| import torch |
| from torch import Tensor |
| |
| from .optimizer import Optimizer, _use_grad_for_differentiable, _get_value |
| from torch._utils import is_compiling |
| from typing import List, Optional |
| |
| __all__ = ["ASGD", "asgd"] |
| |
| def _to_tensor(x): |
| if not isinstance(x, torch.Tensor): |
| return torch.tensor(x) |
| |
| return x |
| |
| class ASGD(Optimizer): |
| """Implements Averaged Stochastic Gradient Descent. |
| |
| It has been proposed in `Acceleration of stochastic approximation by |
| averaging`_. |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-2) |
| lambd (float, optional): decay term (default: 1e-4) |
| alpha (float, optional): power for eta update (default: 0.75) |
| t0 (float, optional): point at which to start averaging (default: 1e6) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| foreach (bool, optional): whether foreach implementation of optimizer |
| is used (default: None) |
| maximize (bool, optional): maximize the params based on the objective, instead of |
| minimizing (default: False) |
| |
| .. _Acceleration of stochastic approximation by averaging: |
| https://dl.acm.org/citation.cfm?id=131098 |
| """ |
| |
| def __init__( |
| self, |
| params, |
| lr=1e-2, |
| lambd=1e-4, |
| alpha=0.75, |
| t0=1e6, |
| weight_decay=0, |
| foreach: Optional[bool] = None, |
| maximize: bool = False, |
| differentiable: bool = False, |
| ): |
| if not 0.0 <= lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 <= weight_decay: |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| |
| defaults = dict( |
| lr=lr, |
| lambd=lambd, |
| alpha=alpha, |
| t0=t0, |
| weight_decay=weight_decay, |
| foreach=foreach, |
| maximize=maximize, |
| differentiable=differentiable, |
| ) |
| super(ASGD, self).__init__(params, defaults) |
| |
| def __setstate__(self, state): |
| super().__setstate__(state) |
| for group in self.param_groups: |
| group.setdefault("foreach", None) |
| group.setdefault("maximize", False) |
| group.setdefault("differentiable", False) |
| state_values = list(self.state.values()) |
| step_is_tensor = (len(state_values) != 0) and torch.is_tensor( |
| state_values[0]["step"] |
| ) |
| if not step_is_tensor: |
| for s in state_values: |
| s["step"] = torch.tensor(float(s["step"])) |
| eta_is_tensor = (len(state_values) != 0) and torch.is_tensor( |
| state_values[0]["eta"] |
| ) |
| if not eta_is_tensor: |
| for s in state_values: |
| s["eta"] = torch.tensor(s["eta"]) |
| mu_is_tensor = (len(state_values) != 0) and torch.is_tensor( |
| state_values[0]["mu"] |
| ) |
| if not mu_is_tensor: |
| for s in state_values: |
| s["mu"] = torch.tensor(float(s["mu"])) |
| |
| def _init_group(self, group, params_with_grad, grads, mus, axs, etas, state_steps): |
| for p in group["params"]: |
| if p.grad is not None: |
| params_with_grad.append(p) |
| if p.grad.is_sparse: |
| raise RuntimeError("ASGD does not support sparse gradients") |
| grads.append(p.grad) |
| |
| state = self.state[p] |
| # State initialization |
| if len(state) == 0: |
| state["step"] = torch.tensor(0.0) |
| state["eta"] = torch.tensor(group["lr"]) |
| state["mu"] = torch.tensor(1.0) |
| state["ax"] = torch.zeros_like( |
| p, memory_format=torch.preserve_format |
| ) |
| |
| mus.append(state["mu"]) |
| axs.append(state["ax"]) |
| etas.append(state["eta"]) |
| state_steps.append(state["step"]) |
| |
| @_use_grad_for_differentiable |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (Callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad = [] |
| grads = [] |
| mus = [] |
| axs = [] |
| etas = [] |
| state_steps = [] |
| |
| self._init_group(group, params_with_grad, grads, mus, axs, etas, state_steps) |
| |
| asgd( |
| params_with_grad, |
| grads, |
| axs, |
| mus, |
| etas, |
| state_steps, |
| lambd=group["lambd"], |
| lr=group["lr"], |
| t0=group["t0"], |
| alpha=group["alpha"], |
| weight_decay=group["weight_decay"], |
| foreach=group["foreach"], |
| maximize=group["maximize"], |
| differentiable=group["differentiable"], |
| ) |
| |
| return loss |
| |
| |
| def asgd( |
| params: List[Tensor], |
| grads: List[Tensor], |
| axs: List[Tensor], |
| mus: List[Tensor], |
| etas: List[Tensor], |
| state_steps: List[Tensor], |
| # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 |
| # setting this as kwarg for now as functional API is compiled by torch/distributed/optim |
| foreach: bool = None, |
| maximize: bool = False, |
| differentiable: bool = False, |
| *, |
| lambd: float, |
| lr: float, |
| t0: float, |
| alpha: float, |
| weight_decay: float, |
| ): |
| r"""Functional API that performs asgd algorithm computation. |
| |
| See :class:`~torch.optim.ASGD` for details. |
| """ |
| |
| if foreach is None: |
| # Placeholder for more complex foreach logic to be added when value is not set |
| foreach = False |
| |
| if foreach and torch.jit.is_scripting(): |
| raise RuntimeError("torch.jit.script not supported with foreach optimizers") |
| |
| if foreach and not torch.jit.is_scripting(): |
| func = _multi_tensor_asgd |
| else: |
| func = _single_tensor_asgd |
| |
| func( |
| params, |
| grads, |
| axs, |
| mus, |
| etas, |
| state_steps, |
| lambd=lambd, |
| lr=lr, |
| t0=t0, |
| alpha=alpha, |
| weight_decay=weight_decay, |
| maximize=maximize, |
| differentiable=differentiable, |
| ) |
| |
| |
| def _single_tensor_asgd( |
| params: List[Tensor], |
| grads: List[Tensor], |
| axs: List[Tensor], |
| mus: List[Tensor], |
| etas: List[Tensor], |
| state_steps: List[Tensor], |
| *, |
| lambd: float, |
| lr: float, |
| t0: float, |
| alpha: float, |
| weight_decay: float, |
| maximize: bool, |
| differentiable: bool, |
| ): |
| def _to_tensor(x): |
| if not isinstance(x, torch.Tensor): |
| return torch.tensor(x) |
| return x |
| |
| for i, param in enumerate(params): |
| grad = grads[i] |
| grad = grad if not maximize else -grad |
| mu = mus[i] |
| ax = axs[i] |
| eta = etas[i] |
| step_t = state_steps[i] |
| |
| if torch.is_complex(param): |
| grad = torch.view_as_real(grad) |
| param = torch.view_as_real(param) |
| ax = torch.view_as_real(ax) |
| |
| # update step |
| step_t += 1 |
| step = _get_value(step_t) |
| |
| if weight_decay != 0: |
| grad = grad.add(param, alpha=weight_decay) |
| |
| eta_value = _get_value(eta) |
| # decay term |
| param.mul_(1 - lambd * eta_value) |
| |
| # update parameter |
| param.add_(grad, alpha=-eta_value) |
| |
| # averaging |
| if is_compiling() or mu.item() != 1: |
| ax.add_(param.sub(ax).mul(mu)) |
| else: |
| ax.copy_(param) |
| |
| new_eta = _to_tensor(lr / ((1 + lambd * lr * step) ** alpha)) |
| eta.copy_(new_eta) |
| new_mu = _to_tensor(1 / max(1, step - t0)) |
| mu.copy_(new_mu) |
| |
| |
| def _multi_tensor_asgd( |
| params: List[Tensor], |
| grads: List[Tensor], |
| axs: List[Tensor], |
| mus: List[Tensor], |
| etas: List[Tensor], |
| state_steps: List[Tensor], |
| *, |
| lambd: float, |
| lr: float, |
| t0: float, |
| alpha: float, |
| weight_decay: float, |
| maximize: bool, |
| differentiable: bool, |
| ): |
| |
| if len(params) == 0: |
| return |
| |
| assert not differentiable, "_foreach ops don't support autograd" |
| |
| if maximize: |
| grads = torch._foreach_neg(grads) |
| |
| def _view_complex_as_real(tensor_list): |
| return [ |
| torch.view_as_real(t) if torch.is_complex(t) else t for t in tensor_list |
| ] |
| |
| grads = _view_complex_as_real(grads) |
| params = _view_complex_as_real(params) |
| axs = _view_complex_as_real(axs) |
| |
| # update step |
| torch._foreach_add_(state_steps, 1) |
| |
| if weight_decay != 0: |
| grads = torch._foreach_add(grads, params, alpha=weight_decay) |
| |
| # decay term |
| eta = _get_value(etas[0]) |
| torch._foreach_mul_(params, 1 - lambd * eta) |
| |
| # update parameter |
| torch._foreach_add_(params, grads, alpha=-eta) |
| |
| # averaging |
| for i in range(len(axs)): |
| if is_compiling() or mus[i].item() != 1: |
| axs[i].add_(params[i].sub(axs[i]).mul(mus[i])) |
| else: |
| axs[i].copy_(params[i]) |
| |
| # update eta and mu |
| for i in range(len(mus)): |
| new_eta = _to_tensor( |
| lr / (1 + lambd * lr * _get_value(state_steps[i]) ** alpha) |
| ) |
| etas[i].copy_(new_eta) |
| new_mu = _to_tensor(1 / max(1, _get_value(state_steps[i]) - t0)) |
| mus[i].copy_(new_mu) |