| from dataclasses import dataclass, field |
| from typing import Dict, List, Union, Optional, Sequence, Any |
| from torch.distributed._shard.sharded_tensor.metadata import TensorProperties |
| |
| import torch |
| from torch.distributed._shard.sharded_tensor import ( |
| ShardedTensor, |
| ) |
| |
| __all__ = [ |
| "ChunkStorageMetadata", |
| "TensorStorageMetadata", |
| "BytesStorageMetadata", |
| "Metadata", |
| "MetadataIndex", |
| ] |
| |
| |
| @dataclass |
| class ChunkStorageMetadata: |
| """ |
| Each chunk is expected to have the same properties of the TensorStorageMetadata that includes it. |
| """ |
| |
| offsets: torch.Size |
| sizes: torch.Size |
| |
| |
| @dataclass |
| class TensorStorageMetadata: |
| properties: TensorProperties |
| size: torch.Size |
| chunks: List[ChunkStorageMetadata] |
| |
| |
| @dataclass |
| class BytesStorageMetadata: |
| pass |
| |
| |
| TENSOR_TYPE = Union[torch.Tensor, ShardedTensor] |
| STORAGE_TYPES = Union[TensorStorageMetadata, BytesStorageMetadata] |
| STATE_DICT_TYPE = Dict[str, Any] |
| |
| |
| @dataclass |
| class Metadata: |
| # Keys are the same from the `state_dict` used. |
| state_dict_metadata: Dict[str, STORAGE_TYPES] |
| planner_data: Any = None |
| storage_data: Any = None |
| |
| |
| @dataclass(frozen=True) |
| class MetadataIndex: |
| """ |
| This class represents a lookup key for items in a state dict or Metadata. |
| """ |
| |
| fqn: str |
| """Fully Qualified Name of the object""" |
| |
| offset: Optional[torch.Size] = None |
| """If the object is a tensor, offset into the tensor we're looking for""" |
| |
| index: Optional[int] = field(hash=False, compare=False, default=None) |
| """ |
| Index hint when searching for tensor chunk to speedup lookups (optional) |
| |
| A common representation of a sharded tensor is as a list of chunks so to |
| find the index in such a list you need to linear search it. |
| |
| When constructing an instance of MetadataIndex that points to that list, |
| one can provide the index as a hint and it will be probed first before |
| the linear search and thus making it significantly faster. |
| """ |
| |
| def __init__( |
| self, |
| fqn: str, |
| offset: Optional[Sequence[int]] = None, |
| index: Optional[int] = None, |
| ): |
| # We must use object.__setattr__ due to frozen=True |
| object.__setattr__(self, "fqn", fqn) |
| object.__setattr__(self, "index", index) |
| if offset is not None: |
| object.__setattr__(self, "offset", torch.Size(offset)) |