of size (N), 2D tensor of size (1, N), and 3D tensor of size (1, N, 1)
n = random.randint(1, 10)
input_a = _generate_input((n,), dtype, device, with_extremal=False)
input_b = _generate_input((1, n), dtype, device, with_extremal=False)
input_c = _generate_input((1, n, 1), dtype, device, with_extremal=False)
torch_input = [input_a, input_b, input_c]
np_input = [input.cpu().numpy() for input in torch_input]
actual = torch.dstack(torch_input)
expected = np.dstack(np_input)
self.assertEqual(actual, expected)
# Test dimension change for 2D tensor of size (M, N) and 3D tensor of size (M, N, 1)
m = random.randint(1, 10)
n = random.randint(1, 10)
input_a = _generate_input((m, n), dtype, device, with_extremal=False)
input_b = _generate_input((m, n, 1), dtype, device, with_extremal=False)
torch_input = [input_a, input_b]
np_input = [input.cpu().numpy() for input in torch_input]
actual = torch.dstack(torch_input)
expected = np.dstack(np_input)
self.assertEqual(actual, expected)
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
@dtypes(torch.int32, torch.int64)
def test_large_linspace(self, device, dtype):
start = torch.iinfo(dtype).min
end = torch.iinfo(dtype).max & ~0xfff
steps = 15
x = torch.linspace(start, end, steps, dtype=dtype, device=device)
self.assertGreater(x[1] - x[0], (end - start) / steps)
@dtypes(torch.float32, torch.float64)
def test_unpack_double(self, device, dtype):
# Reference: https://github.com/pytorch/pytorch/issues/33111
vals = (2 ** 24 + 1, 2 ** 53 + 1,
np.iinfo(np.int64).max, np.iinfo(np.uint64).max, np.iinfo(np.uint64).max + 1,
-1e500, 1e500)
for val in vals:
t = torch.tensor(val, dtype=dtype, device=device)
a = np.array(val, dtype=torch_to_numpy_dtype_dict[dtype])
self.assertEqual(t, torch.from_numpy(a))
def _float_to_int_conversion_helper(self, vals, device, dtype, refs=None):
if refs is None:
a = np.array(vals, dtype=np.float32).astype(torch_to_numpy_dtype_dict[dtype])
refs = torch.from_numpy(a)
t = torch.tensor(vals, device=device, dtype=torch.float).to(dtype)
self.assertEqual(refs, t.cpu())
# Checks that float->integer casts don't produce undefined behavior errors.
# Note: In C++, casting from a floating value to an integral dtype
# is undefined if the floating point value is not within the integral
# dtype's dynamic range. This can (and should) cause undefined behavior
# errors with UBSAN. These casts are deliberate in PyTorch, however, and
# NumPy may have the same behavior.
@onlyNativeDeviceTypes
@unittest.skipIf(IS_MACOS or IS_JETSON, "Test is broken on MacOS and Jetson, \
see https://github.com/pytorch/pytorch/issues/38752")
@unittest.skipIf(IS_PPC, "Test is broken on PowerPC, see https://github.com/pytorch/pytorch/issues/39671")
@dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
def test_float_to_int_conversion_finite(self, device, dtype):
min = torch.finfo(torch.float).min
max = torch.finfo(torch.float).max
# Note: CUDA max float -> integer conversion is divergent on some dtypes
vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2, max)
refs = None
if self.device_type == 'cuda':
if torch.version.hip:
# HIP min float -> int64 conversion is divergent
vals = (-2, -1.5, -.5, 0, .5, 1.5, 2)
else:
vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2)
elif dtype == torch.uint8:
# Note: CPU max float -> uint8 conversion is divergent
vals = (min, -2, -1.5, -.5, 0, .5, 1.5, 2)
# Note: numpy -2.0 or -1.5 -> uint8 conversion is undefined
# see https://github.com/pytorch/pytorch/issues/97794
refs = (0, 254, 255, 0, 0, 0, 1, 2)
self._float_to_int_conversion_helper(vals, device, dtype, refs)
# Note: CUDA will fail this test on most dtypes, often dramatically.
@onlyCPU
@dtypes(torch.bool, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64)
def test_float_to_int_conversion_nonfinite(self, device, dtype):
vals = (float('-inf'), float('inf'), float('nan'))
self._float_to_int_conversion_helper(vals, device, dtype)
# TODO: re-enable this test
@unittest.skipIf(True, "real and imag not implemented for complex")
@onlyNativeDeviceTypes
def test_complex_type_conversions(self, device):
dtypes = [torch.float, torch.complex64, torch.complex128]
for from_type in dtypes:
for to_type in dtypes:
from_tensor = torch.randn(4, dtype=from_type, device=device)
to_tensor = from_tensor.to(to_type)
if from_type.is_complex and not to_type.is_complex:
self.assertEqual(torch.real(from_tensor), to_tensor, exact_dtype=False)
elif not from_type.is_complex and to_type.is_complex:
self.assertEqual(from_tensor, torch.real(to_tensor), exact_dtype=False)
self.assertEqual(torch.zeros_like(torch.imag(to_tensor)), torch.imag(to_tensor), exact_dtype=False)
else:
self.assertEqual(from_tensor, to_tensor, exact_dtype=False)
@slowTest
@onlyCPU
def test_cat_big(self, device):
SIZE1 = 6500
SIZE2 = 4500
concat_list = []
concat_list.append(torch.ones((SIZE1, 1024 * 512), dtype=torch.uint8, device=device))
concat_list.append(torch.ones((SIZE2, 1024 * 512), dtype=torch.uint8, device=device))
result = torch.cat(concat_list)
self.assertEqual(result.size(0), SIZE1 + SIZE2)
@onlyCPU
@dtypes(torch.half, torch.double, torch.int)
def test_cat2(self, device, dtype):
SIZE = 10
for dim in range(-3, 3):
pos_dim = dim if dim >= 0 else 3 + dim
x = torch.randint(low=-100, high=100, size=(13, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim)
y = torch.randint(low=-100, high=100, size=(17, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim)
z = torch.randint(low=-100, high=100, size=(19, SIZE, SIZE), device=device).to(dtype).transpose(0, pos_dim)
res1 = torch.cat((x, y, z), dim)
self.assertEqual(res1.narrow(pos_dim, 0, 13), x, atol=0, rtol=0)
self.assertEqual(res1.narrow(pos_dim, 13, 17), y, atol=0, rtol=0)
self.assertEqual(res1.narrow(pos_dim, 30, 19), z, atol=0, rtol=0)
x = torch.randint(low=-100, high=100, size=(20, SIZE, SIZE), device=device).to(dtype)
self.assertEqual(torch.cat(torch.split(x, 7)), x)
self.assertEqual(torch.cat(torch.chunk(x, 7)), x)
y = torch.randint(low=-100, high=100, size=(1, SIZE, SIZE), device=device).to(dtype)
z = torch.cat([x, y])
self.assertEqual(z.size(), (21, SIZE, SIZE))
# FIXME: Create an OpInfo-based tensor creation method test that verifies this for all tensor
# creation methods and verify all dtypes and layouts
@dtypes(torch.bool, torch.uint8, torch.int16, torch.int64, torch.float16, torch.float32, torch.complex64)
def test_zeros_dtype_layout_device_match(self, device, dtype):
layout = torch.strided
t = torch.zeros((2, 3), device=device, dtype=dtype, layout=layout)
self.assertIs(dtype, t.dtype)
self.assertIs(layout, t.layout)
self.assertEqual(torch.device(device), t.device)
# TODO: update to work on CUDA, too
@onlyCPU
def test_stack(self, device):
for dtype in (torch.half, torch.double, torch.int):
x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
for dim in range(4):
res = torch.stack((x, y, z), dim)
res_neg = torch.stack((x, y, z), dim - 4)
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
self.assertEqual(res, res_neg)
self.assertEqual(res.size(), expected_size)
self.assertEqual(res.select(dim, 0), x, atol=0, rtol=0)
self.assertEqual(res.select(dim, 1), y, atol=0, rtol=0)
self.assertEqual(res.select(dim, 2), z, atol=0, rtol=0)
# TODO: update to work on CUDA, too
@onlyCPU
def test_stack_out(self, device):
for dtype in (torch.half, torch.double, torch.int):
x = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
y = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
z = torch.randint(low=-100, high=100, size=(2, 3, 4)).to(dtype)
for dim in range(4):
expected_size = x.size()[:dim] + (3,) + x.size()[dim:]
res_out = x.new(expected_size)
res_neg_out = x.new(expected_size)
res_out_dp = res_out.data_ptr()
res_out_neg_dp = res_neg_out.data_ptr()
torch.stack((x, y, z), dim, out=res_out)
torch.stack((x, y, z), dim - 4, out=res_neg_out)
self.assertEqual(res_out, res_neg_out)
self.assertEqual(res_out.size(), expected_size)
self.assertEqual(res_out_dp, res_out.data_ptr())
self.assertEqual(res_out_neg_dp, res_neg_out.data_ptr())
self.assertEqual(res_out.select(dim, 0), x, atol=0, rtol=0)
self.assertEqual(res_out.select(dim, 1), y, atol=0, rtol=0)
self.assertEqual(res_out.select(dim, 2), z, atol=0, rtol=0)
def test_repeat_interleave(self, device):
x = torch.tensor([0, 1, 2, 3], device=device)
expected = torch.tensor([1, 2, 2, 3, 3, 3], device=device)
self.assertEqual(torch.repeat_interleave(x), expected)
with self.assertRaises(RuntimeError):
torch.repeat_interleave(torch.arange(4, device=device).reshape(2, 2))
with self.assertRaises(RuntimeError):
torch.repeat_interleave(torch.arange(4.0, device=device))
with self.assertRaises(RuntimeError):
torch.repeat_interleave(torch.tensor([1, 2, -1, 3, 4], device=device))
y = torch.tensor([[1, 2], [3, 4]], device=device)
y1_v1 = torch.repeat_interleave(y, 2)
y1_v2 = torch.repeat_interleave(y, torch.tensor(2, device=device))
y1_v3 = torch.repeat_interleave(y, torch.tensor([2], device=device))
y1_expect = torch.tensor([1, 1, 2, 2, 3, 3, 4, 4], device=device)
self.assertEqual(y1_v1, y1_expect)
self.assertEqual(y1_v2, y1_expect)
self.assertEqual(y1_v3, y1_expect)
y2 = torch.repeat_interleave(y, 3, dim=1)
y2_expect = torch.tensor([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]], device=device)
self.assertEqual(y2, y2_expect)
y3 = torch.repeat_interleave(y, torch.tensor([1, 2], device=device), dim=0)
y3_expect = torch.tensor([[1, 2],
[3, 4],
[3, 4]], device=device)
self.assertEqual(y3, y3_expect)
with self.assertRaises(RuntimeError):
torch.repeat_interleave(y, torch.tensor([1, 2, 3], device=device), dim=0)
with self.assertRaises(RuntimeError):
torch.repeat_interleave(y, torch.arange(9, device=device).reshape(3, 3), dim=0)
# test zero sized dimension
x = torch.zeros((5, 0), device=device)
y = torch.repeat_interleave(x, repeats=3, dim=1)
self.assertEqual(y, x.new_zeros(5, 0, device=device))
x = torch.tensor([], dtype=torch.int64, device=device)
y = torch.repeat_interleave(x, x)
self.assertEqual(y, x)
# TODO: udpate to work on CUDA, too
@onlyCPU
def test_new_methods_requires_grad(self, device):
size = (10,)
test_cases = [
# method name, args
('new_full', [size, 1]),
('new_empty', [size]),
('new_zeros', [size]),
('new_ones', [size]),
]
for method_name, args in test_cases:
x = torch.randn(size)
for requires_grad in [True, False]:
x_new = x.__getattribute__(method_name)(*args, requires_grad=requires_grad)
self.assertEqual(x_new.requires_grad, requires_grad)
x = torch.randint(10, size)
with self.assertRaisesRegex(
RuntimeError,
r'Only Tensors of floating point and complex dtype can require gradients'):
x_new = x.__getattribute__(method_name)(*args, requires_grad=True)
# TODO: update to work on CUDA, too?
@onlyCPU
def test_tensor_from_sequence(self, device):
class MockSequence:
def __init__(self, lst):
self.lst = lst
def __len__(self):
return len(self.lst)
def __getitem__(self, item):
raise TypeError
class GoodMockSequence(MockSequence):
def __getitem__(self, item):
return self.lst[item]
bad_mock_seq = MockSequence([1.0, 2.0, 3.0])
good_mock_seq = GoodMockSequence([1.0, 2.0, 3.0])
with self.assertRaisesRegex(ValueError, 'could not determine the shape'):
torch.tensor(bad_mock_seq)
self.assertEqual(torch.tensor([1.0, 2.0, 3.0]), torch.tensor(good_mock_seq))
# TODO: update to work on CUDA, too?
@onlyCPU
@skipIfTorchDynamo("Not a TorchDynamo suitable test")
def test_simple_scalar_cast(self, device):
ok = [torch.tensor([1.5]), torch.zeros(1, 1, 1, 1)]
ok_values = [1.5, 0]
not_ok = map(torch.Tensor, [[], [1, 2], [[1, 2], [3, 4]]])
for tensor, value in zip(ok, ok_values):
self.assertEqual(int(tensor), int(value))
self.assertEqual(float(tensor), float(value))
self.assertEqual(complex(tensor), complex(value))
self.assertEqual(complex(torch.tensor(1.5j)), 1.5j)
for tensor in not_ok:
self.assertRaises(ValueError, lambda: int(tensor))
self.assertRaises(ValueError, lambda: float(tensor))
self.assertRaises(ValueError, lambda: complex(tensor))
self.assertRaises(RuntimeError, lambda: float(torch.tensor(1.5j)))
self.assertRaises(RuntimeError, lambda: int(torch.tensor(1.5j)))
# TODO: update to work on CUDA, too?
@onlyCPU
def test_offset_scalar_cast(self, device):
x = torch.tensor([1., 2., 3.])
y = x[2:]
self.assertEqual(int(y), 3)
def test_meshgrid_empty(self):
with self.assertRaisesRegex(RuntimeError,
'expects a non-empty TensorList'):
torch.meshgrid()
def test_meshgrid_unsupported_indexing(self):
with self.assertRaisesRegex(RuntimeError,
'indexing must be one of "xy" or "ij"'):
torch.meshgrid(torch.tensor([1, 2]), indexing='')
def test_meshgrid_non_1d_tensor(self):
with self.assertRaisesRegex(RuntimeError,
'Expected 0D or 1D tensor'):
torch.meshgrid(torch.tensor([[1, 2], [3, 4]]))
def test_meshgrid_inconsistent_dtype(self):
with self.assertRaisesRegex(
RuntimeError, 'expects all tensors to have the same dtype'):
torch.meshgrid(torch.tensor([1], dtype=torch.int),
torch.tensor([2], dtype=torch.float))
def test_meshgrid_inconsistent_device(self):
with self.assertRaisesRegex(
RuntimeError, 'expects all tensors to have the same device'):
torch.meshgrid(torch.tensor([1], device='cpu'),
torch.tensor([2], device='meta'))
def test_meshgrid_warns_if_no_indexing(self):
with self.assertWarnsOnceRegex(
UserWarning, '.*will be required to pass the indexing arg.*'):
torch.meshgrid(torch.tensor([1, 2]))
def test_meshgrid_default_indexing(self, device):
a = torch.tensor(1, device=device)
b = torch.tensor([1, 2, 3], device=device)
c = torch.tensor([1, 2], device=device)
grid_a, grid_b, grid_c = torch.meshgrid([a, b, c])
self.assertEqual(grid_a.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_b.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_c.shape, torch.Size([1, 3, 2]))
grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c)
self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2]))
expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64, device=device)
expected_grid_b = torch.tensor([[[1, 1],
[2, 2],
[3, 3]]], device=device)
expected_grid_c = torch.tensor([[[1, 2],
[1, 2],
[1, 2]]], device=device)
self.assertTrue(grid_a.equal(expected_grid_a))
self.assertTrue(grid_b.equal(expected_grid_b))
self.assertTrue(grid_c.equal(expected_grid_c))
self.assertTrue(grid_a2.equal(expected_grid_a))
self.assertTrue(grid_b2.equal(expected_grid_b))
self.assertTrue(grid_c2.equal(expected_grid_c))
def test_meshgrid_xy_indexing(self, device):
a = torch.tensor(1, device=device)
b = torch.tensor([1, 2, 3], device=device)
c = torch.tensor([1, 2], device=device)
grid_a, grid_b, grid_c = torch.meshgrid([a, b, c], indexing='xy')
self.assertEqual(grid_a.shape, torch.Size([3, 1, 2]))
self.assertEqual(grid_b.shape, torch.Size([3, 1, 2]))
self.assertEqual(grid_c.shape, torch.Size([3, 1, 2]))
grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c, indexing='xy')
self.assertEqual(grid_a2.shape, torch.Size([3, 1, 2]))
self.assertEqual(grid_b2.shape, torch.Size([3, 1, 2]))
self.assertEqual(grid_c2.shape, torch.Size([3, 1, 2]))
expected_grid_a = torch.ones(3, 1, 2, dtype=torch.int64, device=device)
expected_grid_b = torch.tensor([[[1, 1]],
[[2, 2]],
[[3, 3]]], device=device)
expected_grid_c = torch.tensor([[[1, 2]],
[[1, 2]],
[[1, 2]]], device=device)
self.assertTrue(grid_a.equal(expected_grid_a))
self.assertTrue(grid_b.equal(expected_grid_b))
self.assertTrue(grid_c.equal(expected_grid_c))
self.assertTrue(grid_a2.equal(expected_grid_a))
self.assertTrue(grid_b2.equal(expected_grid_b))
self.assertTrue(grid_c2.equal(expected_grid_c))
def test_meshgrid_ij_indexing(self, device):
a = torch.tensor(1, device=device)
b = torch.tensor([1, 2, 3], device=device)
c = torch.tensor([1, 2], device=device)
grid_a, grid_b, grid_c = torch.meshgrid([a, b, c], indexing='ij')
self.assertEqual(grid_a.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_b.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_c.shape, torch.Size([1, 3, 2]))
grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c, indexing='ij')
self.assertEqual(grid_a2.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_b2.shape, torch.Size([1, 3, 2]))
self.assertEqual(grid_c2.shape, torch.Size([1, 3, 2]))
expected_grid_a = torch.ones(1, 3, 2, dtype=torch.int64, device=device)
expected_grid_b = torch.tensor([[[1, 1],
[2, 2],
[3, 3]]], device=device)
expected_grid_c = torch.tensor([[[1, 2],
[1, 2],
[1, 2]]], device=device)
self.assertTrue(grid_a.equal(expected_grid_a))
self.assertTrue(grid_b.equal(expected_grid_b))
self.assertTrue(grid_c.equal(expected_grid_c))
self.assertTrue(grid_a2.equal(expected_grid_a))
self.assertTrue(grid_b2.equal(expected_grid_b))
self.assertTrue(grid_c2.equal(expected_grid_c))
def test_meshgrid_ij_indexing_is_default(self, device):
a = torch.tensor(1, device=device)
b = torch.tensor([1, 2, 3], device=device)
c = torch.tensor([1, 2], device=device)
grid_a, grid_b, grid_c = torch.meshgrid(a, b, c, indexing='ij')
grid_a2, grid_b2, grid_c2 = torch.meshgrid(a, b, c)
self.assertTrue(grid_a.equal(grid_a2))
self.assertTrue(grid_b.equal(grid_b2))
self.assertTrue(grid_c.equal(grid_c2))
@skipMeta
def test_meshgrid_vs_numpy(self, device):
# Shapes to the random tensors. Each line is a test case, and
# each list within that line is the shape of a single
# tensor. The shapes are restricted to 0D (represented by [])
# and 1D tensors.
cases = [
[[]],
[[1], [1], [1]],
[[], [], []],
[[3], [5], [7]],
[[3], [], [7]],
[[11], [13]],
[[15]],
]
# We also need to test the different indexing modes. We can't
# just enumerate them because we don't presently support the
# same modes as numpy.meshgrid, nor does our default
# correspond to their default.
#
# TODO Eliminate this and replace it with a list of all
# supported indexing modes when we have full compatibility.
indexing_correspondence = [
# No indexing in PyTorch corresponds to "ij" indexing in
# NumPy.
({}, {'indexing': 'ij'}),
# No indexing in NumPy corresponds to "xy" indexing in
# PyTorch.
({'indexing': 'xy'}, {}),
# "ij" and "xy" are implemented identically in both.
({'indexing': 'ij'}, {'indexing': 'ij'}),
({'indexing': 'xy'}, {'indexing': 'xy'}),
]
for shapes, (torch_kwargs, numpy_kwargs) in product(cases, indexing_correspondence):
with self.subTest(shapes=shapes, torch_kwargs=torch_kwargs, numpy_kwargs=numpy_kwargs):
tensors = [make_tensor(shape, device=device, dtype=torch.int) for shape in shapes]
torch_grids = torch.meshgrid(*tensors, **torch_kwargs)
numpy_grids = np.meshgrid(*(tensor.cpu().numpy() for tensor in tensors), **numpy_kwargs)
self.assertEqual(torch_grids, numpy_grids)
def test_cartesian_prod(self, device):
a = torch.tensor([1], device=device)
b = torch.tensor([1, 2, 3], device=device)
c = torch.tensor([1, 2], device=device)
prod = torch.cartesian_prod(a, b, c)
expected = torch.tensor(list(product([a], b, c)), device=device)
self.assertEqual(expected, prod)
# test 0 size input
d = torch.empty(0, dtype=b.dtype, device=device)
prod = torch.cartesian_prod(a, b, c, d)
expected = torch.empty(0, 4, dtype=b.dtype, device=device)
self.assertEqual(expected, prod)
# test single input
prod = torch.cartesian_prod(b)
self.assertEqual(b, prod)
def test_combinations(self, device):
a = torch.tensor([1, 2, 3], device=device)
c = torch.combinations(a, r=0)
expected = torch.empty(0, dtype=a.dtype, device=device)
self.assertEqual(c, expected)
c = torch.combinations(a, r=1)
expected = torch.tensor(list(combinations(a, r=1)), device=device)
self.assertEqual(c, expected)
c = torch.combinations(a, r=1, with_replacement=True)
expected = torch.tensor(list(combinations_with_replacement(a, r=1)), device=device)
self.assertEqual(c, expected)
c = torch.combinations(a)
expected = torch.tensor(list(combinations(a, r=2)), device=device)
self.assertEqual(c, expected)
c = torch.combinations(a, with_replacement=True)
expected = torch.tensor(list(combinations_with_replacement(a, r=2)), device=device)
self.assertEqual(c, expected)
c = torch.combinations(a, r=3)
expected = torch.tensor(list(combinations(a, r=3)), device=device)
self.assertEqual(c, expected)
c = torch.combinations(a, r=4)
expected = torch.empty(0, 4, dtype=a.dtype, device=device)
self.assertEqual(c, expected)
c = torch.combinations(a, r=5)
expected = torch.empty(0, 5, dtype=a.dtype, device=device)
self.assertEqual(c, expected)
# test empty imput
a = torch.empty(0, device=device)
c1 = torch.combinations(a)
c2 = torch.combinations(a, with_replacement=True)
expected = torch.empty(0, 2, dtype=a.dtype, device=device)
self.assertEqual(c1, expected)
self.assertEqual(c2, expected)
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
@skipMeta
def test_linlogspace_mem_overlap(self, device):
x = torch.rand(1, device=device).expand(10)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.linspace(1, 10, 10, out=x)
with self.assertRaisesRegex(RuntimeError, 'unsupported operation'):
torch.logspace(1, 10, 10, out=x)
def test_ctor_with_numpy_array(self, device):
correct_dtypes = [
np.double,
float,
np.float16,
np.int64,
np.int32,
np.int16,
np.int8,
np.uint8,
bool,
]
incorrect_byteorder = '>' if sys.byteorder == 'little' else '<'
incorrect_dtypes = [incorrect_byteorder + t for t in ['d', 'f']]
for dtype in correct_dtypes:
array = np.array([1, 2, 3, 4], dtype=dtype)
# Upcast
tensor = torch.DoubleTensor(array).to(device)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
# Downcast (sometimes)
tensor = torch.FloatTensor(array).to(device)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
tensor = torch.HalfTensor(array).to(device)
for i in range(len(array)):
self.assertEqual(tensor[i], array[i])
@dtypes(torch.float, torch.double, torch.int8, torch.int16, torch.int32, torch.int64)
def test_random(self, device, dtype):
# This test is flaky with p<=(2/(ub-lb))^200=6e-36
t = torch.empty(200, dtype=dtype, device=device)
lb = 1
ub = 4
t.fill_(-1)
t.random_(lb, ub)
self.assertEqual(t.min(), lb)
self.assertEqual(t.max(), ub - 1)
t.fill_(-1)
t.random_(ub)
self.assertEqual(t.min(), 0)
self.assertEqual(t.max(), ub - 1)
def test_random_bool(self, device):
size = 2000
t = torch.empty(size, dtype=torch.bool, device=device)
t.fill_(False)
t.random_()
self.assertEqual(t.min(), False)
self.assertEqual(t.max(), True)
self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6)
t.fill_(True)
t.random_()
self.assertEqual(t.min(), False)
self.assertEqual(t.max(), True)
self.assertTrue(0.4 < (t.eq(True)).to(torch.int).sum().item() / size < 0.6)
def test_random_from_to_bool(self, device):
size = 2000
int64_min_val = torch.iinfo(torch.int64).min
int64_max_val = torch.iinfo(torch.int64).max
min_val = 0
max_val = 1
froms = [int64_min_val, -42, min_val - 1, min_val, max_val, max_val + 1, 42]
tos = [-42, min_val - 1, min_val, max_val, max_val + 1, 42, int64_max_val]
for from_ in froms:
for to_ in tos:
t = torch.empty(size, dtype=torch.bool, device=device)
if to_ > from_:
if not (min_val <= from_ <= max_val):
self.assertRaisesRegex(
RuntimeError,
"from is out of bounds",
lambda: t.random_(from_, to_)
)
elif not (min_val <= (to_ - 1) <= max_val):
self.assertRaisesRegex(
RuntimeError,
"to - 1 is out of bounds",
lambda: t.random_(from_, to_)
)
else:
t.random_(from_, to_)
range_ = to_ - from_
delta = 1
self.assertTrue(from_ <= t.to(torch.int).min() < (from_ + delta))
self.assertTrue((to_ - delta) <= t.to(torch.int).max() < to_)
else:
self.assertRaisesRegex(
RuntimeError,
"random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_),
lambda: t.random_(from_, to_)
)
@dtypes(*all_types_and(torch.bfloat16, torch.half))
def test_random_full_range(self, device, dtype):
size = 2000
alpha = 0.1
int64_min_val = torch.iinfo(torch.int64).min
int64_max_val = torch.iinfo(torch.int64).max
if dtype == torch.double:
fp_limit = 2**53
elif dtype == torch.float:
fp_limit = 2**24
elif dtype == torch.half:
fp_limit = 2**11
elif dtype == torch.bfloat16:
fp_limit = 2**8
else:
fp_limit = 0
t = torch.empty(size, dtype=dtype, device=device)
if dtype in [torch.float, torch.double, torch.half, torch.bfloat16]:
from_ = int(max(-fp_limit, int64_min_val))
to_inc_ = int(min(fp_limit, int64_max_val))
else:
from_ = int(max(torch.iinfo(dtype).min, int64_min_val))
to_inc_ = int(min(torch.iinfo(dtype).max, int64_max_val))
range_ = to_inc_ - from_ + 1
t.random_(from_, None)
delta = max(1, alpha * range_)
self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta))
self.assertTrue((to_inc_ - delta) < t.to(torch.double).max() <= to_inc_)
@dtypes(*all_types_and(torch.bfloat16, torch.half))
def test_random_from_to(self, device, dtype):
size = 2000
alpha = 0.1
int64_min_val = torch.iinfo(torch.int64).min
int64_max_val = torch.iinfo(torch.int64).max
if dtype in [torch.float, torch.double, torch.half]:
min_val = int(max(torch.finfo(dtype).min, int64_min_val))
max_val = int(min(torch.finfo(dtype).max, int64_max_val))
froms = [min_val, -42, 0, 42]
tos = [-42, 0, 42, max_val >> 1]
elif dtype == torch.bfloat16:
min_val = int64_min_val
max_val = int64_max_val
froms = [min_val, -42, 0, 42]
tos = [-42, 0, 42, max_val >> 1]
elif dtype == torch.uint8:
min_val = torch.iinfo(dtype).min
max_val = torch.iinfo(dtype).max
froms = [int64_min_val, -42, min_val - 1, min_val, 42, max_val, max_val + 1]
tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val]
elif dtype == torch.int64:
min_val = int64_min_val
max_val = int64_max_val
froms = [min_val, -42, 0, 42]
tos = [-42, 0, 42, max_val]
else:
min_val = torch.iinfo(dtype).min
max_val = torch.iinfo(dtype).max
froms = [int64_min_val, min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1]
tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val]
if dtype == torch.double:
fp_limit = 2**53
elif dtype == torch.float:
fp_limit = 2**24
elif dtype == torch.half:
fp_limit = 2**11
elif dtype == torch.bfloat16:
fp_limit = 2**8
else:
fp_limit = 0
for from_ in froms:
for to_ in tos:
t = torch.empty(size, dtype=dtype, device=device)
if to_ > from_:
if not (min_val <= from_ <= max_val):
self.assertRaisesRegex(
RuntimeError,
"from is out of bounds",
lambda: t.random_(from_, to_)
)
elif not (min_val <= (to_ - 1) <= max_val):
self.assertRaisesRegex(
RuntimeError,
"to - 1 is out of bounds",
lambda: t.random_(from_, to_)
)
else:
if dtype.is_floating_point and (
not (-fp_limit <= from_ <= fp_limit) or not (-fp_limit <= (to_ - 1) <= fp_limit)):
if not (-fp_limit <= from_ <= fp_limit):
self.assertWarnsRegex(UserWarning, "from is out of bounds",
lambda: t.random_(from_, to_))
if not (-fp_limit <= (to_ - 1) <= fp_limit):
self.assertWarnsRegex(UserWarning, "to - 1 is out of bounds",
lambda: t.random_(from_, to_))
else:
t.random_(from_, to_)
range_ = to_ - from_
delta = max(1, alpha * range_)
if dtype == torch.bfloat16:
# Less strict checks because of rounding errors
# TODO investigate rounding errors
self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta))
self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_)
else:
self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta))
self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_)
else:
self.assertRaisesRegex(
RuntimeError,
"random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_),
lambda: t.random_(from_, to_)
)
@dtypes(*all_types_and(torch.bfloat16, torch.half))
def test_random_to(self, device, dtype):
size = 2000
alpha = 0.1
int64_min_val = torch.iinfo(torch.int64).min
int64_max_val = torch.iinfo(torch.int64).max
if dtype in [torch.float, torch.double, torch.half]:
min_val = int(max(torch.finfo(dtype).min, int64_min_val))
max_val = int(min(torch.finfo(dtype).max, int64_max_val))
tos = [-42, 0, 42, max_val >> 1]
elif dtype == torch.bfloat16:
min_val = int64_min_val
max_val = int64_max_val
tos = [-42, 0, 42, max_val >> 1]
elif dtype == torch.uint8:
min_val = torch.iinfo(dtype).min
max_val = torch.iinfo(dtype).max
tos = [-42, min_val - 1, min_val, 42, max_val, max_val + 1, int64_max_val]
elif dtype == torch.int64:
min_val = int64_min_val
max_val = int64_max_val
tos = [-42, 0, 42, max_val]
else:
min_val = torch.iinfo(dtype).min
max_val = torch.iinfo(dtype).max
tos = [min_val - 1, min_val, -42, 0, 42, max_val, max_val + 1, int64_max_val]
from_ = 0
for to_ in tos:
t = torch.empty(size, dtype=dtype, device=device)
if to_ > from_:
if not (min_val <= (to_ - 1) <= max_val):
self.assertRaisesRegex(
RuntimeError,
"to - 1 is out of bounds",
lambda: t.random_(from_, to_)
)
else:
t.random_(to_)
range_ = to_ - from_
delta = max(1, alpha * range_)
if dtype == torch.bfloat16:
# Less strict checks because of rounding errors
# TODO investigate rounding errors
self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta))
self.assertTrue((to_ - delta) < t.to(torch.double).max() <= to_)
else:
self.assertTrue(from_ <= t.to(torch.double).min() < (from_ + delta))
self.assertTrue((to_ - delta) <= t.to(torch.double).max() < to_)
else:
self.assertRaisesRegex(
RuntimeError,
"random_ expects 'from' to be less than 'to', but got from=" + str(from_) + " >= to=" + str(to_),
lambda: t.random_(from_, to_)
)
@dtypes(*all_types_and(torch.bfloat16, torch.half))
def test_random_default(self, device, dtype):
size = 2000
alpha = 0.1
if dtype == torch.float:
to_inc = 1 << 24
elif dtype == torch.double:
to_inc = 1 << 53
elif dtype == torch.half:
to_inc = 1 << 11
elif dtype == torch.bfloat16:
to_inc = 1 << 8
else:
to_inc = torch.iinfo(dtype).max
t = torch.empty(size, dtype=dtype, device=device)
t.random_()
self.assertTrue(0 <= t.to(torch.double).min() < alpha * to_inc)
self.assertTrue((to_inc - alpha * to_inc) < t.to(torch.double).max() <= to_inc)
# TODO: this test should be updated
@onlyNativeDeviceTypes
def test_empty_full(self, device):
torch_device = torch.device(device)
device_type = torch_device.type
dtypes = get_all_dtypes(include_half=False, include_bfloat16=False, include_complex32=True)
if device_type == 'cpu':
do_test_empty_full(self, dtypes, torch.strided, torch_device)
if device_type == 'cuda':
do_test_empty_full(self, dtypes, torch.strided, None)
do_test_empty_full(self, dtypes, torch.strided, torch_device)
# TODO: this test should be updated
@suppress_warnings
@onlyNativeDeviceTypes
@deviceCountAtLeast(1)
def test_tensor_device(self, devices):
device_type = torch.device(devices[0]).type
if device_type == 'cpu':
self.assertEqual('cpu', torch.tensor(5).device.type)
self.assertEqual('cpu',
torch.ones((2, 3), dtype=torch.float32, device='cpu').device.type)
self.assertEqual('cpu',
torch.ones((2, 3), dtype=torch.float32, device='cpu:0').device.type)
self.assertEqual('cpu',
torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cpu:0').device.type)
self.assertEqual('cpu', torch.tensor(np.random.randn(2, 3), device='cpu').device.type)
if device_type == 'cuda':
self.assertEqual('cuda:0', str(torch.tensor(5).cuda(0).device))
self.assertEqual('cuda:0', str(torch.tensor(5).cuda('cuda:0').device))
self.assertEqual('cuda:0',
str(torch.tensor(5, dtype=torch.int64, device=0).device))
self.assertEqual('cuda:0',
str(torch.tensor(5, dtype=torch.int64, device='cuda:0').device))
self.assertEqual('cuda:0',
str(torch.tensor(torch.ones((2, 3), dtype=torch.float32), device='cuda:0').device))
self.assertEqual('cuda:0', str(torch.tensor(np.random.randn(2, 3), device='cuda:0').device))
for device in devices:
with torch.cuda.device(device):
device_string = 'cuda:' + str(torch.cuda.current_device())
self.assertEqual(device_string,
str(torch.tensor(5, dtype=torch.int64, device='cuda').device))
with self.assertRaises(RuntimeError):
torch.tensor(5).cuda('cpu')
with self.assertRaises(RuntimeError):
torch.tensor(5).cuda('cpu:0')
if len(devices) > 1:
self.assertEqual('cuda:1', str(torch.tensor(5).cuda(1).device))
self.assertEqual('cuda:1', str(torch.tensor(5).cuda('cuda:1').device))
self.assertEqual('cuda:1',
str(torch.tensor(5, dtype=torch.int64, device=1).device))
self.assertEqual('cuda:1',
str(torch.tensor(5, dtype=torch.int64, device='cuda:1').device))
self.assertEqual('cuda:1',
str(torch.tensor(torch.ones((2, 3), dtype=torch.float32),
device='cuda:1').device))
self.assertEqual('cuda:1',
str(torch.tensor(np.random.randn(2, 3), device='cuda:1').device))
# TODO: this test should be updated
@onlyNativeDeviceTypes
def test_as_strided_neg(self, device):
error = r'as_strided: Negative strides are not supported at the ' \
r'moment, got strides: \[-?[0-9]+(, -?[0-9]+)*\]'
with self.assertRaisesRegex(RuntimeError, error):
torch.as_strided(torch.ones(3, 3, device=device), (1, 1), (2, -1))
with self.assertRaisesRegex(RuntimeError, error):
torch.as_strided(torch.ones(14, device=device), (2,), (-11,))
# TODO: this test should be updated
def test_zeros(self, device):
res1 = torch.zeros(100, 100, device=device)
res2 = torch.tensor((), device=device)
torch.zeros(100, 100, device=device, out=res2)
self.assertEqual(res1, res2)
boolTensor = torch.zeros(2, 2, device=device, dtype=torch.bool)
expected = torch.tensor([[False, False], [False, False]],
device=device, dtype=torch.bool)
self.assertEqual(boolTensor, expected)
halfTensor = torch.zeros(1, 1, device=device, dtype=torch.half)
expected = torch.tensor([[0.]], device=device, dtype=torch.float16)
self.assertEqual(halfTensor, expected)
bfloat16Tensor = torch.zeros(1, 1, device=device, dtype=torch.bfloat16)
expected = torch.tensor([[0.]], device=device, dtype=torch.bfloat16)
self.assertEqual(bfloat16Tensor, expected)
complexTensor = torch.zeros(2, 2, device=device, dtype=torch.complex64)
expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex64)
self.assertEqual(complexTensor, expected)
complexHalfTensor = torch.zeros(2, 2, device=device, dtype=torch.complex32)
expected = torch.tensor([[0., 0.], [0., 0.]], device=device, dtype=torch.complex32)
self.assertEqual(complexHalfTensor, expected)
# TODO: this test should be updated
def test_zeros_out(self, device):
shape = (3, 4)
out = torch.zeros(shape, device=device)
torch.zeros(shape, device=device, out=out)
# change the dtype, layout, device
with self.assertRaises(RuntimeError):
torch.zeros(shape, device=device, dtype=torch.int64, out=out)
with self.assertRaises(RuntimeError):
torch.zeros(shape, device=device, layout=torch.sparse_coo, out=out)
# leave them the same
self.assertEqual(torch.zeros(shape, device=device),
torch.zeros(shape, device=device, dtype=out.dtype, out=out))
self.assertEqual(torch.zeros(shape, device=device),
torch.zeros(shape, device=device, layout=torch.strided, out=out))
self.assertEqual(torch.zeros(shape, device=device),
torch.zeros(shape, device=device, out=out))
# TODO: this test should be updated
def test_ones(self, device):
res1 = torch.ones(100, 100, device=device)
res2 = torch.tensor((), device=device)
torch.ones(100, 100, device=device, out=res2)
self.assertEqual(res1, res2)
# test boolean tensor
res1 = torch.ones(1, 2, device=device, dtype=torch.bool)
expected = torch.tensor([[True, True]], device=device, dtype=torch.bool)
self.assertEqual(res1, expected)
# test chalf
self.assertEqual(torch.ones(100, 100, device=device, dtype=torch.chalf),
torch.ones(100, 100, device=device, dtype=torch.cfloat), exact_dtype=False)
# TODO: this test should be updated
@onlyCPU
def test_constructor_dtypes(self, device):
self.assertIs(torch.tensor([]).dtype, torch.get_default_dtype())
self.assertIs(torch.uint8, torch.ByteTensor.dtype)
self.assertIs(torch.float32, torch.FloatTensor.dtype)
self.assertIs(torch.float64, torch.DoubleTensor.dtype)
with set_default_tensor_type('torch.FloatTensor'):
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.FloatStorage, torch.Storage)
# only floating-point types are supported as the default type
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type('torch.IntTensor'))
with set_default_dtype(torch.float64):
self.assertIs(torch.float64, torch.get_default_dtype())
self.assertIs(torch.DoubleStorage, torch.Storage)
with set_default_tensor_type(torch.FloatTensor):
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.FloatStorage, torch.Storage)
if torch.cuda.is_available():
with set_default_tensor_type(torch.cuda.FloatTensor):
self.assertIs(torch.float32, torch.get_default_dtype())
self.assertIs(torch.float32, torch.cuda.FloatTensor.dtype)
self.assertIs(torch.cuda.FloatStorage, torch.Storage)
with set_default_dtype(torch.float64):
self.assertIs(torch.float64, torch.get_default_dtype())
self.assertIs(torch.cuda.DoubleStorage, torch.Storage)
# don't allow passing dtype to set_default_tensor_type
self.assertRaises(TypeError, lambda: torch.set_default_tensor_type(torch.float32))
# don't allow passing dtype to set_default_dtype
for t in all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16, torch.qint8):
# only floating-point types are supported as the default type
if t in (
torch.half,
torch.float,
torch.double,
torch.bfloat16):
with set_default_dtype(t):
pass
else:
self.assertRaises(TypeError, lambda: torch.set_default_dtype(t))
# TODO: this test should be updated
@onlyCPU
def test_constructor_device_legacy(self, device):
self.assertRaises(RuntimeError, lambda: torch.FloatTensor(device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.FloatTensor(torch.Size([2, 3, 4]), device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.FloatTensor((2.0, 3.0), device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cuda'))
# Tensor constructor/new with Tensor argument shouldn't work with device specified
i = torch.tensor([1], device='cpu')
self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cpu'))
self.assertRaises(RuntimeError, lambda: i.new(i, device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cuda'))
self.assertRaises(RuntimeError, lambda: i.new(i, device='cuda'))
x = torch.randn((3,), device='cpu')
self.assertRaises(RuntimeError, lambda: x.new(device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cuda'))
self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cuda'))
if torch.cuda.is_available():
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor(torch.Size([2, 3, 4]), device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.cuda.FloatTensor((2.0, 3.0), device='cpu'))
# Tensor constructor/new with Tensor argument shouldn't work with device specified
i = torch.tensor([1], device='cuda')
self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cuda'))
self.assertRaises(RuntimeError, lambda: i.new(i, device='cuda'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(i, device='cpu'))
self.assertRaises(RuntimeError, lambda: i.new(i, device='cpu'))
with set_default_tensor_type(torch.cuda.FloatTensor):
self.assertRaises(RuntimeError, lambda: torch.Tensor(device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.Tensor(torch.Size([2, 3, 4]), device='cpu'))
self.assertRaises(RuntimeError, lambda: torch.Tensor((2.0, 3.0), device='cpu'))
x = torch.randn((3,), device='cuda')
self.assertRaises(RuntimeError, lambda: x.new(device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new(torch.Size([2, 3, 4]), device='cpu'))
self.assertRaises(RuntimeError, lambda: x.new((2.0, 3.0), device='cpu'))
# TODO: this test should be updated
@suppress_warnings
@onlyCPU
def test_tensor_factory(self, device):
# TODO: This test probably doesn't make too much sense now that
# torch.tensor has been established for a while; it makes more
# sense to test the legacy behavior in terms of the new behavior
expected = torch.Tensor([1, 1])
# test data
res1 = torch.tensor([1, 1])
self.assertEqual(res1, expected, exact_dtype=False)
res1 = torch.tensor([1, 1], dtype=torch.int)
self.assertEqual(res1, expected, exact_dtype=False)
self.assertIs(torch.int, res1.dtype)
# test copy
res2 = torch.tensor(expected)
self.assertEqual(res2, expected)
res2[1] = 2
self.assertEqual(expected, torch.ones_like(expected))
res2 = torch.tensor(expected, dtype=torch.int)
self.assertEqual(res1, expected, exact_dtype=False)
self.assertIs(torch.int, res1.dtype)
# test copy with numpy
for dtype in [np.float64, np.int64, np.int8, np.uint8]:
a = np.array([5.]).astype(dtype)
res1 = torch.tensor(a)
self.assertEqual(5., res1[0].item())
a[0] = 7.
self.assertEqual(5., res1[0].item())
# test boolean tensor
a = torch.tensor([True, True, False, True, True], dtype=torch.bool)
b = torch.tensor([-1, -1.1, 0, 1, 1.1], dtype=torch.bool)
self.assertEqual(a, b)
c = torch.tensor([-0.1, -1.1, 0, 1, 0.1], dtype=torch.bool)
self.assertEqual(a, c)
d = torch.tensor((-.3, 0, .3, 1, 3 / 7), dtype=torch.bool)
e = torch.tensor((True, False, True, True, True), dtype=torch.bool)
self.assertEqual(e, d)
f = torch.tensor((-1, 0, -1.1, 1, 1.1), dtype=torch.bool)
self.assertEqual(e, f)
int64_max = torch.iinfo(torch.int64).max
int64_min = torch.iinfo(torch.int64).min
float64_max = torch.finfo(torch.float64).max
float64_min = torch.finfo(torch.float64).min
g_1 = torch.tensor((float('nan'), 0, int64_min, int64_max, int64_min - 1), dtype=torch.bool)
self.assertEqual(e, g_1)
g_2 = torch.tensor((int64_max + 1, 0, (int64_max + 1) * 2, (int64_max + 1) * 2 + 1, float64_min), dtype=torch.bool)
self.assertEqual(e, g_2)
g_3 = torch.tensor((float64_max, 0, float64_max + 1, float64_min - 1, float64_max + 1e291), dtype=torch.bool)
self.assertEqual(e, g_3)
h = torch.tensor([True, False, False, True, False, True, True], dtype=torch.bool)
i = torch.tensor([1e-323, 1e-324, 0j, 1e-323j, 1e-324j, 1 + 2j, -1j], dtype=torch.bool)
self.assertEqual(h, i)
j = torch.tensor((True, True, True, True), dtype=torch.bool)
k = torch.tensor((1e323, -1e323, float('inf'), -float('inf')), dtype=torch.bool)
self.assertEqual(j, k)
# TODO: this test should be updated
@suppress_warnings
@onlyCPU
def test_tensor_factory_copy_var(self, device):
def check_copy(copy, is_leaf, requires_grad, data_ptr=None):
if data_ptr is None:
data_ptr = copy.data_ptr
self.assertEqual(copy, source, exact_dtype=False)
self.assertTrue(copy.is_leaf == is_leaf)
self.assertTrue(copy.requires_grad == requires_grad)
self.assertTrue(copy.data_ptr == data_ptr)
source = torch.randn(5, 5, dtype=torch.double, requires_grad=True)
# test torch.tensor()
check_copy(torch.tensor(source), True, False)
check_copy(torch.tensor(source, requires_grad=False), True, False)
check_copy(torch.tensor(source, requires_grad=True), True, True)
# test tensor.new_tensor()
copy = torch.randn(1)
check_copy(copy.new_tensor(source), True, False)
check_copy(copy.new_tensor(source, requires_grad=False), True, False)
check_copy(copy.new_tensor(source, requires_grad=True), True, True)
# test torch.as_tensor()
check_copy(torch.as_tensor(source), source.is_leaf, source.requires_grad, source.data_ptr) # not copy
check_copy(torch.as_tensor(source, dtype=torch.float), False, True) # copy and keep the graph
# TODO: this test should be updated
@onlyCPU
def test_tensor_factory_type_inference(self, device):
def test_inference(default_dtype):
default_complex_dtype = torch.complex64 if default_dtype == torch.float32 else torch.complex128
self.assertIs(default_dtype, torch.tensor(()).dtype)
self.assertIs(default_dtype, torch.tensor(5.).dtype)
self.assertIs(torch.int64, torch.tensor(5).dtype)
self.assertIs(torch.bool, torch.tensor(True).dtype)
self.assertIs(torch.int32, torch.tensor(5, dtype=torch.int32).dtype)
self.assertIs(default_dtype, torch.tensor(((7, 5), (9, 5.))).dtype)
self.assertIs(default_dtype, torch.tensor(((5., 5), (3, 5))).dtype)
self.assertIs(torch.int64, torch.tensor(((5, 3), (3, 5))).dtype)
self.assertIs(default_complex_dtype, torch.tensor(((5, 3 + 2j), (3, 5 + 4j))).dtype)
self.assertIs(torch.float64, torch.tensor(np.array(())).dtype)
self.assertIs(torch.float64, torch.tensor(np.array(5.)).dtype)
if np.array(5).dtype == np.int64: # np long, which can be 4 bytes (e.g. on windows)
self.assertIs(torch.int64, torch.tensor(np.array(5)).dtype)
else:
self.assertIs(torch.int32, torch.tensor(np.array(5)).dtype)
self.assertIs(torch.uint8, torch.tensor(np.array(3, dtype=np.uint8)).dtype)
self.assertIs(default_dtype, torch.tensor(((7, np.array(5)), (np.array(9), 5.))).dtype)
self.assertIs(torch.float64, torch.tensor(((7, 5), (9, np.array(5.)))).dtype)
self.assertIs(torch.int64, torch.tensor(((5, np.array(3)), (np.array(3), 5))).dtype)
for dtype in [torch.float64, torch.float32]:
with set_default_dtype(dtype):
test_inference(dtype)
# TODO: this test should be updated
@suppress_warnings
@onlyCPU
def test_new_tensor(self, device):
expected = torch.autograd.Variable(torch.ByteTensor([1, 1]))
# test data
res1 = expected.new_tensor([1, 1])
self.assertEqual(res1, expected)
res1 = expected.new_tensor([1, 1], dtype=torch.int)
self.assertEqual(res1, expected, exact_dtype=False)
self.assertIs(torch.int, res1.dtype)
# test copy
res2 = expected.new_tensor(expected)
self.assertEqual(res2, expected)
res2[1] = 2
self.assertEqual(expected, torch.ones_like(expected))
res2 = expected.new_tensor(expected, dtype=torch.int)
self.assertEqual(res2, expected, exact_dtype=False)
self.assertIs(torch.int, res2.dtype)
# test copy with numpy
a = np.array([5.])
res1 = torch.tensor(a)
res1 = res1.new_tensor(a)
self.assertEqual(5., res1[0].item())
a[0] = 7.
self.assertEqual(5., res1[0].item())
if torch.cuda.device_count() >= 2:
expected = expected.cuda(1)
res1 = expected.new_tensor([1, 1])
self.assertEqual(res1.get_device(), expected.get_device())
res1 = expected.new_tensor([1, 1], dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res1.get_device(), expected.get_device())
res2 = expected.new_tensor(expected)
self.assertEqual(res2.get_device(), expected.get_device())
res2 = expected.new_tensor(expected, dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res2.get_device(), expected.get_device())
res2 = expected.new_tensor(expected, dtype=torch.int, device=0)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res2.get_device(), 0)
res1 = expected.new_tensor(1)
self.assertEqual(res1.get_device(), expected.get_device())
res1 = expected.new_tensor(1, dtype=torch.int)
self.assertIs(torch.int, res1.dtype)
self.assertEqual(res1.get_device(), expected.get_device())
# TODO: this test should be updated
@onlyCPU
def test_as_tensor(self, device):
# from python data
x = [[0, 1], [2, 3]]
self.assertEqual(torch.tensor(x), torch.as_tensor(x))
self.assertEqual(torch.tensor(x, dtype=torch.float32), torch.as_tensor(x, dtype=torch.float32))
# python data with heterogeneous types
z = [0, 'torch']
with self.assertRaisesRegex(TypeError, "invalid data type"):
torch.tensor(z)
torch.as_tensor(z)
# python data with self-referential lists
z = [0]
z += [z]
with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"):
torch.tensor(z)
torch.as_tensor(z)
z = [[1, 2], z]
with self.assertRaisesRegex(TypeError, "self-referential lists are incompatible"):
torch.tensor(z)
torch.as_tensor(z)
# from tensor (doesn't copy unless type is different)
y = torch.tensor(x)
self.assertIs(y, torch.as_tensor(y))
self.assertIsNot(y, torch.as_tensor(y, dtype=torch.float32))
if torch.cuda.is_available():
self.assertIsNot(y, torch.as_tensor(y, device='cuda'))
y_cuda = y.to('cuda')
self.assertIs(y_cuda, torch.as_tensor(y_cuda))
self.assertIs(y_cuda, torch.as_tensor(y_cuda, device='cuda'))
# doesn't copy
for dtype in [np.float64, np.int64, np.int8, np.uint8]:
n = np.random.rand(5, 6).astype(dtype)
n_astensor = torch.as_tensor(n)
self.assertEqual(torch.tensor(n), n_astensor)
n_astensor[0][0] = 25.7
self.assertEqual(torch.tensor(n), n_astensor)
# changing dtype causes copy
n = np.random.rand(5, 6).astype(np.float32)
n_astensor = torch.as_tensor(n, dtype=torch.float64)
self.assertEqual(torch.tensor(n, dtype=torch.float64), n_astensor)
n_astensor[0][1] = 250.8
self.assertNotEqual(torch.tensor(n, dtype=torch.float64), n_astensor)
# changing device causes copy
if torch.cuda.is_available():
n = np.random.randn(5, 6)
n_astensor = torch.as_tensor(n, device='cuda')
self.assertEqual(torch.tensor(n, device='cuda'), n_astensor)
n_astensor[0][2] = 250.9
self.assertNotEqual(torch.tensor(n, device='cuda'), n_astensor)
# TODO: this test should be updated
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
@suppress_warnings
def test_range(self, device):
res1 = torch.range(0, 1, device=device)
res2 = torch.tensor((), device=device)
torch.range(0, 1, device=device, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# Check range for non-contiguous tensors.
x = torch.zeros(2, 3, device=device)
torch.range(0, 3, device=device, out=x.narrow(1, 1, 2))
res2 = torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=torch.float32)
self.assertEqual(x, res2, atol=1e-16, rtol=0)
# Check negative
res1 = torch.tensor((1, 0), device=device, dtype=torch.float32)
res2 = torch.tensor((), device=device)
torch.range(1, 0, -1, device=device, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# Equal bounds
res1 = torch.ones(1, device=device)
res2 = torch.tensor((), device=device)
torch.range(1, 1, -1, device=device, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
torch.range(1, 1, 1, device=device, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# TODO: this test should be updated
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
def test_range_warning(self, device):
with warnings.catch_warnings(record=True) as w:
torch.range(0, 10, device=device)
self.assertEqual(len(w), 1)
# TODO: this test should be updated
def test_arange(self, device):
res = torch.tensor(range(10000), device=device)
res1 = torch.arange(0, 10000, device=device) # Use a larger number so vectorized code can be triggered
res2 = torch.tensor([], dtype=torch.int64, device=device)
torch.arange(0, 10000, out=res2)
self.assertEqual(res, res1, atol=0, rtol=0)
self.assertEqual(res, res2, atol=0, rtol=0)
# Vectorization on non-contiguous tensors
res = torch.rand(3, 3, 300000, device=device).to(torch.int64)
res = res.permute(2, 0, 1)
torch.arange(0, 300000 * 3 * 3, out=res)
self.assertEqual(res.flatten(), torch.arange(0, 300000 * 3 * 3, device=device))
# Check arange with only one argument
res1 = torch.arange(10, device=device)
res2 = torch.arange(0, 10, device=device)
self.assertEqual(res1, res2, atol=0, rtol=0)
# Check arange for non-contiguous tensors.
x = torch.zeros(2, 3, device=device)
torch.arange(0, 4, out=x.narrow(1, 1, 2))
res2 = torch.tensor(((0., 0., 1.), (0., 2., 3.)), device=device)
self.assertEqual(x, res2, atol=1e-16, rtol=0)
# Check negative
res1 = torch.tensor((1., 0.), device=device)
res2 = torch.tensor([], device=device)
torch.arange(1, -1, -1, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# Equal bounds
res1 = torch.ones(1, device=device)
res2 = torch.tensor([], device=device)
torch.arange(1, 0, -1, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
torch.arange(1, 2, 1, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# FloatTensor
out = torch.tensor([], dtype=torch.float, device=device)
res1 = torch.arange(0.6, 0.89, 0.1, out=out)
self.assertEqual(res1, [0.6, 0.7, 0.8])
out = torch.tensor([], dtype=torch.float, device=device)
res1 = torch.arange(1, 10, 0.3, out=out)
self.assertEqual(res1.size(0), 30)
self.assertEqual(res1[0], 1)
self.assertEqual(res1[29], 9.7)
# DoubleTensor
out = torch.tensor([], dtype=torch.double, device=device)
res1 = torch.arange(0.6, 0.89, 0.1, out=out)
self.assertEqual(res1, [0.6, 0.7, 0.8])
out = torch.tensor([], dtype=torch.double, device=device)
res1 = torch.arange(1, 10, 0.3, out=out)
self.assertEqual(res1.size(0), 30)
self.assertEqual(res1[0], 1)
self.assertEqual(res1[29], 9.7)
# Bool Input matching numpy semantics
r = torch.arange(True, device=device)
self.assertEqual(r[0], 0)
r2 = torch.arange(False, device=device)
self.assertEqual(len(r2), 0)
self.assertEqual(r.dtype, torch.int64)
self.assertEqual(r2.dtype, torch.int64)
# Check that it's exclusive
r = torch.arange(0, 5, device=device)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 4)
self.assertEqual(r.numel(), 5)
r = torch.arange(0, 6, 3, device=device)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 3)
self.assertEqual(r.numel(), 2)
r = torch.arange(0, 5, 2, device=device)
self.assertEqual(r.min(), 0)
self.assertEqual(r.max(), 4)
self.assertEqual(r.numel(), 3)
r = torch.arange(0, -5, -2, device=device)
self.assertEqual(r.min(), -4)
self.assertEqual(r.max(), 0)
self.assertEqual(r.numel(), 3)
r1 = torch.arange(0, 5 + 1e-6, device=device)
# NB: without the dtype, we'll infer output type to be int64
r2 = torch.arange(0, 5, dtype=torch.float32, device=device)
r3 = torch.arange(0, 5 - 1e-6, device=device)
self.assertEqual(r1[:-1], r2, atol=0, rtol=0)
self.assertEqual(r2, r3, atol=0, rtol=0)
r1 = torch.arange(10, -1 + 1e-6, -1, device=device)
# NB: without the dtype, we'll infer output type to be int64
r2 = torch.arange(10, -1, -1, dtype=torch.float32, device=device)
r3 = torch.arange(10, -1 - 1e-6, -1, device=device)
self.assertEqual(r1, r2, atol=0, rtol=0)
self.assertEqual(r2, r3[:-1], atol=0, rtol=0)
w = 1449629115440469
r = torch.arange(0, 100 * w, w, device=device)
self.assertEqual(r.numel(), 100)
# Test Rounding Errors
line = torch.zeros(size=(1, 49), device=device)
self.assertWarnsRegex(UserWarning, 'The out tensor will be resized',
lambda: torch.arange(-1, 1, 2. / 49, dtype=torch.float32, out=line))
self.assertEqual(line.shape, [50])
x = torch.empty(1).expand(10)
self.assertRaises(RuntimeError, lambda: torch.arange(10, out=x))
msg = "unsupported range"
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(-5, float('nan'), device=device))
# check with step size
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('-inf'), -1, device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(0, float('inf'), device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('-inf'), 10, device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), 10, device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('inf'), device=device))
self.assertRaisesRegex(RuntimeError, msg, lambda: torch.arange(float('nan'), device=device))
self.assertRaisesRegex(
RuntimeError, "overflow",
lambda: torch.arange(1.175494351e-38, 3.402823466e+38, device=device))
# check that it holds a consistent output shape on precision-cornered step sizes
d = torch.arange(-4.0, 4.0, 0.01, dtype=torch.float32, device=device)
self.assertEqual(d.shape[0], 800)
# TODO: this test should be updated
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
@onlyCPU
def test_arange_inference(self, device):
# end only
self.assertIs(torch.float32, torch.arange(1.).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1.)).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64)).dtype)
self.assertIs(torch.int64, torch.arange(1).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1)).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1, dtype=torch.int16)).dtype)
# start, end, [step]
self.assertIs(torch.float32, torch.arange(1., 3).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1., dtype=torch.float64), 3).dtype)
self.assertIs(torch.float32, torch.arange(1, 3.).dtype)
self.assertIs(torch.float32, torch.arange(torch.tensor(1, dtype=torch.int16), torch.tensor(3.)).dtype)
self.assertIs(torch.float32, torch.arange(1, 3, 1.).dtype)
self.assertIs(torch.float32,
torch.arange(torch.tensor(1),
torch.tensor(3, dtype=torch.int16),
torch.tensor(1., dtype=torch.float64)).dtype)
self.assertIs(torch.int64, torch.arange(1, 3).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1), 3).dtype)
self.assertIs(torch.int64, torch.arange(torch.tensor(1), torch.tensor(3, dtype=torch.int16)).dtype)
self.assertIs(torch.int64, torch.arange(1, 3, 1).dtype)
self.assertIs(torch.int64,
torch.arange(torch.tensor(1),
torch.tensor(3),
torch.tensor(1, dtype=torch.int16)).dtype)
# cannot call storage() on meta tensor
@skipMeta
def test_empty_strided(self, device):
for shape in [(2, 3, 4), (0, 2, 0)]:
# some of these cases are pretty strange, just verifying that if as_strided
# allows them then empty_strided can as well.
for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]:
empty_strided = torch.empty_strided(shape, strides, device=device)
# as_strided checks the storage size is big enough to support such a strided tensor;
# instead of repeating this calculation, we just use empty_strided which does the same
# calculation when setting the storage size.
as_strided = torch.empty(empty_strided.storage().size(),
device=device).as_strided(shape, strides)
self.assertEqual(empty_strided.shape, as_strided.shape)
self.assertEqual(empty_strided.stride(), as_strided.stride())
def test_new_empty_strided(self, device):
def _test(sizes, strides, dtype):
x = torch.zeros(5, 5, dtype=dtype, device=device)
result = x.new_empty_strided(sizes, strides)
expected = torch.empty_strided(sizes, strides, dtype=x.dtype, device=x.device)
self.assertEqual(result.shape, expected.shape)
self.assertEqual(result.stride(), expected.stride())
self.assertEqual(result.dtype, expected.dtype)
self.assertEqual(result.device, expected.device)
_test([2, 3], [3, 1], torch.float)
_test([5, 3], [0, 1], torch.int)
_test([], [], torch.float)
# Some really weird cases
for shape in [(2, 3, 4), (0, 2, 0)]:
for strides in [(12, 4, 1), (2, 4, 6), (0, 0, 0)]:
_test(shape, strides, torch.float)
# Make sure sizes and strides have the same length
# https://github.com/pytorch/pytorch/issues/82416
with self.assertRaisesRegex(
RuntimeError,
r"dimensionality of sizes \(1\) must match dimensionality of strides \(0\)"):
dtype = torch.float64
x = torch.tensor(-4.8270, dtype=dtype, device=device)
size = (2,)
stride = ()
x.new_empty_strided(size, stride, dtype=dtype, device=device)
def test_strided_mismatched_stride_shape(self, device):
for shape, strides in [((1, ), ()), ((1, 2), (1, ))]:
with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"):
torch.tensor(0.42, device=device).as_strided(shape, strides)
with self.assertRaisesRegex(RuntimeError, "mismatch in length of strides and shape"):
torch.tensor(0.42, device=device).as_strided_(shape, strides)
def test_empty_tensor_props(self, device):
sizes = [(0,), (0, 3), (5, 0), (5, 0, 3, 0, 2), (0, 3, 0, 2), (0, 5, 0, 2, 0)]
for size in sizes:
x = torch.empty(tuple(size), device=device)
self.assertEqual(size, x.shape)
self.assertTrue(x.is_contiguous())
size_ones_instead_of_zeros = (x if x != 0 else 1 for x in size)
y = torch.empty(tuple(size_ones_instead_of_zeros), device=device)
self.assertEqual(x.stride(), y.stride())
@onlyNativeDeviceTypes
def test_empty_overflow(self, device):
with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'):
torch.empty([2, 4, 2**29, 2**29], dtype=torch.float64)
with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'):
torch.empty([8, 8, 2**29, 2**29], dtype=torch.float64)
with self.assertRaisesRegex(RuntimeError, 'Storage size calculation overflowed'):
torch.empty_strided([8, 8], [2**61, 1], dtype=torch.float64)
with self.assertRaisesRegex(RuntimeError, 'Stride calculation overflowed'):
torch.empty([0, 4, 2305843009213693952], dtype=torch.float32)
def test_eye(self, device):
for dtype in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16):
if dtype == torch.bfloat16:
continue
# Test the RuntimeError is raised when either m or n is a negative number
for n, m in ((-1, 1), (1, -1), (-1, -1)):
with self.assertRaisesRegex(RuntimeError, 'must be greater or equal to'):
torch.eye(n, m, device=device, dtype=dtype)
# Test when the `m` parameter is not provided
for n in (3, 5, 7):
res1 = torch.eye(n, device=device, dtype=dtype)
naive_eye = torch.zeros(n, n, dtype=dtype, device=device)
naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1)
self.assertEqual(naive_eye, res1)
# Check eye_out outputs
res2 = torch.empty(0, device=device, dtype=dtype)
torch.eye(n, out=res2)
self.assertEqual(res1, res2)
for n, m in product([3, 5, 7], repeat=2):
# Construct identity using diagonal and fill
res1 = torch.eye(n, m, device=device, dtype=dtype)
naive_eye = torch.zeros(n, m, dtype=dtype, device=device)
naive_eye.diagonal(dim1=-2, dim2=-1).fill_(1)
self.assertEqual(naive_eye, res1)
# Check eye_out outputs
res2 = torch.empty(0, device=device, dtype=dtype)
torch.eye(n, m, out=res2)
self.assertEqual(res1, res2)
@precisionOverride({torch.float: 1e-8, torch.double: 1e-10})
@dtypes(*floating_and_complex_types())
def test_linspace_vs_numpy(self, device, dtype):
start = -0.0316082797944545745849609375 + (0.8888888888j if dtype.is_complex else 0)
end = .0315315723419189453125 + (0.444444444444j if dtype.is_complex else 0)
for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]:
t = torch.linspace(start, end, steps, device=device, dtype=dtype)
a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype])
t = t.cpu()
self.assertEqual(t, torch.from_numpy(a))
self.assertTrue(t[0].item() == a[0])
self.assertTrue(t[steps - 1].item() == a[steps - 1])
@dtypes(*integral_types())
def test_linspace_vs_numpy_integral(self, device, dtype):
start = 1
end = 127
for steps in [25, 50]:
t = torch.linspace(start, end, steps, device=device, dtype=dtype)
a = np.linspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype])
t = t.cpu()
self.assertEqual(t, torch.from_numpy(a))
self.assertTrue(t[0].item() == a[0])
self.assertTrue(t[steps - 1].item() == a[steps - 1])
def _test_linspace_logspace_complex_helper(self, torch_fn, np_fn, device, dtype):
start = torch.randn(1, dtype=dtype).item()
end = (start + torch.randn(1, dtype=dtype) + random.randint(5, 15)).item()
def test_fn(torch_fn, numpy_fn, steps):
t = torch_fn(start, end, steps, device=device)
a = numpy_fn(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype])
t = t.cpu()
self.assertEqual(t, torch.from_numpy(a))
for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]:
test_fn(torch.linspace, np.linspace, steps)
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
@dtypes(torch.complex64)
def test_linspace_vs_numpy_complex(self, device, dtype):
self._test_linspace_logspace_complex_helper(torch.linspace, np.linspace,
device, dtype)
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
@dtypes(torch.complex64)
def test_logspace_vs_numpy_complex(self, device, dtype):
self._test_linspace_logspace_complex_helper(torch.logspace, np.logspace,
device, dtype)
@precisionOverride({torch.float: 1e-6, torch.double: 1e-10})
@dtypes(*floating_types())
def test_logspace_vs_numpy(self, device, dtype):
start = -0.0316082797944545745849609375
end = .0315315723419189453125
for steps in [1, 2, 3, 5, 11, 256, 257, 2**22]:
t = torch.logspace(start, end, steps, device=device, dtype=dtype)
a = np.logspace(start, end, steps, dtype=torch_to_numpy_dtype_dict[dtype])
t = t.cpu()
self.assertEqual(t, torch.from_numpy(a))
self.assertEqual(t[0], a[0])
self.assertEqual(t[steps - 1], a[steps - 1])
@onlyCUDA
@largeTensorTest('16GB')
def test_range_factories_64bit_indexing(self, device):
bigint = 2 ** 31 + 1
t = torch.arange(bigint, dtype=torch.long, device=device)
self.assertEqual(t[-1].item(), bigint - 1)
del t
t = torch.linspace(0, 1, bigint, dtype=torch.float, device=device)
self.assertEqual(t[-1].item(), 1)
del t
t = torch.logspace(0, 1, bigint, 2, dtype=torch.float, device=device)
self.assertEqual(t[-1].item(), 2)
del t
@expectedFailureMeta # RuntimeError: The tensor has a non-zero number of elements
@onlyNativeDeviceTypes
def test_tensor_ctor_device_inference(self, device):
torch_device = torch.device(device)
values = torch.tensor((1, 2, 3), device=device)
# Tests tensor and as_tensor
# Note: warnings are suppressed (suppresses warnings)
for op in (torch.tensor, torch.as_tensor):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
self.assertEqual(op(values).device, torch_device)
self.assertEqual(op(values, dtype=torch.float64).device, torch_device)
if self.device_type == 'cuda':
with torch.cuda.device(device):
self.assertEqual(op(values.cpu()).device, torch.device('cpu'))
# Tests sparse ctor
indices = torch.tensor([[0, 1, 1],
[2, 0, 1],
[2, 1, 0]], device=device)
sparse_size = (3, 3, 3)
sparse_default = torch.sparse_coo_tensor(indices, values, sparse_size)
self.assertEqual(sparse_default.device, torch_device)
sparse_with_dtype = torch.sparse_coo_tensor(indices, values, sparse_size, dtype=torch.float64)
self.assertEqual(sparse_with_dtype.device, torch_device)
if self.device_type == 'cuda':
with torch.cuda.device(device):
sparse_with_dtype = torch.sparse_coo_tensor(indices.cpu(), values.cpu(),
sparse_size, dtype=torch.float64)
self.assertEqual(sparse_with_dtype.device, torch.device('cpu'))
def _test_signal_window_functions(self, name, dtype, device, **kwargs):
import scipy.signal as signal
torch_method = getattr(torch, name + '_window')
if not dtype.is_floating_point:
with self.assertRaisesRegex(RuntimeError, r'floating point'):
torch_method(3, dtype=dtype)
return
for size in [0, 1, 2, 5, 10, 50, 100, 1024, 2048]:
for periodic in [True, False]:
res = torch_method(size, periodic=periodic, **kwargs, device=device, dtype=dtype)
# NB: scipy always returns a float64 result
ref = torch.from_numpy(signal.get_window((name, *(kwargs.values())), size, fftbins=periodic))
self.assertEqual(res, ref, exact_dtype=False)
with self.assertRaisesRegex(RuntimeError, r'not implemented for sparse types'):
torch_method(3, layout=torch.sparse_coo)
self.assertTrue(torch_method(3, requires_grad=True).requires_grad)
self.assertFalse(torch_method(3).requires_grad)
@onlyNativeDeviceTypes
@precisionOverride({torch.bfloat16: 5e-2, torch.half: 1e-3})
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16, torch.half, torch.long)
@skipIfTorchDynamo("Not a TorchDynamo suitable test")
@dtypes(torch.float, torch.double, torch.long)
@parametrize("window", ['hann', 'hamming', 'bartlett', 'blackman'])
def test_signal_window_functions(self, device, dtype, window):
self._test_signal_window_functions(window, dtype, device)
@onlyNativeDeviceTypes
@precisionOverride({torch.bfloat16: 5e-2, torch.half: 1e-3})
@unittest.skipIf(not TEST_SCIPY, "Scipy not found")
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
@dtypesIfCUDA(torch.float, torch.double, torch.bfloat16, torch.half, torch.long)
@dtypes(torch.float, torch.double, torch.long)
def test_kaiser_window(self, device, dtype):
for num_test in range(50):
self._test_signal_window_functions('kaiser', dtype, device, beta=random.random() * 30)
def test_tensor_factories_empty(self, device):
# ensure we can create empty tensors from each factory function
shapes = [(5, 0, 1), (0,), (0, 0, 1, 0, 2, 0, 0)]
for shape in shapes:
for dt in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16, torch.chalf):
self.assertEqual(shape, torch.zeros(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.zeros_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual(shape, torch.full(shape, 3, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.full_like(torch.zeros(shape, device=device, dtype=dt), 3).shape)
self.assertEqual(shape, torch.ones(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.ones_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual(shape, torch.empty(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.empty_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual(shape, torch.empty_strided(shape, (0,) * len(shape), device=device, dtype=dt).shape)
if dt == torch.bool:
self.assertEqual(shape, torch.randint(2, shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 2).shape)
elif dt.is_complex:
self.assertRaises(RuntimeError, lambda: torch.randint(6, shape, device=device, dtype=dt).shape)
else:
self.assertEqual(shape, torch.randint(6, shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.randint_like(torch.zeros(shape, device=device, dtype=dt), 6).shape)
if dt not in {torch.double, torch.float, torch.half, torch.bfloat16,
torch.complex32, torch.complex64, torch.complex128}:
self.assertRaises(RuntimeError, lambda: torch.rand(shape, device=device, dtype=dt).shape)
if dt == torch.double or dt == torch.float or dt.is_complex:
self.assertEqual(shape, torch.randn(shape, device=device, dtype=dt).shape)
self.assertEqual(shape, torch.randn_like(torch.zeros(shape, device=device, dtype=dt)).shape)
self.assertEqual((0,), torch.arange(0, device=device).shape)
self.assertEqual((0, 0), torch.eye(0, device=device).shape)
self.assertEqual((0, 0), torch.eye(0, 0, device=device).shape)
self.assertEqual((5, 0), torch.eye(5, 0, device=device).shape)
self.assertEqual((0, 5), torch.eye(0, 5, device=device).shape)
self.assertEqual((0,), torch.linspace(1, 1, 0, device=device).shape)
self.assertEqual((0,), torch.logspace(1, 1, 0, device=device).shape)
self.assertEqual((0,), torch.randperm(0, device=device).shape)
self.assertEqual((0,), torch.bartlett_window(0, device=device).shape)
self.assertEqual((0,), torch.bartlett_window(0, periodic=False, device=device).shape)
self.assertEqual((0,), torch.hamming_window(0, device=device).shape)
self.assertEqual((0,), torch.hann_window(0, device=device).shape)
self.assertEqual((0,), torch.kaiser_window(0, device=device).shape)
self.assertEqual((1, 1, 0), torch.tensor([[[]]], device=device).shape)
self.assertEqual((1, 1, 0), torch.as_tensor([[[]]], device=device).shape)
@onlyCUDA
def test_tensor_factory_gpu_type_inference(self, device):
with set_default_tensor_type(torch.cuda.DoubleTensor):
with set_default_dtype(torch.float32):
self.assertIs(torch.float32, torch.tensor(0.).dtype)
self.assertEqual(torch.device(device), torch.tensor(0.).device)
with set_default_dtype(torch.float64):
self.assertIs(torch.float64, torch.tensor(0.).dtype)
self.assertEqual(torch.device(device), torch.tensor(0.).device)
@onlyCUDA
def test_tensor_factory_gpu_type(self, device):
with set_default_tensor_type(torch.cuda.FloatTensor):
x = torch.zeros((5, 5))
self.assertIs(torch.float32, x.dtype)
self.assertTrue(x.is_cuda)
with set_default_tensor_type(torch.cuda.DoubleTensor):
x = torch.zeros((5, 5))
self.assertIs(torch.float64, x.dtype)
self.assertTrue(x.is_cuda)
@skipCPUIf(True, 'compares device with cpu')
@dtypes(torch.int, torch.long, torch.float, torch.double)
def test_arange_device_vs_cpu(self, device, dtype):
cpu_tensor = torch.arange(0, 10, dtype=dtype, device='cpu')
device_tensor = torch.arange(0, 10, dtype=dtype, device=device)
self.assertEqual(cpu_tensor, device_tensor)
def test_arange_bfloat16(self, device):
ref_tensor = torch.tensor([0, 1, 2, 3], dtype=torch.bfloat16, device=device)
bfloat16_tensor = torch.arange(0, 4, dtype=torch.bfloat16, device=device)
self.assertEqual(ref_tensor, bfloat16_tensor)
# step=2
ref_tensor = torch.tensor([0, 2, 4], dtype=torch.bfloat16, device=device)
bfloat16_tensor = torch.arange(0, 6, step=2, dtype=torch.bfloat16, device=device)
self.assertEqual(ref_tensor, bfloat16_tensor)
@dtypes(*all_types_and_complex_and(torch.bfloat16))
@dtypesIfCUDA(*all_types_and_complex_and(torch.bfloat16))
def test_linspace(self, device, dtype):
_from = random.random()
to = _from + random.random()
res1 = torch.linspace(_from, to, 137, device=device, dtype=dtype)
res2 = torch.tensor((), device=device, dtype=dtype)
torch.linspace(_from, to, 137, dtype=dtype, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
# small tensor
self.assertEqual(torch.linspace(10, 20, 11, device=device, dtype=dtype),
torch.tensor(list(range(10, 21)), device=device, dtype=dtype))
# large tensor
if dtype not in (torch.int8, torch.uint8):
self.assertEqual(torch.linspace(10, 2000, 1991, device=device, dtype=dtype),
torch.tensor(list(range(10, 2001)), device=device, dtype=dtype))
# Vectorization on non-contiguous tensors
if dtype not in (torch.int8, torch.uint8): # int8 and uint8 are too small for this test
res = torch.rand(3, 3, 1000, device=device).to(dtype)
res = res.permute(2, 0, 1)
torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, out=res)
self.assertEqual(res.flatten(), torch.linspace(0, 1000 * 3 * 3, 1000 * 3 * 3, device=device, dtype=dtype))
self.assertRaises(RuntimeError, lambda: torch.linspace(0, 1, -1, device=device, dtype=dtype))
# steps = 1
self.assertEqual(torch.linspace(0, 1, 1, device=device, dtype=dtype),
torch.zeros(1, device=device, dtype=dtype), atol=0, rtol=0)
# steps = 0
self.assertEqual(torch.linspace(0, 1, 0, device=device, dtype=dtype).numel(), 0, atol=0, rtol=0)
# steps not provided
self.assertRaises(TypeError, lambda: torch.linspace(0, 1, device=device, dtype=dtype))
if dtype == torch.float:
# passed dtype can't be safely casted to inferred dtype
with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"):
torch.linspace(0, 1j, 5, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"):
torch.linspace(0j, 1, 5, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, r"torch.linspace\(\): inferred dtype"):
torch.linspace(0j, 1j, 5, device=device, dtype=dtype)
# Check linspace for generating the correct output for each dtype.
start = 0 if dtype == torch.uint8 else -100
expected_lin = torch.tensor([start + .5 * i for i in range(401)], device=device, dtype=torch.double)
actual_lin = torch.linspace(start, start + 200, 401, device=device, dtype=dtype)
# If on GPU, allow for minor error depending on dtype.
tol = 0.
if device != 'cpu':
if dtype == torch.half:
tol = 1e-1
elif dtype == torch.float:
tol = 1e-5
elif dtype == torch.double:
tol = 1e-10
self.assertEqual(expected_lin.to(dtype), actual_lin, atol=tol, rtol=0)
# Check linspace for generating with start > end.
self.assertEqual(torch.linspace(2, 0, 3, device=device, dtype=dtype),
torch.tensor((2, 1, 0), device=device, dtype=dtype),
atol=0, rtol=0)
# Check for race condition (correctness when applied on a large tensor).
if dtype not in (torch.int8, torch.uint8, torch.int16, torch.half, torch.bfloat16):
y = torch.linspace(0, 999999 + (999999j if dtype.is_complex else 0),
1000000, device=device, dtype=dtype)
if dtype.is_complex:
cond = torch.logical_and(y[:-1].real < y[1:].real, y[:-1].imag < y[1:].imag)
else:
cond = y[:-1] < y[1:]
correct = all(cond)
self.assertTrue(correct)
# Check linspace for non-contiguous tensors.
x = torch.zeros(2, 3, device=device, dtype=dtype)
y = torch.linspace(0, 3, 4, out=x.narrow(1, 1, 2), dtype=dtype)
self.assertEqual(x, torch.tensor(((0, 0, 1), (0, 2, 3)), device=device, dtype=dtype), atol=0, rtol=0)
def _test_linspace_logspace_deduction_helper(self, fn, device):
for start, end in [(1, 2), (1., 2), (1., -2.), (1j, 2j), (0., 2j), (1j, 2)]:
dtype = torch.float32
if isinstance(start, complex) or isinstance(end, complex):
dtype = torch.cfloat
self.assertEqual(fn(start, end, steps=100, device=device).dtype, dtype)
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
def test_linspace_deduction(self, device):
# Test deduction from input parameters.
self._test_linspace_logspace_deduction_helper(torch.linspace, device)
@skipIfTorchDynamo("TorchDynamo fails with unknown reason")
def test_logspace_deduction(self, device):
# Test deduction from input parameters.
self._test_linspace_logspace_deduction_helper(torch.logspace, device)
# The implementation of linspace+logspace goes through a different path
# when the steps arg is equal to 0 or 1. For other values of `steps`
# they call specialized linspace (or logspace) kernels.
LINSPACE_LOGSPACE_SPECIAL_STEPS = [0, 1]
# NOTE [Linspace+Logspace precision override]
# Our Linspace and logspace torch.half CUDA kernels are not very precise.
# Since linspace/logspace are deterministic, we can compute an expected
# amount of error (by testing without a precision override), adding a tiny
# amount (EPS) to that, and using that value as the override.
LINSPACE_LOGSPACE_EXTRA_EPS = 1e-5
# Compares linspace device vs. cpu
def _test_linspace(self, device, dtype, steps):
a = torch.linspace(0, 10, steps=steps, dtype=dtype, device=device)
b = torch.linspace(0, 10, steps=steps)
self.assertEqual(a, b, exact_dtype=False)
# See NOTE [Linspace+Logspace precision override]
@skipCPUIf(True, "compares with CPU")
@precisionOverride({torch.half: 0.0039 + LINSPACE_LOGSPACE_EXTRA_EPS})
@dtypes(*floating_and_complex_types_and(torch.half, torch.bfloat16))
def test_linspace_device_vs_cpu(self, device, dtype):
self._test_linspace(device, dtype, steps=10)
@skipCPUIf(True, "compares with CPU")
@dtypes(*floating_and_complex_types_and(torch.half, torch.bfloat16))
def test_linspace_special_steps(self, device, dtype):
for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS:
self._test_linspace(device, dtype, steps=steps)
# Compares logspace device vs cpu
def _test_logspace(self, device, dtype, steps):
a = torch.logspace(1, 1.1, steps=steps, dtype=dtype, device=device)
b = torch.logspace(1, 1.1, steps=steps)
self.assertEqual(a, b, exact_dtype=False)
# Compares logspace device vs cpu
def _test_logspace_base2(self, device, dtype, steps):
a = torch.logspace(1, 1.1, steps=steps, base=2, dtype=dtype, device=device)
b = torch.logspace(1, 1.1, steps=steps, base=2)
self.assertEqual(a, b, exact_dtype=False)
# See NOTE [Linspace+Logspace precision override]
@skipCPUIf(True, "compares with CPU")
@precisionOverride({torch.half: 0.025 + LINSPACE_LOGSPACE_EXTRA_EPS})
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_logspace_device_vs_cpu(self, device, dtype):
self._test_logspace(device, dtype, steps=10)
# See NOTE [Linspace+Logspace precision override]
@skipCPUIf(True, "compares with CPU")
@precisionOverride({torch.half: 0.0201 + LINSPACE_LOGSPACE_EXTRA_EPS})
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_logspace_base2(self, device, dtype):
self._test_logspace_base2(device, dtype, steps=10)
@skipCPUIf(True, "compares with CPU")
@dtypesIfCUDA(torch.half, torch.float, torch.double)
@dtypes(torch.float, torch.double)
def test_logspace_special_steps(self, device, dtype):
for steps in self.LINSPACE_LOGSPACE_SPECIAL_STEPS:
self._test_logspace(device, dtype, steps=steps)
self._test_logspace_base2(device, dtype, steps=steps)
@dtypes(*all_types_and(torch.bfloat16))
@dtypesIfCUDA(*integral_types_and(torch.half, torch.bfloat16, torch.float32, torch.float64) if TEST_WITH_ROCM else
all_types_and(torch.half, torch.bfloat16))
def test_logspace(self, device, dtype):
_from = random.random()
to = _from + random.random()
res1 = torch.logspace(_from, to, 137, device=device, dtype=dtype)
res2 = torch.tensor((), device=device, dtype=dtype)
torch.logspace(_from, to, 137, device=device, dtype=dtype, out=res2)
self.assertEqual(res1, res2, atol=0, rtol=0)
self.assertRaises(RuntimeError, lambda: torch.logspace(0, 1, -1, device=device, dtype=dtype))
# steps not provided
self.assertRaises(TypeError, lambda: torch.logspace(0, 1, device=device, dtype=dtype))
self.assertEqual(torch.logspace(0, 1, 1, device=device, dtype=dtype),
torch.ones(1, device=device, dtype=dtype), atol=0, rtol=0)
if dtype == torch.float:
# passed dtype can't be safely casted to inferred dtype
with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"):
torch.logspace(0, 1j, 5, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"):
torch.logspace(0j, 1, 5, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, r"torch.logspace\(\): inferred dtype"):
torch.logspace(0j, 1j, 5, device=device, dtype=dtype)
# Check precision - start, stop and base are chosen to avoid overflow
# steps is chosen so that step size is not subject to rounding error
# a tolerance is needed for gpu tests due to differences in computation
atol = None
rtol = None
if self.device_type == 'cpu':
atol = 0
rtol = 0
self.assertEqual(torch.tensor([2. ** (i / 8.) for i in range(49)], device=device, dtype=dtype),
torch.logspace(0, 6, steps=49, base=2, device=device, dtype=dtype),
atol=atol, rtol=rtol)
# Check non-default base=2
self.assertEqual(torch.logspace(1, 1, 1, 2, device=device, dtype=dtype),
torch.ones(1, device=device, dtype=dtype) * 2)
self.assertEqual(torch.logspace(0, 2, 3, 2, device=device, dtype=dtype),
torch.tensor((1, 2, 4), device=device, dtype=dtype))
# Check logspace_ for generating with start > end.
self.assertEqual(torch.logspace(1, 0, 2, device=device, dtype=dtype),
torch.tensor((10, 1), device=device, dtype=dtype), atol=0, rtol=0)
# Check logspace_ for non-contiguous tensors.
x = torch.zeros(2, 3, device=device, dtype=dtype)
y = torch.logspace(0, 3, 4, base=2, device=device, dtype=dtype, out=x.narrow(1, 1, 2))
self.assertEqual(x, torch.tensor(((0, 1, 2), (0, 4, 8)), device=device, dtype=dtype), atol=0, rtol=0)
@onlyNativeDeviceTypes
@dtypes(torch.half, torch.float, torch.double)
def test_full_inference(self, device, dtype):
size = (2, 2)
with set_default_dtype(dtype):
# Tests bool fill value inference
t = torch.full(size, True)
self.assertEqual(t.dtype, torch.bool)
# Tests integer fill value inference
t = torch.full(size, 1)
self.assertEqual(t.dtype, torch.long)
# Tests float fill value inference
t = torch.full(size, 1.)
self.assertEqual(t.dtype, dtype)
# Tests complex inference
t = torch.full(size, (1 + 1j))
ctype = torch.complex128 if dtype is torch.double else torch.complex64
self.assertEqual(t.dtype, ctype)
def test_full_out(self, device):
size = (5,)
o = torch.empty(size, device=device, dtype=torch.long)
# verifies dtype/out conflict throws a RuntimeError
with self.assertRaises(RuntimeError):
torch.full(o.shape, 1., dtype=torch.float, out=o)
# verifies out dtype overrides inference
self.assertEqual(torch.full(o.shape, 1., out=o).dtype, o.dtype)
self.assertEqual(torch.full(size, 1, out=o).dtype, o.dtype)
# check that warning for numpy being not writable is suppressed
# when a copy of it is being created.
# see issue #47160
def test_tensor_from_non_writable_numpy(self, device):
with warnings.catch_warnings(record=True) as w:
a = np.arange(5.)
a.flags.writeable = False
t = torch.tensor(a)
self.assertEqual(len(w), 0)
# Class for testing random tensor creation ops, like torch.randint
class TestRandomTensorCreation(TestCase):
exact_dtype = True
# TODO: add torch.complex64, torch.complex128
@dtypes(torch.float, torch.double)
def test_normal(self, device, dtype):
def helper(self, device, dtype, ptype, t_transform, std_transform):
q = torch.empty(100, 100, dtype=dtype, device=device)
q.normal_()
self.assertEqual(t_transform(q).mean(), 0, atol=0.2, rtol=0)
self.assertEqual(t_transform(q).std(), std_transform(1), atol=0.2, rtol=0)
q.normal_(2, 3)
self.assertEqual(t_transform(q).mean(), 2, atol=0.3, rtol=0)
self.assertEqual(t_transform(q).std(), std_transform(3), atol=0.3, rtol=0)
q = torch.empty(100, 100, dtype=dtype, device=device)
q_row1 = q[0:1].clone()
q[99:100].normal_()
self.assertEqual(t_transform(q[99:100]).mean(), 0, atol=0.2, rtol=0)
self.assertEqual(t_transform(q[99:100]).std(), std_transform(1), atol=0.2, rtol=0)
self.assertEqual(t_transform(q[0:1]).clone(), t_transform(q_row1))
mean = torch.empty(100, 100, dtype=dtype, device=device)
mean[:50].fill_(ptype(0))
mean[50:].fill_(ptype(1))
std = torch.empty(100, 100, dtype=torch.float, device=device)
std[:, :50] = 4
std[:, 50:] = 1
r = torch.normal(mean)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0)
self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0)
self.assertEqual(t_transform(r).std(), std_transform(1), atol=0.2, rtol=0)
r.fill_(42)
r = torch.normal(mean, 3)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0)
self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0)
self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0)
r.fill_(42)
torch.normal(mean, 3, out=r)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0)
self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0)
self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.2, rtol=0)
r.fill_(42)
r = torch.normal(2, std)
self.assertFalse(r.dtype.is_complex)
self.assertEqual(str(r.device), device)
self.assertEqual(r.mean(), 2, atol=0.2, rtol=0)
self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0)
self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0)
r.fill_(42)
torch.normal(2, std, out=r)
self.assertFalse(r.dtype.is_complex)
self.assertEqual(str(r.device), device)
self.assertEqual(r.mean(), 2, atol=0.2, rtol=0)
self.assertEqual(r[:, :50].std(), 4, atol=0.3, rtol=0)
self.assertEqual(r[:, 50:].std(), 1, atol=0.2, rtol=0)
r.fill_(42)
r = torch.normal(mean, std)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0)
self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0)
self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0)
self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0)
r.fill_(42)
torch.normal(mean, std, out=r)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertEqual(t_transform(r[:50]).mean(), 0, atol=0.2, rtol=0)
self.assertEqual(t_transform(r[50:]).mean(), 1, atol=0.2, rtol=0)
self.assertEqual(t_transform(r[:, :50]).std(), std_transform(4), atol=0.3, rtol=0)
self.assertEqual(t_transform(r[:, 50:]).std(), std_transform(1), atol=0.2, rtol=0)
# test empty mean/std
out = torch.normal(mean=torch.empty((0, 2)), std=torch.empty((0, 1)))
self.assertEqual(out.size(), torch.Size([0, 2]))
r.fill_(42)
r = torch.normal(2, 3, (100, 100), dtype=dtype, device=device)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0)
self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0)
r.fill_(42)
torch.normal(2, 3, (100, 100), dtype=dtype, device=device, out=r)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertEqual(t_transform(r).mean(), 2, atol=0.3, rtol=0)
self.assertEqual(t_transform(r).std(), std_transform(3), atol=0.3, rtol=0)
# float std 0 with float mean
r.fill_(42)
torch.normal(2, 0, (10, 10), dtype=dtype, device=device, out=r)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertTrue(r.eq(2).all())
# float std 0 with tensor mean
r.fill_(42)
mean_rand = torch.randn(10, 10, dtype=dtype, device=device)
torch.normal(mean_rand, 0, out=r)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertEqual(mean_rand, r, atol=0, rtol=0)
# tensor std 0 with float mean
r.fill_(42)
std_zeros = torch.zeros(10, 10, dtype=dtype, device=device)
torch.normal(2, std_zeros, out=r)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertTrue(r.eq(2).all())
# tensor std 0 with tensor mean
r.fill_(42)
torch.normal(mean_rand, std_zeros, out=r)
self.assertEqual(r.dtype, dtype)
self.assertEqual(str(r.device), device)
self.assertEqual(mean_rand, r, atol=0, rtol=0)
if dtype.is_complex:
helper(self, device, dtype, lambda x: complex(x, x),
lambda t: torch.real(t).to(torch.float), lambda mean: mean / math.sqrt(2))
helper(self, device, dtype, lambda x: complex(x, x),
lambda t: torch.imag(t).to(torch.float), lambda mean: mean / math.sqrt(2))
self.assertRaisesRegex(
RuntimeError, "normal expects standard deviation to be non-complex",
lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device)))
out = torch.empty(100, 100, dtype=dtype, device=device)
self.assertRaisesRegex(
RuntimeError, "normal expects standard deviation to be non-complex",
lambda: torch.normal(0, torch.empty(100, 100, dtype=dtype, device=device), out=out))
else:
helper(self, device, dtype, lambda x: x, lambda t: t, lambda mean: mean)
# Ensure that normal raises appropriate error when `std` < 0
def test_normal_std_error(self, device):
a = torch.tensor(0, dtype=torch.float32, device=device)
std = torch.tensor(-1, dtype=torch.float32, device=device)
for input in [0, a]:
with self.assertRaisesRegex(RuntimeError, r'normal expects std >= 0.0, but found std'):
torch.normal(input, -1, (10,))
with self.assertRaisesRegex(RuntimeError, r'normal expects all elements of std >= 0.0'):
torch.normal(input, std)
@dtypes(torch.float, torch.double, torch.half)
@dtypesIfCUDA(torch.float, torch.double, torch.half, torch.bfloat16)
def test_uniform_from_to(self, device, dtype):
size = 2000
alpha = 0.1
float_min = torch.finfo(torch.float).min
float_max = torch.finfo(torch.float).max
double_min = torch.finfo(torch.double).min
double_max = torch.finfo(torch.double).max
if dtype == torch.bfloat16:
min_val = -3.389531389251535e+38
max_val = 3.389531389251535e+38
else:
min_val = torch.finfo(dtype).min
max_val = torch.finfo(dtype).max
values = [double_min, float_min, -42, 0, 42, float_max, double_max]
for from_ in values:
for to_ in values:
t = torch.empty(size, dtype=dtype, device=device)
if not (min_val <= from_ <= max_val) or not (min_val <= to_ <= max_val):
pass
elif to_ < from_:
self.assertRaisesRegex(
RuntimeError,
"uniform_ expects to return",
lambda: t.uniform_(from_, to_)
)
elif to_ - from_ > max_val:
self.assertRaisesRegex(
RuntimeError,
"uniform_ expects to-from",
lambda: t.uniform_(from_, to_)
)
else:
t.uniform_(from_, to_)
range_ = to_ - from_
if not (dtype == torch.bfloat16) and not (
dtype == torch.half and device == 'cpu') and not torch.isnan(t).all():
delta = alpha * range_
double_t = t.to(torch.double)
if range_ == 0:
self.assertTrue(double_t.min() == from_)
self.assertTrue(double_t.max() == to_)
elif dtype == torch.half:
self.assertTrue(from_ <= double_t.min() <= (from_ + delta))
self.assertTrue((to_ - delta) <= double_t.max() <= to_)
else:
self.assertTrue(from_ <= double_t.min() <= (from_ + delta))
self.assertTrue((to_ - delta) <= double_t.max() < to_)
def test_random_neg_values(self, device):
SIZE = 10
signed_dtypes = [torch.double, torch.float, torch.long, torch.int, torch.short]
for dtype in signed_dtypes:
res = torch.rand(SIZE, SIZE).to(device=device, dtype=dtype)
res.random_(-10, -1)
self.assertLessEqual(res.max().item(), 9)
self.assertGreaterEqual(res.min().item(), -10)
# TODO: this test should be updated
@onlyCPU
def test_randint_inference(self, device):
size = (2, 1)
for args in [(3,), (1, 3)]: # (low,) and (low, high)
self.assertIs(torch.int64, torch.randint(*args, size=size).dtype)
self.assertIs(torch.int64, torch.randint(*args, size=size, layout=torch.strided).dtype)
self.assertIs(torch.int64, torch.randint(*args, size=size, generator=torch.default_generator).dtype)
self.assertIs(torch.float32, torch.randint(*args, size=size, dtype=torch.float32).dtype)
out = torch.empty(size, dtype=torch.float32)
self.assertIs(torch.float32, torch.randint(*args, size=size, out=out).dtype)
self.assertIs(torch.float32, torch.randint(*args, size=size, out=out, dtype=torch.float32).dtype)
out = torch.empty(size, dtype=torch.int64)
self.assertIs(torch.int64, torch.randint(*args, size=size, out=out).dtype)
self.assertIs(torch.int64, torch.randint(*args, size=size, out=out, dtype=torch.int64).dtype)
# TODO: this test should be updated
@onlyCPU
def test_randint(self, device):
SIZE = 100
def seed(generator):
if generator is None:
torch.manual_seed(123456)
else:
generator.manual_seed(123456)
return generator
for generator in (None, torch.Generator()):
generator = seed(generator)
res1 = torch.randint(0, 6, (SIZE, SIZE), generator=generator)
res2 = torch.empty((), dtype=torch.int64)
generator = seed(generator)
torch.randint(0, 6, (SIZE, SIZE), generator=generator, out=res2)
generator = seed(generator)
res3 = torch.randint(6, (SIZE, SIZE), generator=generator)
res4 = torch.empty((), dtype=torch.int64)
generator = seed(generator)
torch.randint(6, (SIZE, SIZE), out=res4, generator=generator)
self.assertEqual(res1, res2)
self.assertEqual(res1, res3)
self.assertEqual(res1, res4)
self.assertEqual(res2, res3)
self.assertEqual(res2, res4)
self.assertEqual(res3, res4)
self.assertTrue((res1 < 6).all().item())
self.assertTrue((res1 >= 0).all().item())
@dtypes(torch.half, torch.float, torch.bfloat16, torch.double,
torch.complex32, torch.complex64, torch.complex128)
def test_randn(self, device, dtype):
SIZE = 100
for size in [0, SIZE]:
torch.manual_seed(123456)
res1 = torch.randn(size, size, dtype=dtype, device=device)
res2 = torch.tensor([], dtype=dtype, device=device)
torch.manual_seed(123456)
torch.randn(size, size, out=res2)
self.assertEqual(res1, res2)
@dtypes(torch.float, torch.double, torch.complex32, torch.complex64, torch.complex128)
def test_rand(self, device, dtype):
SIZE = 100
for size in [0, SIZE]:
torch.manual_seed(123456)
res1 = torch.rand(size, size, dtype=dtype, device=device)
res2 = torch.tensor([], dtype=dtype, device=device)
torch.manual_seed(123456)
torch.rand(size, size, out=res2)
self.assertEqual(res1, res2)
def test_randperm(self, device):
if device == 'cpu' or device == 'meta':
rng_device = None
else:
# TODO: This won't actually work for non-CUDA device
# see https://github.com/pytorch/pytorch/issues/54282
rng_device = [device]
# Test core functionality. On CUDA, different value of n has different
# code path
for n in (5, 100, 50000, 100000):
# Ensure both integer and floating-point numbers are tested. Half follows an execution path that is
# different from others on CUDA.
for dtype in (torch.long, torch.half, torch.float, torch.bfloat16):
if n > 2049 and dtype == torch.half: # Large n for torch.half will raise an exception, do not test here.
continue
if dtype == torch.bfloat16 and device != 'cpu':
continue
if n > 256 and dtype == torch.bfloat16:
continue
with torch.random.fork_rng(devices=rng_device):
res1 = torch.randperm(n, dtype=dtype, device=device)
res2 = torch.empty(0, dtype=dtype, device=device)
torch.randperm(n, out=res2, dtype=dtype, device=device)
self.assertEqual(res1, res2, atol=0, rtol=0)
self.assertEqual(res1.sort().values.long(), torch.arange(n, device=device))
# Default type is long
for n in (100, 10000):
self.assertEqual(torch.randperm(n, device=device).dtype, torch.long)
# randperm of 0 elements is an empty tensor
res1 = torch.randperm(0)
res2 = torch.tensor(5, dtype=dtype, device=device)
torch.randperm(0, out=res2)
self.assertEqual(res1.numel(), 0)
self.assertEqual(res2.numel(), 0)
# Test exceptions when n is too large for a floating point type
for dtype, small_n, large_n in ((torch.uint8, 2**8, 2**8 + 1),
(torch.half, 2**11 + 1, 2**11 + 2),
(torch.float, 2**24 + 1, 2**24 + 2),
(torch.double, 2**25, # 2**53 + 1 is too large to run
2**53 + 2)):
res = torch.empty(0, dtype=dtype, device=device)
torch.randperm(small_n, out=res) # No exception expected
self.assertRaises(RuntimeError, lambda: torch.randperm(large_n, out=res, device=device))
# Test non-contiguous tensors
for n in (4, 5, 6, 10, 20):
non_contiguous_tensor = torch.zeros((2, 3), dtype=torch.long, device=device).t()
self.assertFalse(non_contiguous_tensor.is_contiguous())
with torch.random.fork_rng(devices=rng_device):
res = torch.randperm(n, dtype=torch.long, device=device)
torch.randperm(n, out=non_contiguous_tensor)
self.assertEqual(non_contiguous_tensor, res)
self.assertEqual(res.sort().values.long(), torch.arange(n, device=device))
# Test exceptions when device and generator types are incompatible
@onlyCUDA
def test_randperm_device_compatibility(self, device):
cuda_gen = torch.Generator(device='cuda')
cpu_gen = torch.Generator(device='cpu')
# n=0 is a special case that we don't need to use generator, thus no error even if
# device and generator don't match
torch.randperm(0, device='cuda:0', generator=torch.Generator(device='cuda:1'))
if torch.cuda.device_count() > 1:
torch.randperm(0, device='cuda:1', generator=torch.Generator(device='cuda:0'))
torch.randperm(0, device='cuda', generator=torch.Generator(device='cpu'))
torch.randperm(0, device='cpu', generator=torch.Generator(device='cuda'))
for n in (1, 3, 100, 30000):
torch.randperm(n, device='cuda', generator=torch.Generator(device='cuda:0'))
torch.randperm(n, device='cuda:0', generator=torch.Generator(device='cuda'))
# For cuda:0 to match cuda:1, we are making consistent device type matching
# behavior just like torch.randint. Longer term, generator should ignore
# device ordinal, since it's not used anyway.
torch.randint(low=0, high=n + 1, size=(1,), device="cuda:0", generator=torch.Generator(device='cuda:1'))
torch.randperm(n, device='cuda:0', generator=torch.Generator(device='cuda:1'))
if torch.cuda.device_count() > 1:
torch.randint(low=0, high=n + 1, size=(1,), device="cuda:1", generator=torch.Generator(device='cuda:0'))
torch.randperm(n, device='cuda:1', generator=torch.Generator(device='cuda:0'))
regex = 'Expected a .* device type for generator but found .*'
cuda_t = torch.tensor(n, device='cuda')
self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen))
self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cuda', generator=cpu_gen, out=cuda_t))
cpu_t = torch.tensor(n, device='cpu')
self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen))
self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, device='cpu', generator=cuda_gen, out=cpu_t))
self.assertRaisesRegex(RuntimeError, regex, lambda: torch.randperm(n, generator=cuda_gen)) # implicitly on CPU
# Class for testing *like ops, like torch.ones_like
class TestLikeTensorCreation(TestCase):
exact_dtype = True
# TODO: this test should be updated
def test_ones_like(self, device):
expected = torch.ones(100, 100, device=device)
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
# test boolean tensor
expected = torch.tensor([True, True], device=device, dtype=torch.bool)
res1 = torch.ones_like(expected)
self.assertEqual(res1, expected)
# TODO: this test should be updated
@onlyCPU
def test_empty_like(self, device):
x = torch.autograd.Variable(torch.tensor([]))
y = torch.autograd.Variable(torch.randn(4, 4))
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
for a in (x, y, z):
self.assertEqual(torch.empty_like(a).shape, a.shape)
self.assertEqualTypeString(torch.empty_like(a), a)
def test_zeros_like(self, device):
expected = torch.zeros((100, 100,), device=device)
res1 = torch.zeros_like(expected)
self.assertEqual(res1, expected)
@deviceCountAtLeast(2)
def test_zeros_like_multiple_device(self, devices):
expected = torch.zeros(100, 100, device=devices[0])
x = torch.randn(100, 100, device=devices[1], dtype=torch.float32)
output = torch.zeros_like(x)
self.assertEqual(output, expected)
@deviceCountAtLeast(2)
def test_ones_like_multiple_device(self, devices):
expected = torch.ones(100, 100, device=devices[0])
x = torch.randn(100, 100, device=devices[1], dtype=torch.float32)
output = torch.ones_like(x)
self.assertEqual(output, expected)
# Full-like precedence is the explicit dtype then the dtype of the "like"
# tensor.
@onlyNativeDeviceTypes
def test_full_like_inference(self, device):
size = (2, 2)
like = torch.empty((5,), device=device, dtype=torch.long)
self.assertEqual(torch.full_like(like, 1.).dtype, torch.long)
self.assertEqual(torch.full_like(like, 1., dtype=torch.complex64).dtype,
torch.complex64)
# Tests for the `frombuffer` function (only work on CPU):
# Constructs tensors from Python objects that implement the buffer protocol,
# without copying data.
SIZE = 5
SHAPE = (SIZE,)
def may_require_grad(dtype):
return dtype.is_floating_point or dtype.is_complex
def get_dtype_size(dtype):
return int(torch.empty((), dtype=dtype).element_size())
class TestBufferProtocol(TestCase):
def _run_test(self, shape, dtype, count=-1, first=0, offset=None, **kwargs):
numpy_dtype = torch_to_numpy_dtype_dict[dtype]
if offset is None:
offset = first * get_dtype_size(dtype)
numpy_original = make_tensor(shape, dtype=dtype, device="cpu").numpy()
original = memoryview(numpy_original)
# First call PyTorch's version in case of errors.
# If this call exits successfully, the NumPy version must also do so.
torch_frombuffer = torch.frombuffer(original, dtype=dtype, count=count, offset=offset, **kwargs)
numpy_frombuffer = np.frombuffer(original, dtype=numpy_dtype, count=count, offset=offset)
self.assertEqual(numpy_frombuffer, torch_frombuffer)
self.assertEqual(numpy_frombuffer.__array_interface__["data"][0], torch_frombuffer.data_ptr())
return (numpy_original, torch_frombuffer)
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_same_type(self, device, dtype):
self._run_test((), dtype)
self._run_test((4,), dtype)
self._run_test((10, 10), dtype)
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_requires_grad(self, device, dtype):
def _run_test_and_check_grad(requires_grad, *args, **kwargs):
kwargs["requires_grad"] = requires_grad
_, tensor = self._run_test(*args, **kwargs)
self.assertTrue(tensor.requires_grad == requires_grad)
requires_grad = may_require_grad(dtype)
_run_test_and_check_grad(requires_grad, (), dtype)
_run_test_and_check_grad(requires_grad, (4,), dtype)
_run_test_and_check_grad(requires_grad, (10, 10), dtype)
_run_test_and_check_grad(False, (), dtype)
_run_test_and_check_grad(False, (4,), dtype)
_run_test_and_check_grad(False, (10, 10), dtype)
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_with_offset(self, device, dtype):
# Offset should be valid whenever there is, at least,
# one remaining element
for i in range(SIZE):
self._run_test(SHAPE, dtype, first=i)
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_with_count(self, device, dtype):
# Count should be valid for any valid in the interval
# [-1, len(input)], except for 0
for i in range(-1, SIZE + 1):
if i != 0:
self._run_test(SHAPE, dtype, count=i)
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_with_count_and_offset(self, device, dtype):
# Explicit default count [-1, 1, 2, ..., len]
for i in range(-1, SIZE + 1):
if i != 0:
self._run_test(SHAPE, dtype, count=i)
# Explicit default offset [0, 1, ..., len - 1]
for i in range(SIZE):
self._run_test(SHAPE, dtype, first=i)
# All possible combinations of count and dtype aligned
# offset for 'input'
# count:[1, 2, ..., len - 1] x first:[0, 1, ..., len - count]
for i in range(1, SIZE):
for j in range(SIZE - i + 1):
self._run_test(SHAPE, dtype, count=i, first=j)
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_invalid_positional_args(self, device, dtype):
bytes = get_dtype_size(dtype)
in_bytes = SIZE * bytes
# Empty array
with self.assertRaisesRegex(ValueError,
r"both buffer length \(0\) and count"):
empty = np.array([])
torch.frombuffer(empty, dtype=dtype)
# Count equals 0
with self.assertRaisesRegex(ValueError,
r"both buffer length .* and count \(0\)"):
self._run_test(SHAPE, dtype, count=0)
# Offset negative and bigger than total length
with self.assertRaisesRegex(ValueError,
rf"offset \(-{bytes} bytes\) must be"):
self._run_test(SHAPE, dtype, first=-1)
with self.assertRaisesRegex(ValueError,
rf"offset \({in_bytes} bytes\) must be .* "
rf"buffer length \({in_bytes} bytes\)"):
self._run_test(SHAPE, dtype, first=SIZE)
# Non-multiple offset with all elements
if bytes > 1:
offset = bytes - 1
with self.assertRaisesRegex(ValueError,
rf"buffer length \({in_bytes - offset} bytes\) after "
rf"offset \({offset} bytes\) must be"):
self._run_test(SHAPE, dtype, offset=bytes - 1)
# Count too big for each good first element
for first in range(SIZE):
count = SIZE - first + 1
with self.assertRaisesRegex(ValueError,
rf"requested buffer length \({count} \* {bytes} bytes\) "
rf"after offset \({first * bytes} bytes\) must .*"
rf"buffer length \({in_bytes} bytes\)"):
self._run_test(SHAPE, dtype, count=count, first=first)
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_shared_buffer(self, device, dtype):
x = make_tensor((1,), dtype=dtype, device=device)
# Modify the whole tensor
arr, tensor = self._run_test(SHAPE, dtype)
tensor[:] = x
self.assertEqual(arr, tensor)
self.assertTrue((tensor == x).all().item())
# Modify the whole tensor from all valid offsets, given
# a count value
for count in range(-1, SIZE + 1):
if count == 0:
continue
actual_count = count if count > 0 else SIZE
for first in range(SIZE - actual_count):
last = first + actual_count
arr, tensor = self._run_test(SHAPE, dtype, first=first, count=count)
tensor[:] = x
self.assertEqual(arr[first:last], tensor)
self.assertTrue((tensor == x).all().item())
# Modify the first value in the array
arr[first] = x.item() - 1
self.assertEqual(arr[first:last], tensor)
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_not_a_buffer(self, device, dtype):
with self.assertRaisesRegex(ValueError,
r"object does not implement Python buffer protocol."):
torch.frombuffer([1, 2, 3, 4], dtype=dtype)
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_non_writable_buffer(self, device, dtype):
numpy_arr = make_tensor((1,), dtype=dtype, device=device).numpy()
byte_arr = numpy_arr.tobytes()
with self.assertWarnsOnceRegex(UserWarning,
r"The given buffer is not writable."):
torch.frombuffer(byte_arr, dtype=dtype)
def test_byte_to_int(self):
byte_array = np.array([-1, 0, 0, 0, -1, 0, 0, 0], dtype=np.byte) if sys.byteorder == 'little' \
else np.array([0, 0, 0, -1, 0, 0, 0, -1], dtype=np.byte)
tensor = torch.frombuffer(byte_array, dtype=torch.int32)
self.assertEqual(tensor.numel(), 2)
self.assertSequenceEqual(tensor, [255, 255])
# Tests for the `asarray` function:
# Constructs tensors from a Python object that has one of the following
# characteristics:
# 1. is a Tensor
# 2. is a DLPack capsule
# 3. implements the Python Buffer protocol
# 4. is an arbitrary list
# The implementation itself is based on the Python Array API:
# https://data-apis.org/array-api/latest/API_specification/creation_functions.html
def get_another_device(device):
return "cuda" if torch.device(device).type == "cpu" else "cpu"
def identity(tensor):
return tensor
def to_numpy(tensor):
return tensor.numpy()
def to_memview(tensor):
return memoryview(to_numpy(tensor))
class TestAsArray(TestCase):
def _check(self, original, cvt=lambda t: t, is_alias=True, same_dtype=True, same_device=True, **kwargs):
"""Check the output of 'asarray', given its input and assertion informations.
Besides calling 'asarray' itself, this function does 4 different checks:
1. Whether the result is aliased or not, depending on 'is_alias'
2. Whether the result has the expected dtype and elements
3. Whether the result lives in the expected device
4. Whether the result has its 'requires_grad' set or not
"""
result = torch.asarray(cvt(original), **kwargs)
self.assertTrue(isinstance(result, torch.Tensor))
# 1. The storage pointers should be equal only if 'is_alias' is set
if is_alias:
self.assertEqual(result.data_ptr(), original.data_ptr())
else:
self.assertNotEqual(result.data_ptr(), original.data_ptr())
# 2. Comparison of the elements only takes place if the original
# sequence and the resulting tensor have the same data type
if same_dtype:
self.assertEqual(original, result)
else:
dtype = kwargs.get("dtype", torch.get_default_dtype())
self.assertEqual(original.shape, result.shape)
self.assertEqual(dtype, result.dtype)
# 3. Given the specified target device, we first check whether
# its type is the same, and then if its index is the same (if it
# is not None)
if same_device:
device = original.device
else:
device = torch.device(kwargs.get("device", "cpu"))
# Compare the target device type, and its index
self.assertEqual(device.type, result.device.type)
if device.index is not None:
self.assertEqual(device.index, result.device.index)
# 4. By default, 'requires_grad' is unset
self.assertEqual(result.requires_grad, kwargs.get("requires_grad", False))
def _test_alias_with_cvt(self, cvt, device, dtype, shape=(5, 5), only_with_dtype=False):
original = make_tensor(shape, dtype=dtype, device=device)
def check(**kwargs):
self._check(original, cvt=cvt, **kwargs)
if not only_with_dtype:
check(copy=False)
check(device=device)
check(device=device, copy=False)
check(dtype=dtype)
check(dtype=dtype, copy=False)
check(requires_grad=False, dtype=dtype)
check(requires_grad=may_require_grad(dtype), dtype=dtype)
check(device=device, dtype=dtype)
check(device=device, dtype=dtype, copy=False)
# Skipping 'meta' devices, since there's no point in comparing their
# data pointer (which is basically the point here), since they all
# return 0.
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_alias_from_tensor(self, device, dtype):
self._test_alias_with_cvt(identity, device, dtype)
@onlyCPU
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_alias_from_numpy(self, device, dtype):
self._test_alias_with_cvt(to_numpy, device, dtype)
# Skipping 'meta', since 'to_dlpack' does not work for them.
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_alias_from_dlpack(self, device, dtype):
self._test_alias_with_cvt(to_dlpack, device, dtype)
@onlyCPU
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_alias_from_buffer(self, device, dtype):
self._test_alias_with_cvt(to_memview, device, dtype, shape=(5,), only_with_dtype=True)
def _test_copy_with_cvt(self, cvt, device, dtype, shape=(5, 5), only_with_dtype=False):
original = make_tensor(shape, dtype=dtype, device=device)
def check(**kwargs):
self._check(original, cvt=cvt, is_alias=False, **kwargs)
if not only_with_dtype:
check(copy=True)
check(device=device, copy=True)
check(requires_grad=False, dtype=dtype, copy=True)
check(requires_grad=may_require_grad(dtype), dtype=dtype, copy=True)
check(dtype=dtype, copy=True)
check(device=device, dtype=dtype, copy=True)
# Copy is forced because of different device
if torch.cuda.is_available():
other = get_another_device(device)
check(same_device=False, device=other, dtype=dtype)
check(same_device=False, device=other, dtype=dtype, copy=True)
# Copy is forced because of different dtype
if not only_with_dtype:
for other in all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16):
if dtype != other:
check(same_dtype=False, dtype=other)
check(same_dtype=False, dtype=other, copy=True)
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_copy_tensor(self, device, dtype):
self._test_copy_with_cvt(identity, device, dtype)
@onlyCPU
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_copy_from_numpy(self, device, dtype):
self._test_copy_with_cvt(to_numpy, device, dtype)
@skipMeta
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_copy_from_dlpack(self, device, dtype):
self._test_copy_with_cvt(to_dlpack, device, dtype)
@onlyCPU
@dtypes(*set(numpy_to_torch_dtype_dict.values()))
def test_copy_from_buffer(self, device, dtype):
self._test_copy_with_cvt(to_memview, device, dtype, shape=(5,), only_with_dtype=True)
def _test_copy_mult_devices(self, devices, dtype, cvt):
cuda1 = devices[0]
cuda2 = devices[1]
original = make_tensor((5, 5), dtype=dtype, device=cuda1)
def check(**kwargs):
self._check(original, cvt, is_alias=False, same_device=False, device=cuda2, **kwargs)
check()
check(copy=True)
check(dtype=dtype, copy=True)
@onlyCUDA
@deviceCountAtLeast(2)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_copy_from_tensor_mult_devices(self, devices, dtype):
self._test_copy_mult_devices(devices, dtype, identity)
@onlyCUDA
@deviceCountAtLeast(2)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_copy_from_dlpack_mult_devices(self, devices, dtype):
self._test_copy_mult_devices(devices, dtype, to_dlpack)
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
def test_copy_list(self, device, dtype):
original = make_tensor((5, 5), dtype=dtype, device=torch.device("cpu"))
def check(**kwargs):
self._check(original, torch.Tensor.tolist, is_alias=False, **kwargs)
same_device = torch.device("cpu") == device
check(same_device=same_device, device=device, dtype=dtype)
check(same_device=same_device, device=device, dtype=dtype, requires_grad=False)
check(same_device=same_device, device=device, dtype=dtype, requires_grad=may_require_grad(dtype))
check(same_device=same_device, device=device, dtype=dtype, copy=True)
@dtypes(torch.float32)
def test_unsupported_alias(self, device, dtype):
original = make_tensor((5, 5), dtype=dtype, device=device)
if torch.cuda.is_available():
other_device = get_another_device(device)
with self.assertRaisesRegex(ValueError,
f"from device '{device}' to '{other_device}'"):
torch.asarray(original, device=other_device, copy=False)
with self.assertRaisesRegex(ValueError,
"with dtype '.*' into dtype '.*'"):
torch.asarray(original, dtype=torch.float64, copy=False)
with self.assertRaisesRegex(ValueError,
"can't alias arbitrary sequence"):
torch.asarray(original.tolist(), copy=False)
@onlyCUDA
@deviceCountAtLeast(2)
@dtypes(torch.float32)
def test_unsupported_alias_mult_devices(self, devices, dtype):
dev1, dev2 = devices[:2]
original = make_tensor((5, 5), dtype=dtype, device=dev1)
with self.assertRaisesRegex(ValueError,
f"from device '{dev1}' to '{dev2}'"):
torch.asarray(original, device=dev2, copy=False)
@dtypes(torch.float32, torch.complex64)
def test_retain_autograd_history(self, device, dtype):
original = make_tensor((5, 5), dtype=dtype, device=device, requires_grad=True)
# 'cloned' has 'grad_fn=<CloneBackwards>'
cloned = original.clone()
def check(**kwargs):
a = torch.asarray(cloned, **kwargs)
requires_grad = kwargs.get("requires_grad", False)
self.assertEqual(a.requires_grad, requires_grad)
# Autograd history shouldn't be retained when requires_grad is False
self.assertEqual(a.grad_fn is None, not requires_grad)
check()
check(requires_grad=True)
check(copy=True)
check(requires_grad=True, copy=True)
check(requires_grad=False)
check(requires_grad=False, copy=True)
@onlyCPU
def test_astensor_consistency(self, device):
# See issue: https://github.com/pytorch/pytorch/pull/71757
examples = [
# Scalars
True,
42,
1.0,
# Homogeneous Lists
[True, True, False],
[1, 2, 3, 42],
[0.0, 1.0, 2.0, 3.0],
# Mixed Lists
[True, False, 0],
[0.0, True, False],
[0, 1.0, 42],
[0.0, True, False, 42],
# With Complex
[0.0, True, False, 42, 5j],
# With Range
range(5),
]
for e in examples:
original = torch.as_tensor(e)
t = torch.asarray(e)
self.assertEqual(t, original)
@skipIfTorchDynamo
@onlyCPU
def test_numpy_scalars(self, device):
scalar = np.float64(0.5)
with self.assertRaisesRegex(RuntimeError, "can't alias NumPy scalars."):
torch.asarray(scalar, copy=False)
tensor = torch.asarray(scalar)
self.assertEqual(tensor.dim(), 0)
self.assertEqual(tensor.item(), scalar.item())
self.assertEqual(tensor.dtype, torch.float64)
# Regression test for https://github.com/pytorch/pytorch/issues/97021
zerodim_arr = np.array(1.)
tensor = torch.asarray(zerodim_arr, dtype=torch.int32)
self.assertEqual(tensor.dim(), 0)
self.assertEqual(tensor.item(), zerodim_arr.item())
self.assertEqual(tensor.dtype, torch.int32)
def test_default_device(self, device):
original = torch.arange(5)
examples: List[Tuple[Any, Dict]] = [
(3, {}),
(original, {}),
(to_numpy(original), {}),
(to_memview(original), {"dtype": original.dtype}),
]
for data, kwargs in examples:
with torch.device(device):
tensor = torch.asarray(data, **kwargs)
self.assertEqual(tensor.device, torch.device(device))
# Check the contents of the tensor.
if isinstance(data, int):
self.assertEqual(data, tensor.item())
else:
self.assertEqual(data, tensor)
@onlyCUDA
def test_device_without_index(self, device):
original = torch.arange(5, device="cuda")
tensor = torch.asarray(original, device="cuda")
# The storage pointers should be equal
self.assertEqual(original.data_ptr(), tensor.data_ptr())
tensor = torch.asarray(original, copy=True, device="cuda")
# The storage pointers should not be equal
self.assertNotEqual(original.data_ptr(), tensor.data_ptr())
instantiate_device_type_tests(TestTensorCreation, globals())
instantiate_device_type_tests(TestRandomTensorCreation, globals())
instantiate_device_type_tests(TestLikeTensorCreation, globals())
instantiate_device_type_tests(TestBufferProtocol, globals(), only_for="cpu")
instantiate_device_type_tests(TestAsArray, globals())
if __name__ == '__main__':
TestCase._default_dtype_check_enabled = True
run_tests()