blob: 0fbaee2e612437c0340b9ec44296e19fdd324446 [file] [log] [blame]
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import contextlib
import functools
from abc import ABC, abstractmethod
from typing import Any, Callable, cast, Dict, Generator, Optional, Set, Tuple, Type
import torch.nn as nn
from torch.nn.modules.batchnorm import _BatchNorm
__all__ = [
"always_wrap_policy",
"lambda_auto_wrap_policy",
"transformer_auto_wrap_policy",
"size_based_auto_wrap_policy",
"enable_wrap",
"wrap",
"ModuleWrapPolicy",
]
def always_wrap_policy(*args, **kwargs) -> bool:
"""
A simple recursive wrap policy that always returns ``True``. This means
that every submodule is wrapped by the wrapper class in
:func:`_recursive_wrap`.
"""
return True
class _FSDPPolicy(ABC):
"""
This defines an abstract base class that represents an FSDP policy for
constructing ``FlatParameter`` s.
"""
# The motivation for this abstract base class is to hide the interface
# expected by `_recursive_wrap()` from users (i.e. the `recurse` argument).
def __init__(self):
...
@property
@abstractmethod
def policy(self) -> Callable:
...
def _module_wrap_policy(
module: nn.Module,
recurse: bool,
nonwrapped_numel: int,
module_classes: Set[Type[nn.Module]],
) -> bool:
"""
This auto wrap policy wraps every module that is an instance of any type in
``module_classes`` as its own FSDP instance. The root module given by
``module`` is always wrapped as an FSDP instance regardless. Since the
wrapping proceeds bottom up, each FSDP instance manages the parameters in
its subtree excluding any already managed by a child FSDP instance.
Args:
module (nn.Module): Current module being considered.
recurse (bool): If ``False``, then this function must decide whether
``module`` should be wrapped as an FSDP instance or not. If
``True``, then the function is still recursing down the module
tree as a part of the DFS.
nonwrapped_numel (int): Parameter numel not yet wrapped.
module_classes (Set[Type[nn.Module]]): Set of module classes that are
wrapped as FSDP instances.
Returns:
``True`` if ``recurse=True``, and whether ``module`` should be wrapped
if ``recurse=False``.
"""
if recurse:
return True # always recurse
return isinstance(module, tuple(module_classes))
class ModuleWrapPolicy(_FSDPPolicy):
"""This is a wrapper around :func:`_module_wrap_policy`."""
def __init__(self, module_classes: Set[Type[nn.Module]]):
self._policy: Callable = functools.partial(
_module_wrap_policy,
module_classes=module_classes,
)
self._module_classes_str = str(module_classes)
@property
def policy(self):
return self._policy
def __repr__(self) -> str:
return super().__repr__() + f"({self._module_classes_str})"
def lambda_auto_wrap_policy(
module: nn.Module, recurse: bool, nonwrapped_numel: int, lambda_fn: Callable
) -> bool:
"""
A convenient auto wrap policy to wrap submodules based on an arbitrary user
function. If `lambda_fn(submodule) == True``, the submodule will be wrapped as
a `wrapper_cls` unit.
Return if a module should be wrapped during auto wrapping.
The first three parameters are required by :func:`_recursive_wrap`.
Args:
module (nn.Module): Current module being considered.
recurse (bool): If ``False``, then this function must decide whether
``module`` should be wrapped as an FSDP instance or not. If
``True``, then the function is still recursing down the module
tree as a part of the DFS.
nonwrapped_numel (int): Parameter numel not yet wrapped.
lambda_fn (Callable[[nn.Module], bool]): If this returns ``True``, then
this module will be wrapped.
"""
if recurse:
return True # always recurse
return lambda_fn(module)
def transformer_auto_wrap_policy(
module: nn.Module,
recurse: bool,
nonwrapped_numel: int,
transformer_layer_cls: Set[Type[nn.Module]],
) -> bool:
"""
See :func:`_module_wrap_policy`, where ``transformer_layer_cls`` is the
same as ``module_classes``. Note that shared parameters must be wrapped in
the same FSDP instance, so this auto wrap policy can help wrap shared
embeddings into the same FSDP instance for transformer models.
"""
return _module_wrap_policy(module, recurse, nonwrapped_numel, transformer_layer_cls)
def _wrap_batchnorm_individually(
module: nn.Module,
recurse: bool,
*args,
**kwargs,
) -> bool:
"""
A policy that wraps ``BatchNorm`` instances in their own FSDP instance.
"""
if recurse:
# always recurse
return True
else:
# if not recursing, decide whether we should wrap based on whether it is a
# BN layer or not.
return isinstance(module, _BatchNorm)
def _or_policy(
module: nn.Module,
recurse: bool,
nonwrapped_numel: int,
policies,
) -> bool:
"""
A policy that wraps ``module`` if any policy in the passed in iterable of
``policies`` returns ``True``.
"""
return any(policy(module, recurse, nonwrapped_numel) for policy in policies)
def size_based_auto_wrap_policy(
module: nn.Module,
recurse: bool,
nonwrapped_numel: int,
# Additional custom arguments
min_num_params: int = int(1e8),
force_leaf_modules: Optional[Set[Type[nn.Module]]] = None,
exclude_wrap_modules: Optional[Set[Type[nn.Module]]] = None,
) -> bool:
"""
A size-based auto wrap policy.
Args:
module (nn.Module): Current module being considered.
recurse (bool): If ``False``, then this function must decide whether
``module`` should be wrapped as an FSDP instance or not. If
``True``, then the function is still recursing down the module
tree as a part of the DFS.
nonwrapped_numel (int): Parameter numel not yet wrapped.
min_num_params (int): Customizable policy input that controls the size
threshold over which a module is ready to be wrapped. This is in
units of numel.
force_leaf_modules (Set[Type[nn.Module]]): Set of module types to keep
as leaves, i.e. their children will never be wrapped.
exclude_wrap_modules (Set[Type[nn.Module]]): Set of module types to be
excluded in wrapping.
Returns:
Whether ``module`` should be wrapped.
"""
force_leaf_modules = (
size_based_auto_wrap_policy.FORCE_LEAF_MODULES # type: ignore[attr-defined]
if force_leaf_modules is None
else force_leaf_modules
)
exclude_wrap_modules = (
size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES # type: ignore[attr-defined]
if exclude_wrap_modules is None
else exclude_wrap_modules
)
# Keep the argument `min_num_params` for BC for now, but it represents the
# minimum non-wrapped *numel* before triggering a wrapping
min_nonwrapped_numel = min_num_params
is_large = nonwrapped_numel >= min_nonwrapped_numel
if recurse:
# We should recurse if the module is big enough but not in force_leaf_modules list.
return is_large and not isinstance(module, tuple(force_leaf_modules))
else:
# If we are not recursing, determine if we should wrap.
return is_large and not isinstance(module, tuple(exclude_wrap_modules))
# Set those defaults to the size_based_auto_wrap_policy function. Make them easy to be imported.
size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES = {nn.ModuleList, nn.ModuleDict} # type: ignore[attr-defined]
size_based_auto_wrap_policy.FORCE_LEAF_MODULES = {nn.MultiheadAttention} # type: ignore[attr-defined]
@contextlib.contextmanager
def enable_wrap(
*, wrapper_cls: Any, **wrapper_kwargs: Any
) -> Generator[None, None, None]:
"""
Context manager to wrap modules using a wrapper.
Useful for when you'd like to apply the same configuration arguments to all
child modules that you wrap. A particularly important use case is wrapping
large layers so that they get sharded (in-place) during initialization, to
avoid running out of system memory. Large layers can indicate that they
should be sharded via the ``wrap`` annotation and this context manager can
provide the exact configuration for these nested instances.
Usage::
with enable_wrap(wrapper_cls, **params):
# Wraps layer in FSDP by default if within context
self.l1 = wrap(torch.nn.Linear(5, 5))
Args:
wrapper_cls:
Class that `wrap` annotation will `wrap` modules with, such as
`FullyShardedDataParallel`.
**wrapper_kwargs:
Configuration settings that will be passed to all ``wrap``
instances inside the context
"""
kwargs = {
**{"wrapper_cls": wrapper_cls},
**wrapper_kwargs,
}
with _ConfigAutoWrap(**kwargs):
yield
def wrap(module: nn.Module, **wrap_overrides: Any) -> nn.Module:
"""
Annotate that a module should be wrapped. Annotated modules will only be
wrapped if inside of an :func:`enable_wrap` context manager. This allows
a module to be initialized both with and without a wrapper without code
change.
The class that this function wraps the passed in ``nn.Module`` with is the
passed in ``wrapper_cls`` argument into ``enable_wrap``. Both
``enable_wrap`` and ``wrap`` can take in kwargs specifying how to construct
the ``wrapper_cls`` instance. In the case of duplicate kwargs in
``enable_wrap`` and ``wrap``, the argument passed into ``wrap`` will be
respected.
Usage::
with enable_wrap(wrapper_cls=FSDP, **fsdp_config):
# Wraps layer in FSDP by default if within context
self.l1 = wrap(torch.nn.Linear(5, 5))
Args:
module (nn.Module): module to wrap (if in :func:`enable_wrap` context)
**wrap_overrides: configuration overrides that will take priority over
the values provided by the :func:`enable_wrap` context
"""
if _ConfigAutoWrap.in_autowrap_context:
assert _ConfigAutoWrap.wrapper_cls is not None
wrap_overrides = {**_ConfigAutoWrap.kwargs, **wrap_overrides}
return _wrap(
module,
_ConfigAutoWrap.wrapper_cls,
**wrap_overrides,
)
return module
def _wrap(module: nn.Module, wrapper_cls: Callable, **kwargs) -> nn.Module:
assert wrapper_cls is not None
if hasattr(module, "_wrap_overrides"):
# If module has a _wrap_overrides attribute, we force overriding the
# FSDP config with these attributes for this module. Currently this
# is only used to disable mixed precision for BatchNorm when
# auto_wrapping.
overrides = {**kwargs, **module._wrap_overrides} # type: ignore[arg-type]
return wrapper_cls(module, **overrides)
return wrapper_cls(module, **kwargs)
def _recursive_wrap(
module: nn.Module,
auto_wrap_policy: Callable,
wrapper_cls: Callable,
ignored_modules: Set[nn.Module],
ignored_params: Set[nn.Parameter],
only_wrap_children: bool = False,
**kwargs: Any,
) -> Tuple[nn.Module, int]:
"""
Wraps submodules of ``module`` for which ``auto_wrap_policy`` returns
``True`` with ``wrapper_cls``.
Args:
module (nn.Module): Module to recursively wrap.
auto_wrap_policy (Callable): A callable representing a policy that
determines which modules to recursively wrap with ``wrapper_cls``.
ignored_modules (Set[torch.nn.Module]): Modules to ignore when
wrapping.
ignored_params (Set[torch.nn.Parameter]): Parameters to ignore when
wrapping; these should be the parameters contained in the modules
in ``ignored_modules``.
Returns:
(nn.Module, int):
``module`` after wrapping and the numel recursively wrapped.
"""
assert auto_wrap_policy is not None, "Must specify auto_wrap_policy."
assert wrapper_cls is not None, "Must specify wrapper_cls"
# Make sure no child is already wrapped.
for _, child in module.named_modules():
if child in ignored_modules:
continue
try:
assert not isinstance(child, cast(type, wrapper_cls))
except TypeError:
# wrapper_cls is a function as opposed to a class type, just bypass above check.
pass
# We count all params, assuming none of them are already wrapped.
nonwrapped_numel = sum(
p.numel() for p in module.parameters() if p not in ignored_params
)
assert auto_wrap_policy is not None
if auto_wrap_policy(module=module, recurse=True, nonwrapped_numel=nonwrapped_numel):
total_wrapped_numel = 0
# Iterate through the children, recursively wrap if necessary
for name, child in module.named_children():
if child in ignored_modules:
continue
wrapped_child, num_wrapped_params = _recursive_wrap(
module=child,
auto_wrap_policy=auto_wrap_policy,
wrapper_cls=wrapper_cls,
ignored_modules=ignored_modules,
ignored_params=ignored_params,
**kwargs,
)
setattr(module, name, wrapped_child)
# Keep track of how many parameters have been wrapped
total_wrapped_numel += num_wrapped_params
# decide if we need to wrap the current module,
# since the left over parameters exceed the number of params to wrap
remainder = nonwrapped_numel - total_wrapped_numel
if not only_wrap_children and auto_wrap_policy(
module=module, recurse=False, nonwrapped_numel=remainder
):
# Leaf node or final wrapping of the remainder both happen here.
return _wrap(module, wrapper_cls, **kwargs), nonwrapped_numel
else:
return module, total_wrapped_numel
return module, 0
class _ConfigAutoWrap:
"""
Helper class to wrap modules based on default config args via a context manager.
See :func:`enable_wrap` for more information.
"""
in_autowrap_context: bool = False # Context flag
wrapper_cls: Optional[Callable] = None # The wrapper class
kwargs: Dict[str, Any] = {} # Wrapper's args
def __init__(self, **kwargs: Dict[str, Any]):
self.kwargs = kwargs
@staticmethod
def enable_autowrap_context(kwargs: Any) -> None:
if _ConfigAutoWrap.in_autowrap_context:
raise NotImplementedError(
"You are already within an autowrap context and we currently do not supported nested autowrap."
)
_ConfigAutoWrap.in_autowrap_context = True
# Get and save the wrapper cls for the context.
assert (
"wrapper_cls" in kwargs.keys()
), "Expected to pass in wrapper_cls arg into _ConfigAutoWrap."
_ConfigAutoWrap.wrapper_cls = cast(Callable, kwargs["wrapper_cls"])
del kwargs["wrapper_cls"]
# Save the rest.
_ConfigAutoWrap.kwargs = kwargs
@staticmethod
def disable_autowrap_context() -> None:
_ConfigAutoWrap.in_autowrap_context = False
_ConfigAutoWrap.wrapper_cls = None
_ConfigAutoWrap.kwargs = {}
def __enter__(self) -> None:
self.enable_autowrap_context(self.kwargs)
def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None:
self.disable_autowrap_context()