| import argparse |
| import functools |
| import json |
| import os |
| import pathlib |
| from collections import defaultdict, namedtuple, OrderedDict |
| from dataclasses import dataclass |
| from typing import Any, Dict, List, Optional, Sequence, Set, Tuple, TypeVar, Union |
| |
| import yaml |
| from typing_extensions import Literal |
| |
| import torchgen.api.dispatcher as dispatcher |
| import torchgen.api.meta as meta |
| import torchgen.api.native as native |
| import torchgen.api.structured as structured |
| import torchgen.dest as dest |
| from torchgen.api import cpp |
| from torchgen.api.translate import translate |
| from torchgen.api.types import ( |
| Binding, |
| CppSignatureGroup, |
| DispatcherSignature, |
| NamedCType, |
| NativeSignature, |
| SpecialArgName, |
| ) |
| from torchgen.context import ( |
| method_with_native_function, |
| native_function_manager, |
| with_native_function, |
| with_native_function_and_indices, |
| ) |
| from torchgen.gen_functionalization_type import ( |
| gen_composite_view_copy_kernel, |
| gen_functionalization_definition, |
| gen_functionalization_registration, |
| gen_functionalization_view_inverse_declaration, |
| gen_symint_view_copy_kernel, |
| ) |
| from torchgen.gen_vmap_plumbing import gen_all_vmap_plumbing |
| |
| from torchgen.model import ( |
| Argument, |
| BackendIndex, |
| BackendMetadata, |
| BaseOperatorName, |
| DEFAULT_KERNEL_NAMESPACE, |
| DispatchKey, |
| FunctionSchema, |
| is_cuda_dispatch_key, |
| is_generic_dispatch_key, |
| is_ufunc_dispatch_key, |
| Location, |
| NativeFunction, |
| NativeFunctionsGroup, |
| NativeFunctionsViewGroup, |
| OperatorName, |
| OptionalType, |
| SchemaKind, |
| SelfArgument, |
| STRUCTURED_DISPATCH_KEYS, |
| TensorOptionsArguments, |
| Type, |
| Variant, |
| ViewSchemaKind, |
| ) |
| from torchgen.native_function_generation import ( |
| add_generated_native_functions, |
| gen_composite_functional_kernel, |
| gen_composite_out_kernel, |
| pre_group_native_functions, |
| ) |
| from torchgen.selective_build.selector import SelectiveBuilder |
| from torchgen.utils import ( |
| assert_never, |
| concatMap, |
| context, |
| FileManager, |
| make_file_manager, |
| mapMaybe, |
| NamespaceHelper, |
| Target, |
| YamlDumper, |
| YamlLoader, |
| ) |
| |
| T = TypeVar("T") |
| |
| # Welcome to the ATen code generator v2! The ATen code generator is |
| # responsible for parsing native_functions.yaml and then generating |
| # various generated files (e.g., TypeDefault.cpp) based on the operators |
| # defined in this file. This means that the code generator knows how to |
| # parse function schema, and then translate this into various C++ types |
| # and boilerplate code. |
| # |
| # Some things to know about this file when you modify it: |
| # |
| # - This file has STRICT mypy typechecking. Typecheck it with |
| # `mypy --config mypy-strict.ini` in the root source directory |
| # |
| # - Most of the heavy lifting lives in external modules: |
| # - 'model' has the data model for native_functions.yaml. The classes |
| # in those file represent what you see when you look at |
| # a native_functions.yaml |
| # - 'api' has conversions for how to translate JIT schema into |
| # the various C++ APIs that the codegen interacts with. There |
| # are in fact THREE different C++ APIs: the public C++ API, |
| # the dispatcher API, and the legacy dispatcher API. See each |
| # of these respective files for more information |
| |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| # |
| # HELPER FUNCTIONS |
| # |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| |
| |
| # A custom loader for YAML to let us also keep track of line numbers |
| # of each entry in the YAML file |
| class LineLoader(YamlLoader): |
| def construct_mapping(self, node, deep=False): # type: ignore[no-untyped-def] |
| mapping = super().construct_mapping(node, deep=deep) # type: ignore[no-untyped-call] |
| # Add 1 so line numbering starts at 1 |
| mapping["__line__"] = node.start_mark.line + 1 |
| return mapping |
| |
| |
| _GLOBAL_PARSE_NATIVE_YAML_CACHE = {} |
| _GLOBAL_PARSE_TAGS_YAML_CACHE = {} |
| |
| # Parse native_functions.yaml into a sequence of NativeFunctions and Backend Indices. |
| ParsedYaml = namedtuple("ParsedYaml", ["native_functions", "backend_indices"]) |
| |
| |
| def parse_native_yaml_struct( |
| es: object, |
| valid_tags: Set[str], |
| ignore_keys: Optional[Set[DispatchKey]] = None, |
| path: str = "<stdin>", |
| skip_native_fns_gen: bool = False, |
| ) -> ParsedYaml: |
| assert isinstance(es, list) |
| rs: List[NativeFunction] = [] |
| bs: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]] = defaultdict(dict) |
| for e in es: |
| assert isinstance(e.get("__line__"), int), e |
| loc = Location(path, e["__line__"]) |
| funcs = e.get("func") |
| with context(lambda: f"in {loc}:\n {funcs}"): |
| func, m = NativeFunction.from_yaml(e, loc, valid_tags, ignore_keys) |
| rs.append(func) |
| BackendIndex.grow_index(bs, m) |
| error_check_native_functions(rs) |
| # Default dict is to prevent the codegen from barfing when we have a dispatch key that has no kernels yet. |
| indices: Dict[DispatchKey, BackendIndex] = defaultdict( |
| lambda: BackendIndex( |
| dispatch_key=DispatchKey.Undefined, |
| use_out_as_primary=True, |
| external=False, |
| device_guard=False, |
| index={}, |
| ) |
| ) |
| if not skip_native_fns_gen: |
| add_generated_native_functions(rs, bs) |
| for k, v in bs.items(): |
| # All structured in-tree operators are implemented in terms of their out operator. |
| indices[k] = BackendIndex( |
| dispatch_key=k, |
| use_out_as_primary=True, |
| external=False, |
| # Only cuda-like devices in tree require device guards |
| device_guard=is_cuda_dispatch_key(k), |
| index=v, |
| ) |
| return ParsedYaml(rs, indices) |
| |
| |
| def parse_tags_yaml_struct(es: object, path: str = "<stdin>") -> Set[str]: |
| assert isinstance(es, list) |
| rs: Set[str] = set() |
| for e in es: |
| assert isinstance(e.get("__line__"), int), e |
| loc = Location(path, e["__line__"]) |
| tags = e.get("tag") |
| with context(lambda: f"in {loc}:\n {tags}"): |
| e_i = e.copy() |
| name = e_i.pop("tag") |
| desc = e_i.pop("desc", "") |
| # ensure that each tag has a non-empty description |
| assert desc != "" |
| rs.add(name) |
| return rs |
| |
| |
| @functools.lru_cache(maxsize=None) |
| def parse_tags_yaml(path: str) -> Set[str]: |
| global _GLOBAL_PARSE_TAGS_YAML_CACHE |
| if path not in _GLOBAL_PARSE_TAGS_YAML_CACHE: |
| with open(path, "r") as f: |
| es = yaml.load(f, Loader=LineLoader) |
| _GLOBAL_PARSE_TAGS_YAML_CACHE[path] = parse_tags_yaml_struct(es, path=path) |
| |
| return _GLOBAL_PARSE_TAGS_YAML_CACHE[path] |
| |
| |
| def parse_native_yaml( |
| path: str, |
| tags_yaml_path: str, |
| ignore_keys: Optional[Set[DispatchKey]] = None, |
| *, |
| skip_native_fns_gen: bool = False, |
| ) -> ParsedYaml: |
| global _GLOBAL_PARSE_NATIVE_YAML_CACHE |
| if path not in _GLOBAL_PARSE_NATIVE_YAML_CACHE: |
| valid_tags = parse_tags_yaml(tags_yaml_path) |
| with open(path, "r") as f: |
| es = yaml.load(f, Loader=LineLoader) |
| _GLOBAL_PARSE_NATIVE_YAML_CACHE[path] = parse_native_yaml_struct( |
| es, |
| valid_tags, |
| ignore_keys, |
| path=path, |
| skip_native_fns_gen=skip_native_fns_gen, |
| ) |
| |
| return _GLOBAL_PARSE_NATIVE_YAML_CACHE[path] |
| |
| |
| # Some assertions are already performed during parsing, but those are only within a single NativeFunction. |
| # Assertions here are meant to be performed across NativeFunctions. |
| def error_check_native_functions(funcs: Sequence[NativeFunction]) -> None: |
| func_map: Dict[OperatorName, NativeFunction] = {} |
| base_func_map: Dict[BaseOperatorName, List[NativeFunction]] = defaultdict(list) |
| for f in funcs: |
| func_map[f.func.name] = f |
| base_func_map[f.func.name.name].append(f) |
| for f in funcs: |
| if f.structured_delegate is not None: |
| delegate_func = func_map[f.structured_delegate] |
| assert delegate_func.structured, ( |
| f"{f.func.name} is marked as a structured_delegate pointing to " |
| f"{f.structured_delegate}, but {f.structured_delegate} is not marked as structured. " |
| f"Consider adding 'structured=True' to the delegated operator" |
| ) |
| if "inplace_view" in f.tags: |
| base_name = f.func.name.name |
| overload_name = f.func.name.overload_name |
| assert base_name.inplace, ( |
| f"{f.func.name} is marked with tag: inplace_view, but it doesn't follow the naming " |
| "convention for inplace ops - the codegen expects the base name to have a trailing underscore. " |
| ) |
| out_of_place_base_name = BaseOperatorName( |
| base_name.base, False, base_name.dunder_method |
| ) |
| assert len(base_func_map[out_of_place_base_name]) > 0, ( |
| f"{f.func.name} is marked with tag: inplace_view. The codegen expects there to be a corresponding " |
| f"out-of-place view op with the name '{base_name}' and matching schema, but it didn't find one. " |
| ) |
| |
| |
| def cpp_string(s: str) -> str: |
| """Convert a python string into a c++ string literal""" |
| s = s.replace("\\", "\\\\") |
| s = s.replace('"', '\\"') |
| s = s.replace("\a", "\\a") |
| s = s.replace("\b", "\\b") |
| s = s.replace("\f", "\\f") |
| s = s.replace("\n", "\\n") |
| s = s.replace("\v", "\\v") |
| s = s.replace("\t", "\\t") |
| return f'"{s}"' |
| |
| |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| # |
| # C++ CODE GENERATION |
| # |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| |
| # Most functions in this section are curried: they consist of a function |
| # that takes some parameters (e.g., what is to be generated) which itself |
| # returns a function that actually maps NativeFunction to the code |
| # to be generated. This pattern makes it convenient to use map, concatMap |
| # and similar functional combinators. |
| |
| |
| def static_dispatch_keys(backends: List[BackendIndex]) -> List[DispatchKey]: |
| if len(backends) == 0: |
| return [] |
| else: |
| return [backend.dispatch_key for backend in backends] + [ |
| DispatchKey.CompositeImplicitAutograd, |
| DispatchKey.CompositeExplicitAutograd, |
| DispatchKey.CompositeExplicitAutogradNonFunctional, |
| ] |
| |
| |
| def get_static_dispatch_backend( |
| f: NativeFunction, backend_index: BackendIndex |
| ) -> Optional[DispatchKey]: |
| if f.structured_delegate is not None or backend_index.has_kernel(f): |
| # TODO: for ops with structured_delegate it should check the dispatch table of |
| # the out variant instead. For now, these structured ops all have CPU/CUDA kernels |
| # so we always dispatch to the `backend`, but this could be wrong when we |
| # migrate math/default_backend ops to use structured delegate. |
| return backend_index.dispatch_key |
| elif f.has_composite_explicit_autograd_kernel: |
| return DispatchKey.CompositeExplicitAutograd |
| elif f.has_composite_explicit_autograd_non_functional_kernel: |
| return DispatchKey.CompositeExplicitAutogradNonFunctional |
| elif f.has_composite_implicit_autograd_kernel: |
| return DispatchKey.CompositeImplicitAutograd |
| return None |
| |
| |
| def static_dispatch_ops_header( |
| f: NativeFunction, backend_index: List[BackendIndex] |
| ) -> Optional[str]: |
| if backend_index is None or f.manual_kernel_registration: |
| return None |
| |
| output = [] |
| for index in backend_index: |
| dispatch_key = get_static_dispatch_backend(f, index) |
| if dispatch_key is not None: |
| output.append( |
| f"#include <ATen/ops/{f.root_name}_{dispatch_key.lower()}_dispatch.h>" |
| ) |
| return "\n".join(output) |
| |
| |
| def static_dispatch_extra_headers(backends: List[BackendIndex]) -> List[str]: |
| return [ |
| f"#include <ATen/{dispatch_key}Functions.h>" |
| for dispatch_key in static_dispatch_keys(backends) |
| ] |
| |
| |
| # Translates arguments of a native function from DispatcherSignature form to CppSignature form with support for |
| # supporting usecases even when there is a memory_format argument along with tensor_option arguments. |
| # This usecase is not covered by tools.codegen.api.translate() yet as its application is limited to static dispatch |
| def translate_args_dispatcher_to_cpp( |
| f: NativeFunction, |
| ) -> str: |
| |
| # Adds SpecialArgName.possibly_redundant_memory_format NamedCType for memory_format bindings |
| def add_spl_memory_format_binding(input_bindings: List[Binding]) -> List[Binding]: |
| output_bindings: List[Binding] = [] |
| for binding in input_bindings: |
| if binding.name == "memory_format": |
| spl_mem_format_binding = Binding( |
| nctype=NamedCType( |
| SpecialArgName.possibly_redundant_memory_format, |
| binding.nctype.type, |
| ), |
| name=binding.name, |
| default=binding.default, |
| argument=binding.argument, |
| ) |
| output_bindings.append(spl_mem_format_binding) |
| else: |
| output_bindings.append(binding) |
| return output_bindings |
| |
| disp_sig = DispatcherSignature.from_schema(f.func) |
| cpp_sig = CppSignatureGroup.from_native_function( |
| f, method=False, fallback_binding=False |
| ).signature |
| disp_bindings = disp_sig.arguments() |
| # When last argument of CPP signature has SpecialArgName.possibly_redundant_memory_format NCType, |
| # get memory_format bindings of dispatcher signature to have the same NCType as well |
| for arg in cpp_sig.arguments(): |
| if arg.nctype.name == SpecialArgName.possibly_redundant_memory_format: |
| disp_bindings = add_spl_memory_format_binding(disp_sig.arguments()) |
| break |
| exprs = translate(disp_bindings, cpp_sig.arguments()) |
| return ", ".join(a.expr for a in exprs) |
| |
| |
| def generate_static_dispatch_backend_call( |
| f: NativeFunction, |
| backend_index: BackendIndex, |
| ) -> str: |
| name = DispatcherSignature.from_schema(f.func).name() |
| exprs = translate_args_dispatcher_to_cpp(f) |
| backend_metadata = backend_index.get_kernel(f) |
| kernel_ns = ( |
| backend_metadata.cpp_namespace |
| if backend_metadata and backend_metadata.cpp_namespace |
| else DEFAULT_KERNEL_NAMESPACE |
| ) |
| ns = kernel_ns.replace("::native", "") |
| return f"return {ns}::{backend_index.dispatch_key.lower()}::{name}({exprs});" |
| |
| |
| def generate_static_dispatch_fallback_call( |
| f: NativeFunction, |
| backend_indices: List[BackendIndex], |
| ) -> str: |
| name = DispatcherSignature.from_schema(f.func).name() |
| exprs = translate_args_dispatcher_to_cpp(f) |
| ns = DEFAULT_KERNEL_NAMESPACE.replace("::native", "") |
| if f.has_composite_explicit_autograd_kernel: |
| return f"return {ns}::{DispatchKey.CompositeExplicitAutograd.lower()}::{name}({exprs});" |
| elif f.has_composite_explicit_autograd_non_functional_kernel: |
| return f"return {ns}::{DispatchKey.CompositeExplicitAutogradNonFunctional.lower()}::{name}({exprs});" |
| elif f.has_composite_implicit_autograd_kernel: |
| return f"return {ns}::{DispatchKey.CompositeImplicitAutograd.lower()}::{name}({exprs});" |
| else: |
| return f"""TORCH_CHECK(false, "Static dispatch does not support {name} for\ |
| {', '.join([str(index.dispatch_key)for index in backend_indices])} ");""" |
| |
| |
| def static_dispatch( |
| f: NativeFunction, |
| backend_indices: List[BackendIndex], |
| ) -> str: |
| if len(backend_indices) == 0 or f.manual_kernel_registration: |
| return "" |
| |
| keys = [ |
| b |
| for b in backend_indices |
| if b.has_kernel(f) |
| or ( |
| f.structured_delegate is not None |
| and b.dispatch_key in STRUCTURED_DISPATCH_KEYS |
| ) |
| ] |
| if len(keys) == 1: |
| return generate_static_dispatch_backend_call(f, keys[0]) |
| elif len(keys) == 0: |
| return generate_static_dispatch_fallback_call(f, backend_indices) |
| |
| sig = DispatcherSignature.from_schema(f.func) |
| native_tensor_args = [ |
| a.name |
| for a in sig.arguments() |
| if isinstance(a.argument, SelfArgument) |
| or isinstance(a.argument, Argument) |
| and a.argument.type.is_tensor_like() |
| ] |
| tensor_args = ", ".join(native_tensor_args) |
| tensor_opts = f.func.arguments.tensor_options |
| |
| stmts = [] |
| subexprs: List[str] = [] |
| if tensor_opts is not None: |
| subexprs.append( |
| "DispatchKeySet(c10::computeDispatchKey(dtype, layout, device))" |
| ) |
| if tensor_args != "": |
| subexprs.append(f"c10::detail::multi_dispatch_key_set({tensor_args})") |
| stmts.append(f"""DispatchKeySet _dk_set = {' | '.join(subexprs)};""") |
| stmts.append("DispatchKey _dk = c10::highestPriorityBackendTypeId(_dk_set);") |
| |
| dispatch_code = [] |
| for index in keys: |
| dispatch_code.append(f"""case DispatchKey::{index.dispatch_key}:""") |
| dispatch_code.append( |
| f"""\t{generate_static_dispatch_backend_call(f, index)};""" |
| ) |
| |
| fallback = generate_static_dispatch_fallback_call(f, backend_indices) |
| connector = "\n\t\t" |
| |
| return f""" |
| {connector.join(stmts)} |
| switch (_dk) {{ |
| {connector.join(dispatch_code)} |
| default: |
| {fallback} |
| }} |
| """ |
| |
| |
| # Generates RegisterSchema.cpp. Depending on the selector, either |
| # all schemas are registered, or only some are (in the case of |
| # selective build) |
| @dataclass(frozen=True) |
| class RegisterSchema: |
| selector: SelectiveBuilder |
| |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> Optional[str]: |
| if not self.selector.is_native_function_selected(f): |
| return None |
| tags = "{" + ", ".join([f"at::Tag::{tag}" for tag in f.tags]) + "}" |
| return f"m.def({cpp_string(str(f.func))}, {tags});\n" |
| |
| |
| # Generates Operators.h and Operators.cpp. |
| # These provide macros that, given an operator and overload name, allow users |
| # to access an "un-overloaded" function version of the operator. This |
| # is useful for extension writers who want to (1) want to decltype the operator |
| # and (2) don't want to worry about method-only operators. |
| @dataclass(frozen=True) |
| class ComputeOperators: |
| target: Union[Literal[Target.DECLARATION], Literal[Target.DEFINITION]] |
| static_dispatch_backend_indices: List[BackendIndex] |
| |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> str: |
| sig = DispatcherSignature.from_schema(f.func) |
| name = f.func.name.unambiguous_name() |
| call_method_name = "call" |
| redispatch_method_name = "redispatch" |
| |
| if self.target is Target.DECLARATION: |
| # Note [The ATen Operators API] |
| # The ATen Operators API lives in the at::_ops namespace, and contains compile-time |
| # metadata about each operator + entry points into the Dispatcher. |
| # The C++ function, method, and redispatch API's are all implemented as wrappers |
| # into various bits of the structs defined here. |
| # |
| # Important characteristics about the Operators API: |
| # (1) It follows the Dispatcher API. |
| # This is kind of necessary to avoid overhead. |
| # For example: if it followed the C++ API, then all of the faithful C++ factory functions |
| # would need to wrap their arguments into TensorOptions only to unwrap them again. |
| # (2) Overload names are disambiguated. |
| # This is helpful for pytorch extenders who would like to decltype() an aten operator, |
| # that has overloads, e.g. decltype(at::_ops::mul_Tensor::call) |
| # (3) No argument defaulting is allowed. |
| # This is more of an implementation detail to avoid #include cycles, |
| # since TensorBody.h (which defines the Tensor class) needs to include this file. |
| # (4) manual_cpp_bindings and faithful names are not included in the API. |
| # This applies to stuff like __dispatch__is_complex(), and add_outf(). |
| # These aren't "real aten ops", they're just additional functions provided by the C++ API. |
| # They're implemented as wrappers in Functions.h that call into the actual operators |
| # defined here, i.e. at::_ops::is_complex::call() and at::_ops::add_out::call(). |
| # This means that ATEN_OP(is_complex) will not fastpath, and will go through the dispatcher. |
| return f""" |
| struct TORCH_API {name} {{ |
| using schema = {sig.type()}; |
| using ptr_schema = schema*; |
| // See Note [static constexpr char* members for windows NVCC] |
| STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::{f.func.name.name}") |
| STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "{f.func.name.overload_name}") |
| STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, {cpp_string(str(f.func))}) |
| static {sig.defn(name=call_method_name, is_redispatching_fn=False)}; |
| static {sig.defn(name=redispatch_method_name, is_redispatching_fn=True)}; |
| }};""" |
| |
| elif self.target is Target.DEFINITION: |
| defns = f""" |
| STATIC_CONST_STR_OUT_OF_LINE_FOR_WIN_CUDA({name}, name, "aten::{f.func.name.name}") |
| STATIC_CONST_STR_OUT_OF_LINE_FOR_WIN_CUDA({name}, overload_name, "{f.func.name.overload_name}") |
| STATIC_CONST_STR_OUT_OF_LINE_FOR_WIN_CUDA({name}, schema_str, {cpp_string(str(f.func))}) |
| |
| // aten::{f.func} |
| static C10_NOINLINE c10::TypedOperatorHandle<{name}::schema> create_{name}_typed_handle() {{ |
| return c10::Dispatcher::singleton() |
| .findSchemaOrThrow({name}::name, {name}::overload_name) |
| .typed<{name}::schema>(); |
| }} |
| """ |
| for is_redispatching_fn in [False, True]: |
| if is_redispatching_fn: |
| dispatcher_exprs_str = ", ".join( |
| ["dispatchKeySet"] + [a.name for a in sig.arguments()] |
| ) |
| dispatcher_call = "redispatch" |
| method_name = f"{name}::{redispatch_method_name}" |
| else: |
| method_name = f"{name}::{call_method_name}" |
| dispatcher_exprs_str = ", ".join([a.name for a in sig.arguments()]) |
| dispatcher_call = "call" |
| |
| fn_body = f""" |
| static auto op = create_{name}_typed_handle(); |
| return op.{dispatcher_call}({dispatcher_exprs_str});""" |
| |
| if ( |
| not is_redispatching_fn |
| and len(self.static_dispatch_backend_indices) > 0 |
| ): |
| # call() should go through static dispatch |
| fn_body = static_dispatch( |
| f, backend_indices=self.static_dispatch_backend_indices |
| ) |
| defns += f""" |
| // aten::{f.func} |
| {sig.defn(name=method_name, is_redispatching_fn=is_redispatching_fn)} {{ |
| {fn_body} |
| }} |
| """ |
| return defns |
| else: |
| assert_never(self.target) |
| |
| |
| # Generates Functions.h, which provides the functional public C++ API, |
| # and the scaffolding to call into the dispatcher from these functions. |
| @dataclass(frozen=True) |
| class ComputeFunction: |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> Optional[str]: |
| if Variant.function not in f.variants: |
| return None |
| |
| sig_group = CppSignatureGroup.from_native_function( |
| f, method=False, fallback_binding=f.manual_cpp_binding |
| ) |
| |
| def generate_defn(faithful: bool) -> str: |
| if faithful: |
| sig = sig_group.faithful_signature |
| assert sig is not None |
| else: |
| sig = sig_group.signature |
| |
| # See Note [The ATen Operators API] |
| target_sig = DispatcherSignature.from_schema(f.func) |
| exprs = translate(sig.arguments(), target_sig.arguments()) |
| exprs_str = ", ".join([e.expr for e in exprs]) |
| |
| return f""" |
| // aten::{f.func} |
| inline {sig.decl()} {{ |
| return at::_ops::{f.func.name.unambiguous_name()}::call({exprs_str}); |
| }} |
| """ |
| |
| result = generate_defn(False) |
| if sig_group.faithful_signature is not None: |
| result += generate_defn(True) |
| |
| return result |
| |
| |
| # Generates TensorBody.h. This file provides the object-oriented (method-based) |
| # public C++ API, and the scaffolding to call into the dispatcher from these functions. |
| @dataclass(frozen=True) |
| class ComputeTensorMethod: |
| target: Union[Literal[Target.DECLARATION], Literal[Target.DEFINITION]] |
| static_dispatch_backend_indices: List[BackendIndex] |
| |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> Optional[str]: |
| if Variant.method not in f.variants: |
| return None |
| |
| assert not f.func.is_out_fn() |
| assert f.func.arguments.self_arg is not None |
| |
| sig_group = CppSignatureGroup.from_native_function( |
| f, method=True, fallback_binding=f.manual_cpp_binding |
| ) |
| |
| if self.target is Target.DECLARATION: |
| result = f"{sig_group.signature.decl()} const;\n" |
| if sig_group.faithful_signature is not None: |
| result += f"{sig_group.faithful_signature.decl()} const;\n" |
| return result |
| |
| if self.target is not Target.DEFINITION: |
| assert_never(self.target) |
| |
| def generate_defn(faithful: bool) -> str: |
| if faithful: |
| sig = sig_group.faithful_signature |
| assert sig is not None |
| else: |
| sig = sig_group.signature |
| |
| target_sig = DispatcherSignature.from_schema(f.func) |
| exprs = translate(sig.arguments(), target_sig.arguments(), method=True) |
| exprs_str = ", ".join([e.expr for e in exprs]) |
| |
| return f""" |
| // aten::{f.func} |
| inline {sig.defn(prefix="Tensor::")} const {{ |
| return at::_ops::{f.func.name.unambiguous_name()}::call({exprs_str}); |
| }} |
| """ |
| |
| result = generate_defn(faithful=False) |
| if sig_group.faithful_signature is not None: |
| result += generate_defn(faithful=True) |
| |
| return result |
| |
| |
| # Generates RedispatchFunctions.h. |
| # This is similar to the C++ API defined in Functions.h, but provides access |
| # to the dispatcher's redispatch API. |
| @dataclass(frozen=True) |
| class ComputeRedispatchFunction: |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> Optional[str]: |
| # We unconditionally generate function variants of the redispatch API. |
| # This is mainly because we can namespace functions separately, but not methods, |
| sig_group = CppSignatureGroup.from_native_function( |
| f, method=False, fallback_binding=f.manual_cpp_binding |
| ) |
| |
| def generate_defn(faithful: bool) -> str: |
| if faithful: |
| sig = sig_group.faithful_signature |
| assert sig is not None |
| else: |
| sig = sig_group.signature |
| |
| target_sig = DispatcherSignature.from_schema(f.func) |
| exprs = translate(sig.arguments(), target_sig.arguments()) |
| exprs_str = ", ".join(["dispatchKeySet"] + [a.expr for a in exprs]) |
| |
| return f""" |
| // aten::{f.func} |
| inline {sig.decl(is_redispatching_fn=True)} {{ |
| return at::_ops::{f.func.name.unambiguous_name()}::redispatch({exprs_str}); |
| }} |
| """ |
| |
| result = generate_defn(False) |
| if sig_group.faithful_signature is not None: |
| result += generate_defn(True) |
| |
| return result |
| |
| |
| # Generates ATenOpList.cpp, a runtime accessible list of all aten |
| # operators. |
| # TODO: This was historically used to help some JIT interop code |
| # figure out whether or not to treat aten namespace'd operators |
| # one way or another, we should reevaluate if this is actually needed. |
| @with_native_function |
| def compute_aten_op(f: NativeFunction) -> str: |
| return f'{{"aten::{f.func.name.name}", "{f.func.name.overload_name}"}},' |
| |
| |
| # Generates MetaFunctions.h |
| def compute_meta_function_declaration(g: NativeFunctionsGroup) -> Optional[str]: |
| if not g.structured: |
| return None |
| with native_function_manager(g.out): |
| name = meta.name(g) |
| args = structured.meta_arguments(g) |
| args_str = ", ".join(a.decl() for a in args) |
| parent_class = g.out.structured_inherits |
| if parent_class is None: |
| parent_class = "at::impl::MetaBase" |
| meta_return = "void" |
| precomputed = g.out.precomputed if g.structured else None |
| |
| if precomputed: |
| # Generate the template declaration with one bool parameter for each |
| # precomputed element. Each parameter is true if the corresponding (in |
| # terms of position) precomputed element has been set. |
| precomputed_values = [*precomputed.replace.values(), precomputed.add] |
| precomputed_elements = [ |
| elem for replace_list in precomputed_values for elem in replace_list |
| ] |
| precomputed_template_parameters = [ |
| elem.name.upper() for elem in precomputed_elements |
| ] |
| precomputed_template_params_str = ", ".join( |
| f"bool {param} = false" for param in precomputed_template_parameters |
| ) |
| precompute_template_decl = f"template <{precomputed_template_params_str}>" |
| |
| # Generate a string containing declarations of all precomputed elements. |
| precomputed_elements_with_cpp_types = [ |
| structured.argument_type(elem, binds=elem.name) |
| for elem in precomputed_elements |
| ] |
| |
| precomputed_elements_decl = ";\n".join( |
| f"{elem.cpp_type(strip_ref=True)} {elem.name}" |
| for elem in precomputed_elements_with_cpp_types |
| ) |
| |
| # Generate "setter" methods for each precomputed element. Each method will return |
| # a new instance of precompute_out with the template parameter that corresponds to |
| # the member set by the method to true (to indicate that it has been set). |
| setter_methods = [] |
| for i, elem in enumerate(precomputed_elements): |
| # Generate the signature. The return type will be the same |
| # as the type of `this` but with the template parameter |
| # corresponding to the element set by this method set to true. |
| # The assert generated below will ensure that this template |
| # parameter is false on the type of `this`. |
| return_ty_templates = ", ".join( |
| precomputed_template_parameters[:i] |
| + ["true"] |
| + precomputed_template_parameters[i + 1 :] |
| ) |
| return_ty = f"precompute_out<{return_ty_templates}>" |
| elem_cpp_ty = precomputed_elements_with_cpp_types[i].cpp_type( |
| strip_ref=True |
| ) |
| signature = f"{return_ty} set_{elem.name}({elem_cpp_ty} value)" |
| |
| # Generate an assert which checks that the |
| # template parameter corresponding to the precomputed |
| # element that is set by this method is false on the |
| # class corresponding to the object that `this` points to. |
| # This ensures that each element can be set only once. |
| assert_msg = f'"{precomputed_elements[i].name} already set"' |
| assert_stmt = f"static_assert({precomputed_template_parameters[i]} == false, {assert_msg});" |
| |
| # Generate the new object construction block. All state |
| # except the element that this method sets is copied from the |
| # object that `this` points to. The value for the element that |
| # the method sets is taken from a method parameter. |
| construction_stmts = [] |
| construction_stmts.append(f"{return_ty} ret;") |
| |
| for j, elem in enumerate(precomputed_elements): |
| if i == j: |
| construction_stmts.append(f"ret.{elem.name} = value;") |
| else: |
| construction_stmts.append( |
| f"ret.{elem.name} = this->{elem.name};" |
| ) |
| |
| construction_stmts.append("return ret;") |
| construction_block = "\n".join(construction_stmts) |
| |
| setter_methods.append( |
| f""" |
| {signature} {{ |
| {assert_stmt} |
| {construction_block} |
| }} |
| """ |
| ) |
| setter_methods_decl = "\n".join(setter_methods) |
| |
| # Meta should return an instance of the struct containing the precomputed elements. |
| meta_return_template_params = ", ".join( |
| ["true"] * len(precomputed_template_parameters) |
| ) |
| # This typedef (actually a using statement) is needed so that TORCH_META_FUNC can reuse the return |
| # type (which has a variable number of template parameters). |
| meta_return_typedef = f"using meta_return_ty = precompute_out <{meta_return_template_params}>;" |
| meta_return = "meta_return_ty" |
| precomputed_decl = f""" |
| {precompute_template_decl} |
| struct TORCH_API precompute_out {{ |
| {setter_methods_decl} |
| {precomputed_elements_decl}; |
| }};""" |
| else: |
| meta_return_typedef = "" |
| precomputed_decl = "" |
| |
| return f"""\ |
| struct TORCH_API structured_{name} : public {parent_class} {{ |
| {precomputed_decl} |
| {meta_return_typedef} |
| {meta_return} meta({args_str}); |
| }}; |
| """ |
| |
| |
| def needs_backend_select(f: NativeFunction, selector: SelectiveBuilder) -> bool: |
| name = str(f.func.name.name) |
| if name.endswith("_like") or name.startswith("new_"): |
| return False |
| if f.func.arguments.tensor_options is None: |
| return False |
| return selector.is_native_function_selected(f) |
| |
| |
| # Generates RegisterBackendSelect.cpp, a series of kernels which provide |
| # specialized computation of dispatch key for operator signatures which cannot |
| # be easily done automatically using templating. |
| @dataclass(frozen=True) |
| class ComputeBackendSelect: |
| target: Union[Literal[Target.DEFINITION], Literal[Target.REGISTRATION]] |
| |
| # Selector object to determine which operators to generate |
| # registration code for. |
| selector: SelectiveBuilder |
| |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> Optional[str]: |
| if not needs_backend_select(f, self.selector): |
| return None |
| |
| name = native.name(f.func) |
| native_sig = NativeSignature(f.func) |
| |
| native_tensor_args = [ |
| a |
| for a in native_sig.arguments() |
| if isinstance(a.argument, Argument) and a.argument.type.is_tensor_like() |
| ] |
| |
| dispatcher_sig = DispatcherSignature.from_schema(f.func) |
| |
| sig: Union[NativeSignature, DispatcherSignature] |
| sig = dispatcher_sig |
| dispatcher_exprs = dispatcher_sig.exprs() |
| dispatch_key = "c10::computeDispatchKey(dtype, layout, device)" |
| |
| if self.target is Target.DEFINITION: |
| # I don't think there's actually a good reason to generate |
| # these two cases differently |
| # The first case could probably be improved though- it calls computeDispatchKeySet(), |
| # which looks at TLS dispatch keys- there should not be any by the time we reach backend select. |
| if native_tensor_args: |
| assert f.func.arguments.has_tensor_arg() |
| tensor_args = ", ".join(a.name for a in native_tensor_args) |
| compute_dk = f"""\ |
| DispatchKeySet _dk_set = c10::DispatchKeySet({dispatch_key}) | c10::detail::multi_dispatch_key_set({tensor_args}); |
| DispatchKeySet _dk_mask = c10::DispatchKeySet(DispatchKeySet::FULL_AFTER, DispatchKey::BackendSelect); |
| DispatchKeySet _dk = c10::impl::computeDispatchKeySet(_dk_set, _dk_mask);""" |
| else: |
| assert not f.func.arguments.has_tensor_arg() |
| compute_dk = ( |
| f"DispatchKeySet _dk = c10::DispatchKeySet({dispatch_key});" |
| ) |
| return f"""\ |
| // aten::{f.func} |
| C10_ALWAYS_INLINE |
| {sig.defn(name)} {{ |
| {compute_dk} |
| return at::_ops::{f.func.name.unambiguous_name()}::redispatch( |
| _dk, {', '.join(a.expr for a in dispatcher_exprs)}); |
| }} |
| """ |
| elif self.target is Target.REGISTRATION: |
| return f"""m.impl("aten::{f.func.name}", TORCH_FN({name}));""" |
| else: |
| assert_never(self.target) |
| |
| |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| # |
| # YAML CODE GENERATION |
| # |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| |
| |
| def format_yaml(data: object) -> str: |
| # Ignore alias in Dumper |
| YamlDumper.ignore_aliases = lambda self, data: True # type: ignore[assignment] |
| |
| # Support serializing OrderedDict |
| def dict_representer(dumper: Any, data: Any) -> Any: |
| return dumper.represent_dict(data.items()) |
| |
| YamlDumper.add_representer(OrderedDict, dict_representer) # type: ignore[no-untyped-call] |
| # Some yaml parsers (e.g. Haskell's) don't understand line breaks. |
| # width=1e9 turns off optional line breaks and improves |
| # the portability of the outputted yaml. |
| return yaml.dump(data, default_flow_style=False, Dumper=YamlDumper, width=1e9) # type: ignore[no-any-return, call-overload] |
| |
| |
| # For some reason, some defaults we write to YAML are written as native |
| # YAML objects, rather than doing them uniformly as strings. This |
| # function detects those cases and converts them into native Python |
| # objects. |
| def pythonify_default(s: str) -> object: |
| if s == "true": |
| return True |
| elif s == "false": |
| return False |
| |
| try: |
| return int(s) |
| except ValueError: |
| try: |
| return float(s) |
| except ValueError: |
| return s |
| |
| |
| # What is a dynamic type? Over time, the semantic meaning of |
| # dynamic type has degraded to meaninglessness (in the old days, |
| # it captured dtype-ness of types, but that has gone away with |
| # the removal of TH). These days, it's mostly the same thing as |
| # the C++ API argument type, except that Tensor and Tensor? |
| # arguments simply present as Tensor. |
| # |
| # TODO: Get rid of dynamic_type, after getting tools/autograd |
| # to use the new codegen framework |
| def dynamic_type(t: Type) -> str: |
| if isinstance(t, OptionalType): |
| return dynamic_type(t.elem) |
| # Note we don't use t.is_tensor_like() here because it would |
| # also include Tensor[] |
| if str(t) == "Tensor": |
| return "at::Tensor" |
| return cpp.argumenttype_type(t, mutable=False, binds="__placeholder__").cpp_type() |
| |
| |
| def compute_method_of_yaml(variants: Set[Variant]) -> List[str]: |
| # This is written out explicitly to ensure that Tensor and |
| # namespace are put into the list in the right order |
| method_of = ["Type"] |
| if Variant.method in variants: |
| method_of.append("Tensor") |
| if Variant.function in variants: |
| method_of.append("namespace") |
| return method_of |
| |
| |
| def compute_returns_yaml( |
| f: NativeFunction, |
| ) -> Tuple[List[Dict[str, str]], Dict[str, str]]: |
| # Note [name and field_name] |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # To understand name_to_field_name, we must first talk about this |
| # schema: |
| # |
| # lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR) |
| # |
| # There is something very odd about this schema: it is an out |
| # variant of the function (that is to say, it will convert into |
| # at::lstsq_out() in the C++ API), but the names of the output |
| # return arguments don't match the keyword argument names of |
| # the inputs. It TURNS OUT that in this situation, the historical |
| # Declarations.yaml we want to output is this (abbreviated to |
| # only show relevant fields): |
| # |
| # arguments: |
| # ... |
| # - field_name: solution |
| # name: X |
| # - field_name: QR |
| # name: qr |
| # ... |
| # |
| # returns: |
| # - field_name: solution |
| # name: X |
| # - field_name: QR |
| # name: qr |
| # |
| # The name of the return fields is stored in 'field_name', and the |
| # name of the arguments is stored in 'name'. So when we process |
| # arguments, we need a way to get at the corresponding return. At |
| # the moment, this is most conveniently done by constructing a |
| # mapping from name (the argument concept) to field_name (the |
| # return concept) while processing return arguments, since we don't |
| # directly maintain this correspondence in the modeling of function |
| # schema itself. |
| # |
| # See also https://github.com/pytorch/pytorch/issues/43114 |
| name_to_field_name: Dict[str, str] = {} |
| |
| # Compute the returns field of the YAML entry |
| names = cpp.return_names(f) |
| returns = [] |
| for i, (r, name) in enumerate(zip(f.func.returns, names)): |
| ret = { |
| "dynamic_type": dynamic_type(r.type), |
| "name": name, |
| "type": cpp.return_type(r).cpp_type(), |
| } |
| |
| if r.name: |
| # See Note [name and field_name] |
| ret["field_name"] = r.name |
| if f.func.is_out_fn(): |
| name_to_field_name[f.func.arguments.out[i].name] = r.name |
| |
| returns.append(ret) |
| |
| return returns, name_to_field_name |
| |
| |
| # arguments in yaml roughly corresponds to the public C++ API |
| def compute_cpp_argument_yaml( |
| cpp_a: Binding, |
| *, |
| schema_order: bool, |
| kwarg_only_set: Set[str], |
| out_arg_set: Set[str], |
| name_to_field_name: Dict[str, str], |
| ) -> object: |
| if isinstance(cpp_a.argument, TensorOptionsArguments): |
| arg: Dict[str, object] = { |
| "annotation": None, |
| "dynamic_type": "at::TensorOptions", |
| "is_nullable": False, |
| "name": cpp_a.name, |
| "type": cpp_a.type, |
| "kwarg_only": True, |
| } |
| if cpp_a.default is not None: |
| arg["default"] = cpp_a.default |
| return arg |
| elif isinstance(cpp_a.argument, SelfArgument): |
| raise AssertionError() |
| elif isinstance(cpp_a.argument, Argument): |
| return compute_argument_yaml( |
| cpp_a.argument, |
| schema_order=schema_order, |
| kwarg_only_set=kwarg_only_set, |
| out_arg_set=out_arg_set, |
| name_to_field_name=name_to_field_name, |
| ) |
| |
| |
| def compute_argument_yaml( |
| a: Argument, |
| *, |
| schema_order: bool, |
| kwarg_only_set: Set[str], |
| out_arg_set: Set[str], |
| name_to_field_name: Dict[str, str], |
| ) -> object: |
| arg: Dict[str, object] = { |
| "annotation": str(a.annotation) if a.annotation else None, |
| "dynamic_type": dynamic_type(a.type), |
| "is_nullable": a.type.is_nullable(), |
| "name": a.name, |
| "type": cpp.argument_type(a, binds="__placeholder__").cpp_type(), |
| } |
| if a.default is not None: |
| arg["default"] = pythonify_default(cpp.default_expr(a.default, a.type)) |
| if a.name in kwarg_only_set: |
| arg["kwarg_only"] = True |
| if a.name in out_arg_set: |
| arg["output"] = True |
| arg["allocate"] = True |
| # See Note [name and field_name] |
| if a.name in name_to_field_name: |
| arg["field_name"] = name_to_field_name[a.name] |
| # Historically, booleans don't get their size recorded, because it |
| # is already built into the cpp type (e.g., std::array<bool, 4>) |
| l = a.type.is_list_like() |
| if l is not None and l.size is not None and str(l.elem) != "bool": |
| arg["size"] = l.size |
| return arg |
| |
| |
| @with_native_function |
| def compute_declaration_yaml(f: NativeFunction) -> object: |
| returns, name_to_field_name = compute_returns_yaml(f) |
| |
| # These sets are used to conveniently test if an argument is a |
| # kwarg-only or out argument |
| kwarg_only_set = set(a.name for a in f.func.arguments.flat_kwarg_only) |
| out_arg_set = set(a.name for a in f.func.arguments.out) |
| |
| sig_group = CppSignatureGroup.from_native_function( |
| f, method=False, fallback_binding=False |
| ) |
| cpp_args = sig_group.signature.arguments() |
| arguments = [ |
| compute_cpp_argument_yaml( |
| cpp_a, |
| schema_order=False, |
| kwarg_only_set=kwarg_only_set, |
| out_arg_set=out_arg_set, |
| name_to_field_name=name_to_field_name, |
| ) |
| for cpp_a in cpp_args |
| ] |
| |
| schema_order_jit_arguments = list(f.func.schema_order_arguments()) |
| |
| schema_order_arguments = [ |
| compute_argument_yaml( |
| a, |
| schema_order=True, |
| kwarg_only_set=kwarg_only_set, |
| out_arg_set=out_arg_set, |
| name_to_field_name=name_to_field_name, |
| ) |
| for a in schema_order_jit_arguments |
| ] |
| |
| cpp_schema_order_types = [ |
| # NB: method here doesn't matter |
| r.type |
| for a in schema_order_jit_arguments |
| for r in cpp.argument( |
| a, |
| method=False, |
| cpp_no_default_args=set(), |
| faithful=False, |
| has_tensor_options=False, |
| ) |
| ] |
| |
| cpp_returns = cpp.returns_type(f.func.returns).cpp_type() |
| schema_order_cpp_signature = f"{cpp_returns} ({', '.join(cpp_schema_order_types)})" |
| |
| is_factory_method = ( |
| any(isinstance(a.argument, TensorOptionsArguments) for a in cpp_args) |
| and Variant.method not in f.variants |
| ) |
| |
| return OrderedDict( |
| [ |
| ("name", cpp.name(f.func)), |
| ("operator_name", str(f.func.name.name)), |
| ("overload_name", str(f.func.name.overload_name)), |
| ("manual_kernel_registration", f.manual_kernel_registration), |
| ( |
| "category_override", |
| f.category_override if f.category_override is not None else "", |
| ), |
| ("schema_string", f"aten::{f.func}"), |
| ("arguments", arguments), |
| ("schema_order_cpp_signature", schema_order_cpp_signature), |
| ("schema_order_arguments", schema_order_arguments), |
| ("method_of", compute_method_of_yaml(f.variants)), |
| ("mode", "native"), |
| ("python_module", "" if f.python_module is None else f.python_module), |
| ("returns", returns), |
| ("inplace", f.func.name.name.inplace), |
| ("is_factory_method", is_factory_method), |
| ("abstract", f.is_abstract), |
| ("device_guard", f.device_guard), |
| ("with_gil", False), |
| ("deprecated", False), |
| ("has_math_kernel", f.has_composite_implicit_autograd_kernel), |
| ] |
| ) |
| |
| |
| # See Note [Auto generated composite kernels] |
| def has_autogenerated_composite_kernel(f: NativeFunction) -> bool: |
| return (f.structured or f.structured_delegate is not None) and ( |
| f.func.kind() == SchemaKind.functional or f.func.kind() == SchemaKind.inplace |
| ) |
| |
| |
| @with_native_function_and_indices |
| def compute_registration_declarations( |
| f: NativeFunction, backend_indices: Dict[DispatchKey, BackendIndex] |
| ) -> str: |
| name = dispatcher.name(f.func) |
| returns_type = dispatcher.returns_type( |
| f.func.returns |
| ).cpp_type_registration_declarations() |
| args = dispatcher.arguments(f.func) |
| args_str = ", ".join(a.no_default().decl_registration_declarations() for a in args) |
| comment_data: Dict[str, str] = { |
| "schema": f"aten::{f.func}", |
| # TODO: What exactly is the semantics of the 'dispatch' field? |
| "dispatch": str( |
| {k for k, v in backend_indices.items() if v.has_kernel(f)} |
| != {DispatchKey.CompositeImplicitAutograd} |
| ), |
| "default": str(f.has_composite_kernel or has_autogenerated_composite_kernel(f)), |
| } |
| return f"""{returns_type} {name}({args_str}); // {json.dumps(comment_data)} |
| """ |
| |
| |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| # |
| # RUN IT ALL |
| # |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # |
| |
| |
| def get_custom_build_selector( |
| provided_op_registration_allowlist: Optional[List[str]], |
| op_selection_yaml_path: Optional[str], |
| ) -> SelectiveBuilder: |
| assert not ( |
| provided_op_registration_allowlist is not None |
| and op_selection_yaml_path is not None |
| ), ( |
| "Both provided_op_registration_allowlist and " |
| + "op_selection_yaml_path can NOT be provided at the " |
| + "same time." |
| ) |
| |
| op_registration_allowlist: Optional[Set[str]] = None |
| if provided_op_registration_allowlist is not None: |
| op_registration_allowlist = set(provided_op_registration_allowlist) |
| |
| if op_registration_allowlist is not None: |
| selector = SelectiveBuilder.from_legacy_op_registration_allow_list( |
| op_registration_allowlist, |
| True, |
| False, |
| ) |
| elif op_selection_yaml_path is not None: |
| selector = SelectiveBuilder.from_yaml_path(op_selection_yaml_path) |
| else: |
| selector = SelectiveBuilder.get_nop_selector() |
| |
| return selector |
| |
| |
| def get_grouped_by_view_native_functions( |
| native_functions: Sequence[NativeFunction], |
| ) -> Sequence[Union[NativeFunction, NativeFunctionsViewGroup]]: |
| def maybe_create_view_group( |
| d: Dict[Union[ViewSchemaKind, SchemaKind], NativeFunction] |
| ) -> List[Union[NativeFunction, NativeFunctionsViewGroup]]: |
| funcs: List[Union[NativeFunction, NativeFunctionsViewGroup]] = [] |
| if ViewSchemaKind.aliasing in d: |
| view = d.pop(ViewSchemaKind.aliasing) |
| view_inplace = d.pop(ViewSchemaKind.aliasing_inplace, None) |
| view_copy = d.pop(SchemaKind.functional, None) |
| |
| funcs.append( |
| NativeFunctionsViewGroup( |
| view=view, |
| view_copy=view_copy, |
| view_inplace=view_inplace, |
| ) |
| ) |
| # Take the remaining functions that weren't part of the view group |
| # and emit them separately |
| for func in d.values(): |
| funcs.append(func) |
| return funcs |
| |
| grouped_by_views: Dict[ |
| FunctionSchema, Dict[Union[SchemaKind, ViewSchemaKind], NativeFunction] |
| ] = defaultdict(dict) |
| for f in native_functions: |
| schema = f.func.view_signature() |
| view_kind: ViewSchemaKind = f.view_schema_kind |
| # We need to group up ops relevant to the same "view", consisting of: |
| # view op (ViewSchemaKind.aliasing) |
| # view_inplace op (ViewSchemaKind.aliasing_inplace) |
| # view_copy op (SchemaKind.functional) |
| if view_kind == ViewSchemaKind.non_aliasing: |
| kind = f.func.kind() |
| assert kind not in grouped_by_views[schema] |
| grouped_by_views[schema][kind] = f |
| else: |
| assert view_kind not in grouped_by_views[schema] |
| grouped_by_views[schema][view_kind] = f |
| |
| return list(concatMap(maybe_create_view_group, grouped_by_views.values())) |
| |
| |
| def get_grouped_native_functions( |
| native_functions: Sequence[NativeFunction], |
| ) -> Sequence[Union[NativeFunction, NativeFunctionsGroup]]: |
| def flatten_pre_group( |
| d: Dict[SchemaKind, NativeFunction] |
| ) -> Sequence[Union[NativeFunction, NativeFunctionsGroup]]: |
| r = NativeFunctionsGroup.from_dict(d) |
| if r is None: |
| # Invariant: any NativeFunctions that are code-generated |
| # should have been grouped into NativeFunctionsGroup objects |
| assert not any("generated" in f.tags for f in d.values()) |
| return list(d.values()) |
| else: |
| return [r] |
| |
| # TODO: how come ValuesView isn't a Sequence lol |
| pre_grouped_native_functions = pre_group_native_functions(native_functions) |
| return list( |
| concatMap(flatten_pre_group, list(pre_grouped_native_functions.values())) |
| ) |
| |
| |
| # Return native function declarations grouped by their namespaces. |
| def get_native_function_declarations( |
| *, |
| grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], |
| backend_indices: Dict[DispatchKey, BackendIndex], |
| ) -> List[str]: |
| declarations: List[str] = [] |
| ns_grouped_kernels: Dict[str, List[str]] = defaultdict(list) |
| newline = "\n" |
| for f in grouped_native_functions: |
| native_function_namespaces = set() |
| for backend_idx in backend_indices.values(): |
| backend_metadata = backend_idx.get_kernel(f) |
| namespace = ( |
| backend_metadata.cpp_namespace |
| if backend_metadata |
| else DEFAULT_KERNEL_NAMESPACE |
| ) |
| native_function_namespaces.add(namespace) |
| assert ( |
| len(native_function_namespaces) == 1 |
| ), "Codegen only supports one namespace per operator." |
| ns_grouped_kernels[namespace].extend( |
| dest.compute_native_function_declaration(f, backend_idx) |
| ) |
| |
| for namespace, kernels in ns_grouped_kernels.items(): |
| ns_helper = NamespaceHelper( |
| namespace_str=namespace, |
| entity_name="", |
| max_level=3, |
| ) |
| # Convert to a set first to remove duplicate kernel names. Backends are |
| # allowed to repeat kernel names; only generate the declaration once! |
| ordered_kernels = list(OrderedDict.fromkeys(kernels)) |
| declarations.extend( |
| f""" |
| {ns_helper.prologue} |
| {newline.join(ordered_kernels)} |
| {ns_helper.epilogue} |
| """.split( |
| newline |
| ) |
| ) |
| return declarations |
| |
| |
| # Return native function schema registration code for aten and other namespaces. |
| def get_native_function_schema_registrations( |
| *, |
| native_functions: Sequence[NativeFunction], |
| schema_selector: SelectiveBuilder, |
| ) -> Tuple[List[str], str]: |
| ns_native_functions: Dict[str, List[NativeFunction]] = defaultdict(list) |
| for native_function in native_functions: |
| ns_native_functions[native_function.namespace].append(native_function) |
| schema_registrations = "" |
| aten_schema_registrations = [] |
| custom_namespace = None |
| for namespace, funcs in ns_native_functions.items(): |
| |
| schema_registrations_body = list( |
| mapMaybe(RegisterSchema(schema_selector), funcs) |
| ) |
| # NB: we have to separate aten namespace registration from other namespaces, |
| # because in the template we hardcoded an operator for ATen already. |
| if namespace == "aten": |
| aten_schema_registrations = schema_registrations_body |
| else: |
| assert custom_namespace is None or namespace == custom_namespace, ( |
| "Only one custom namespace (other than 'aten') is currently supported, " |
| f" but getting {namespace} and {custom_namespace}" |
| ) |
| custom_namespace = namespace |
| tab = "\t" |
| schema_registrations += f""" |
| TORCH_LIBRARY({custom_namespace}, m) {{ |
| {tab.join(schema_registrations_body)} |
| }};""" |
| return (aten_schema_registrations, schema_registrations) |
| |
| |
| def gen_aggregated_headers( |
| *, |
| native_functions: Sequence[NativeFunction], |
| grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], |
| structured_native_functions: Sequence[NativeFunctionsGroup], |
| static_dispatch_idx: List[BackendIndex], |
| selector: SelectiveBuilder, |
| backend_indices: Dict[DispatchKey, BackendIndex], |
| cpu_fm: FileManager, |
| cuda_fm: FileManager, |
| functions_keys: Set[DispatchKey], |
| dispatch_keys: Sequence[DispatchKey], |
| rocm: bool, |
| ) -> None: |
| # Buck doesn't support dynamic output files, so we aggregate all operator |
| # headers into a single file |
| cpu_fm.write( |
| "NativeMetaFunctions.h", |
| lambda: { |
| "NativeMetaFunctions_includes": [], |
| "NativeMetaFunctions_declarations": list( |
| mapMaybe(compute_meta_function_declaration, structured_native_functions) |
| ), |
| }, |
| ) |
| method_native_functions = [ |
| fn for fn in native_functions if Variant.method in fn.variants |
| ] |
| non_method_native_functions = [ |
| fn for fn in native_functions if fn not in method_native_functions |
| ] |
| cpu_fm.write( |
| "MethodOperators.h", |
| lambda: { |
| "MethodOperators_includes": [], |
| "MethodOperators_declarations": list( |
| mapMaybe( |
| ComputeOperators( |
| Target.DECLARATION, |
| static_dispatch_backend_indices=static_dispatch_idx, |
| ), |
| method_native_functions, |
| ) |
| ), |
| }, |
| ) |
| cpu_fm.write( |
| "Operators.h", |
| lambda: { |
| "Operators_includes": ["#include <ATen/MethodOperators.h>"], |
| "Operators_declarations": list( |
| mapMaybe( |
| ComputeOperators( |
| Target.DECLARATION, |
| static_dispatch_backend_indices=static_dispatch_idx, |
| ), |
| non_method_native_functions, |
| ) |
| ), |
| }, |
| ) |
| cpu_fm.write( |
| "Functions.h", |
| lambda: { |
| "static_dispatch_extra_headers": static_dispatch_extra_headers( |
| static_dispatch_idx |
| ), |
| "Functions_includes": ["#include <ATen/Operators.h>"], |
| "Functions_declarations": list( |
| mapMaybe( |
| ComputeFunction(), |
| native_functions, |
| ) |
| ), |
| }, |
| ) |
| declarations = get_native_function_declarations( |
| grouped_native_functions=grouped_native_functions, |
| backend_indices=backend_indices, |
| ) |
| cpu_fm.write( |
| "NativeFunctions.h", |
| lambda: { |
| "NativeFunctions_includes": ["#include <ATen/NativeMetaFunctions.h>"], |
| "NativeFunctions_declarations": declarations, |
| }, |
| ) |
| |
| for dispatch_key in dispatch_keys: |
| fm = cuda_fm if is_cuda_dispatch_key(dispatch_key) else cpu_fm |
| if dispatch_key in functions_keys: |
| inl_headers = f"#include <ATen/{dispatch_key}Functions_inl.h>" |
| |
| fm.write_with_template( |
| f"{dispatch_key}Functions.h", |
| "DispatchKeyFunctions.h", |
| lambda: { |
| "dispatch_key": str(dispatch_key), |
| "inline_headers": inl_headers, |
| }, |
| ) |
| fm.write_with_template( |
| f"{dispatch_key}Functions_inl.h", |
| "DispatchKeyFunctions_inl.h", |
| lambda: { |
| "DispatchKeyFunctions_inl_includes": [], |
| "dispatch_namespace": dispatch_key.lower(), |
| "dispatch_namespaced_declarations": list( |
| concatMap( |
| dest.RegisterDispatchKey( |
| backend_indices[dispatch_key], |
| Target.NAMESPACED_DECLARATION, |
| selector, |
| rocm=rocm, |
| class_method_name=None, |
| skip_dispatcher_op_registration=False, |
| ), |
| grouped_native_functions, |
| ) |
| ), |
| }, |
| ) |
| |
| del fm |
| |
| |
| def gen_per_operator_headers( |
| *, |
| native_functions: Sequence[NativeFunction], |
| grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], |
| static_dispatch_idx: List[BackendIndex], |
| selector: SelectiveBuilder, |
| backend_indices: Dict[DispatchKey, BackendIndex], |
| cpu_fm: FileManager, |
| cuda_fm: FileManager, |
| ops_fm: FileManager, |
| functions_keys: Set[DispatchKey], |
| dispatch_keys: Sequence[DispatchKey], |
| rocm: bool, |
| ) -> None: |
| # For CMake builds, split operator declarations into separate headers in |
| # the ATen/ops folder to split up header dependencies |
| functions_by_root_name: Dict[str, List[NativeFunction]] = defaultdict(lambda: []) |
| for fn in native_functions: |
| functions_by_root_name[fn.root_name].append(fn) |
| |
| grouped_functions_by_root_name: Dict[ |
| str, List[Union[NativeFunction, NativeFunctionsGroup]] |
| ] = defaultdict(lambda: []) |
| for group in grouped_native_functions: |
| name = group.root_name |
| grouped_functions_by_root_name[name].append(group) |
| |
| for name, functions in functions_by_root_name.items(): |
| ops_fm.write_with_template( |
| f"{name}_ops.h", |
| "Operator.h", |
| lambda: { |
| "declarations": list( |
| mapMaybe( |
| ComputeOperators( |
| Target.DECLARATION, |
| static_dispatch_backend_indices=static_dispatch_idx, |
| ), |
| functions, |
| ) |
| ), |
| }, |
| ) |
| |
| ops_fm.write_with_template( |
| f"{name}.h", |
| "Function.h", |
| lambda: { |
| "static_dispatch_ops_headers": list( |
| mapMaybe( |
| lambda fn: static_dispatch_ops_header( |
| fn, backend_index=static_dispatch_idx |
| ), |
| functions, |
| ) |
| ), |
| "operator_includes": f"#include <ATen/ops/{name}_ops.h>", |
| "function_definitions": list( |
| mapMaybe( |
| ComputeFunction(), |
| functions, |
| ) |
| ), |
| }, |
| ) |
| |
| grouped_functions = grouped_functions_by_root_name.get(name, []) |
| structured_functions = [ |
| fn |
| for fn in grouped_functions |
| if isinstance(fn, NativeFunctionsGroup) and fn.structured |
| ] |
| is_structured = len(structured_functions) > 0 |
| |
| if is_structured: |
| ops_fm.write_with_template( |
| f"{name}_meta.h", |
| "NativeMetaFunction.h", |
| lambda: { |
| "meta_function_declarations": list( |
| mapMaybe( |
| compute_meta_function_declaration, structured_functions |
| ) |
| ), |
| }, |
| ) |
| declarations = get_native_function_declarations( |
| grouped_native_functions=grouped_functions, backend_indices=backend_indices |
| ) |
| ops_fm.write_with_template( |
| f"{name}_native.h", |
| "NativeFunction.h", |
| lambda: { |
| "extra_includes": ( |
| f"#include <ATen/ops/{name}_meta.h>" if is_structured else [] |
| ), |
| "native_function_declarations": declarations, |
| }, |
| ) |
| |
| for category, suffix in [ |
| ("Functions", ""), |
| ("Operators", "_ops"), |
| ("NativeMetaFunctions", "_meta"), |
| ("NativeFunctions", "_native"), |
| ]: |
| cpu_fm.write( |
| f"{category}.h", |
| lambda: { |
| f"{category}_includes": [ |
| f"#include <ATen/ops/{name}{suffix}.h>" |
| for name in sorted(functions_by_root_name.keys()) |
| ], |
| f"{category}_declarations": [], |
| }, |
| ) |
| |
| for dispatch_key in dispatch_keys: |
| if dispatch_key not in functions_keys: |
| continue |
| |
| dispatch_namespace = dispatch_key.lower() |
| dispatch_names = [] |
| |
| for name, functions in functions_by_root_name.items(): |
| grouped_functions = grouped_functions_by_root_name.get(name, []) |
| declarations = list( |
| concatMap( |
| dest.RegisterDispatchKey( |
| backend_indices[dispatch_key], |
| Target.NAMESPACED_DECLARATION, |
| selector, |
| rocm=rocm, |
| class_method_name=None, |
| skip_dispatcher_op_registration=False, |
| ), |
| grouped_functions, |
| ) |
| ) |
| |
| if len(declarations) == 0: |
| continue |
| |
| dispatch_names.append(name) |
| ops_fm.write_with_template( |
| f"{name}_{dispatch_namespace}_dispatch.h", |
| "DispatchKeyFunction.h", |
| lambda: { |
| "dispatch_namespace": dispatch_namespace, |
| "dispatch_namespaced_declarations": declarations, |
| }, |
| ) |
| |
| fm = cuda_fm if is_cuda_dispatch_key(dispatch_key) else cpu_fm |
| inl_headers = f"#include <ATen/{dispatch_key}Functions_inl.h>" |
| |
| fm.write_with_template( |
| f"{dispatch_key}Functions.h", |
| "DispatchKeyFunctions.h", |
| lambda: { |
| "dispatch_key": str(dispatch_key), |
| "inline_headers": inl_headers, |
| }, |
| ) |
| fm.write_with_template( |
| f"{dispatch_key}Functions_inl.h", |
| "DispatchKeyFunctions_inl.h", |
| lambda: { |
| "dispatch_namespace": dispatch_namespace, |
| "DispatchKeyFunctions_inl_includes": [ |
| f"#include <ATen/ops/{name}_{dispatch_namespace}_dispatch.h>" |
| for name in sorted(dispatch_names) |
| ], |
| "dispatch_namespaced_declarations": [], |
| }, |
| ) |
| del fm |
| |
| cpu_fm.write( |
| "MethodOperators.h", |
| lambda: { |
| "MethodOperators_includes": sorted( |
| f"#include <ATen/ops/{name}_ops.h>" |
| for name, functions in functions_by_root_name.items() |
| if any(Variant.method in fn.variants for fn in functions) |
| ), |
| "MethodOperators_declarations": [], |
| }, |
| ) |
| |
| |
| def gen_headers( |
| *, |
| native_functions: Sequence[NativeFunction], |
| valid_tags: Set[str], |
| grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], |
| structured_native_functions: Sequence[NativeFunctionsGroup], |
| static_dispatch_idx: List[BackendIndex], |
| selector: SelectiveBuilder, |
| backend_indices: Dict[DispatchKey, BackendIndex], |
| core_fm: FileManager, |
| cpu_fm: FileManager, |
| cuda_fm: FileManager, |
| ops_fm: FileManager, |
| dispatch_keys: Sequence[DispatchKey], |
| functions_keys: Set[DispatchKey], |
| rocm: bool, |
| per_operator_headers: bool, |
| ) -> None: |
| if per_operator_headers: |
| gen_per_operator_headers( |
| native_functions=native_functions, |
| grouped_native_functions=grouped_native_functions, |
| static_dispatch_idx=static_dispatch_idx, |
| selector=selector, |
| backend_indices=backend_indices, |
| cpu_fm=cpu_fm, |
| cuda_fm=cuda_fm, |
| ops_fm=ops_fm, |
| dispatch_keys=dispatch_keys, |
| functions_keys=functions_keys, |
| rocm=rocm, |
| ) |
| else: |
| gen_aggregated_headers( |
| native_functions=native_functions, |
| grouped_native_functions=grouped_native_functions, |
| structured_native_functions=structured_native_functions, |
| static_dispatch_idx=static_dispatch_idx, |
| selector=selector, |
| backend_indices=backend_indices, |
| cpu_fm=cpu_fm, |
| cuda_fm=cuda_fm, |
| dispatch_keys=dispatch_keys, |
| functions_keys=functions_keys, |
| rocm=rocm, |
| ) |
| |
| core_fm.write( |
| "TensorBody.h", |
| lambda: { |
| "tensor_method_declarations": list( |
| mapMaybe( |
| ComputeTensorMethod( |
| target=Target.DECLARATION, |
| static_dispatch_backend_indices=static_dispatch_idx, |
| ), |
| native_functions, |
| ) |
| ), |
| "tensor_method_definitions": list( |
| mapMaybe( |
| ComputeTensorMethod( |
| target=Target.DEFINITION, |
| static_dispatch_backend_indices=static_dispatch_idx, |
| ), |
| native_functions, |
| ) |
| ), |
| }, |
| ) |
| |
| cpu_fm.write( |
| "RedispatchFunctions.h", |
| lambda: { |
| "function_redispatch_definitions": list( |
| mapMaybe(ComputeRedispatchFunction(), native_functions) |
| ), |
| }, |
| ) |
| |
| cpu_fm.write( |
| "RegistrationDeclarations.h", |
| lambda: { |
| "registration_declarations": [ |
| compute_registration_declarations(f, backend_indices) |
| for f in native_functions |
| ], |
| }, |
| ) |
| |
| cpu_fm.write( |
| "VmapGeneratedPlumbing.h", lambda: gen_all_vmap_plumbing(native_functions) |
| ) |
| |
| def gen_aten_interned_strings() -> Dict[str, str]: |
| attrs = set() # All function argument names |
| names = set() # All ATen function names |
| for func in native_functions: |
| names.add(str(func.func.name.name)) |
| # Some operators don't have a functional variant but we still create a |
| # symbol without the underscore |
| names.add(func.func.name.name.base) |
| |
| for arg in func.func.schema_order_arguments(): |
| attrs.add(arg.name) |
| |
| # These are keywords in C++, so aren't valid symbol names |
| # https://en.cppreference.com/w/cpp/language/operator_alternative |
| names -= set( |
| [ |
| "and", |
| "and_eq", |
| "bitand", |
| "bitor", |
| "compl", |
| "not", |
| "not_eq", |
| "or", |
| "or_eq", |
| "xor", |
| "xor_eq", |
| ] |
| ) |
| |
| return { |
| "aten_symbols": " \\\n".join( |
| [f"_(aten, {name})" for name in sorted(names)] |
| ), |
| "attr_symbols": " \\\n".join( |
| [f"_(attr, {name})" for name in sorted(attrs)] |
| ), |
| } |
| |
| core_fm.write("aten_interned_strings.h", gen_aten_interned_strings) |
| |
| def gen_tags_enum() -> Dict[str, str]: |
| return {"enum_of_valid_tags": (",\n".join([f"{tag}" for tag in valid_tags]))} |
| |
| core_fm.write("enum_tag.h", gen_tags_enum) |
| |
| |
| def gen_source_files( |
| *, |
| native_functions: Sequence[NativeFunction], |
| grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], |
| structured_native_functions: Sequence[NativeFunctionsGroup], |
| view_groups: Sequence[NativeFunctionsViewGroup], |
| selector: SelectiveBuilder, |
| static_dispatch_idx: List[BackendIndex], |
| backend_indices: Dict[DispatchKey, BackendIndex], |
| core_fm: FileManager, |
| cpu_fm: FileManager, |
| cpu_vec_fm: FileManager, |
| cuda_fm: FileManager, |
| dispatch_keys: Sequence[DispatchKey], |
| functions_keys: Set[DispatchKey], |
| rocm: bool, |
| force_schema_registration: bool, |
| per_operator_headers: bool, |
| skip_dispatcher_op_registration: bool, |
| ) -> None: |
| extra_cuda_headers = """\ |
| #include <c10/cuda/CUDAGuard.h> |
| #include <ATen/cuda/ATenCUDAGeneral.h> |
| #include <ATen/cuda/CUDADevice.h> |
| #include <ATen/cuda/CUDAContext.h>""" |
| if rocm: |
| extra_cuda_headers = """\ |
| #include <ATen/hip/impl/HIPGuardImplMasqueradingAsCUDA.h> |
| #include <ATen/hip/ATenHIPGeneral.h> |
| #include <ATen/hip/HIPDevice.h> |
| #include <ATen/hip/HIPContext.h>""" |
| |
| for dispatch_key in dispatch_keys: |
| fm = cuda_fm if is_cuda_dispatch_key(dispatch_key) else cpu_fm |
| |
| if per_operator_headers: |
| |
| def operator_headers() -> List[str]: |
| headers = [] |
| for g in grouped_native_functions: |
| is_registered = False |
| if backend_index.has_kernel(g): |
| is_registered = True |
| # The above has_kernel test on a group will only test for |
| # the existence of out dispatch, because that's how |
| # structured kernels work. But sometimes functions can be |
| # grouped but not be structured, and then you need to check |
| # each individual piece, as they may have manual dispatch |
| # entries. |
| elif isinstance(g, NativeFunctionsGroup) and any( |
| backend_index.has_kernel(fn) for fn in g.functions() |
| ): |
| is_registered = True |
| # TODO: this condition is a bit questionable |
| # (It has to do with the fact that structured kernels get generated kernels |
| # to the Meta + CompositeExplicitAutogradNonFunctional keys). |
| elif g.structured and dispatch_key in ( |
| DispatchKey.Meta, |
| DispatchKey.CompositeExplicitAutogradNonFunctional, |
| ): |
| is_registered = True |
| if not is_registered: |
| continue |
| |
| headers.append(f"#include <ATen/ops/{g.root_name}_native.h>") |
| if ( |
| dispatch_key |
| == DispatchKey.CompositeExplicitAutogradNonFunctional |
| ): |
| headers.append(f"#include <ATen/ops/{g.root_name}.h>") |
| if dispatch_key in functions_keys: |
| headers.append( |
| f"#include <ATen/ops/{g.root_name}_{dispatch_namespace}_dispatch.h>" |
| ) |
| |
| return sorted(set(headers)) |
| |
| else: |
| |
| def operator_headers() -> List[str]: |
| headers = ["#include <ATen/NativeFunctions.h>"] |
| if dispatch_key == DispatchKey.CompositeExplicitAutogradNonFunctional: |
| headers.append("#include <ATen/Functions.h>") |
| if dispatch_key in functions_keys: |
| headers.append(f"#include <ATen/{dispatch_key!s}Functions.h>") |
| return headers |
| |
| backend_index = backend_indices[dispatch_key] |
| ns_grouped_native_functions = defaultdict(list) |
| for grouped_native_function in grouped_native_functions: |
| namespace = ( |
| grouped_native_function.namespace |
| if isinstance(grouped_native_function, NativeFunction) |
| else grouped_native_function.functional.namespace |
| ) |
| ns_grouped_native_functions[namespace].append(grouped_native_function) |
| |
| static_init_dispatch_registrations = "" |
| for namespace, functions in ns_grouped_native_functions.items(): |
| dispatch_registrations_body = ( |
| "" |
| if skip_dispatcher_op_registration |
| else "\n".join( |
| list( |
| concatMap( |
| dest.RegisterDispatchKey( |
| backend_index, |
| Target.REGISTRATION, |
| selector, |
| rocm=rocm, |
| class_method_name=None, |
| skip_dispatcher_op_registration=skip_dispatcher_op_registration, |
| ), |
| functions, |
| ) |
| ) |
| ) |
| ) |
| |
| static_init_dispatch_registrations += f""" |
| TORCH_LIBRARY_IMPL({namespace}, {dispatch_key}, m) {{ |
| {dispatch_registrations_body} |
| }};""" |
| dispatch_namespace = str(dispatch_key).lower() |
| fm.write_with_template( |
| f"Register{dispatch_key}.cpp", |
| "RegisterDispatchKey.cpp", |
| lambda: { |
| "extra_cuda_headers": extra_cuda_headers |
| if is_cuda_dispatch_key(dispatch_key) |
| else "", |
| "external_backend_headers": "", |
| "dispatch_headers": dest.gen_registration_headers( |
| backend_index, per_operator_headers, rocm |
| ), |
| "ops_headers": operator_headers(), |
| "DispatchKey": dispatch_key, |
| "dispatch_namespace": dispatch_key.lower(), |
| "dispatch_helpers": dest.gen_registration_helpers(backend_index), |
| "dispatch_namespaced_definitions": list( |
| concatMap( |
| dest.RegisterDispatchKey( |
| backend_index, |
| Target.NAMESPACED_DEFINITION, |
| selector, |
| rocm=rocm, |
| class_method_name=None, |
| skip_dispatcher_op_registration=skip_dispatcher_op_registration, |
| ), |
| grouped_native_functions, |
| ) |
| ), |
| "dispatch_anonymous_definitions": list( |
| concatMap( |
| dest.RegisterDispatchKey( |
| backend_index, |
| Target.ANONYMOUS_DEFINITION, |
| selector, |
| rocm=rocm, |
| class_method_name=None, |
| skip_dispatcher_op_registration=skip_dispatcher_op_registration, |
| ), |
| grouped_native_functions, |
| ) |
| ), |
| "static_init_dispatch_registrations": static_init_dispatch_registrations, |
| "deferred_dispatch_registrations": "", |
| }, |
| ) |
| |
| for g in structured_native_functions: |
| if not g.out.ufunc_inner_loop or not is_ufunc_dispatch_key(dispatch_key): |
| continue |
| name = g.functional.func.name.name |
| if dispatch_key is DispatchKey.CPU: |
| assert fm is cpu_fm |
| fm.write_with_template( |
| f"UfuncCPU_{name}.cpp", |
| "UfuncCPU.cpp", |
| lambda: { |
| "meta_declaration": compute_meta_function_declaration(g), |
| "native_declaration": dest.compute_native_function_declaration( |
| g, backend_indices[dispatch_key] |
| ), |
| "native_definitions": dest.compute_ufunc_cpu(g), |
| }, |
| ) |
| cpu_vec_fm.write_with_template( |
| f"UfuncCPUKernel_{name}.cpp", |
| "UfuncCPUKernel.cpp", |
| lambda: { |
| "name": name, |
| "native_definitions": dest.compute_ufunc_cpu_kernel(g), |
| }, |
| ) |
| elif dispatch_key is DispatchKey.CUDA: |
| cuda_headers = "#include <ATen/native/cuda/Loops.cuh>" |
| if rocm: |
| cuda_headers = "#include <ATen/native/hip/Loops.cuh>" |
| fm.write_with_template( |
| f"UfuncCUDA_{name}.cu", |
| "UfuncCUDA.cu", |
| lambda: { |
| "name": name, |
| "cuda_headers": cuda_headers, |
| "meta_declaration": compute_meta_function_declaration(g), |
| "native_declaration": dest.compute_native_function_declaration( |
| g, backend_indices[dispatch_key] |
| ), |
| "native_definitions": dest.compute_ufunc_cuda(g), |
| }, |
| ) |
| else: |
| raise AssertionError(f"unrecognized {dispatch_key} for ufunc") |
| |
| del fm |
| |
| # BackendSelect is generated specially |
| def gen_backend_select() -> Dict[str, List[str]]: |
| relevant_fns = [ |
| fn for fn in native_functions if needs_backend_select(fn, selector) |
| ] |
| return { |
| "ops_headers": [ |
| f"#include <ATen/ops/{fn.root_name}_ops.h>" for fn in relevant_fns |
| ], |
| "backend_select_method_definitions": list( |
| mapMaybe( |
| ComputeBackendSelect(Target.DEFINITION, selector), relevant_fns |
| ) |
| ), |
| "backend_select_function_registrations": list( |
| mapMaybe( |
| ComputeBackendSelect(Target.REGISTRATION, selector), relevant_fns |
| ) |
| ), |
| } |
| |
| cpu_fm.write("RegisterBackendSelect.cpp", gen_backend_select) |
| |
| schema_selector = selector |
| if force_schema_registration: |
| schema_selector = SelectiveBuilder.get_nop_selector() |
| |
| ( |
| aten_schema_registrations, |
| schema_registrations, |
| ) = get_native_function_schema_registrations( |
| native_functions=native_functions, schema_selector=schema_selector |
| ) |
| cpu_fm.write( |
| "RegisterSchema.cpp", |
| lambda: { |
| "aten_schema_registrations": [] |
| if skip_dispatcher_op_registration |
| else aten_schema_registrations, |
| "schema_registrations": [] |
| if skip_dispatcher_op_registration |
| else schema_registrations, |
| }, |
| ) |
| |
| def key_func( |
| fn: Union[NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup] |
| ) -> str: |
| return fn.root_name |
| |
| cpu_fm.write_sharded( |
| "Operators.cpp", |
| native_functions, |
| key_fn=key_func, |
| env_callable=lambda fn: { |
| "operator_headers": [f"#include <ATen/ops/{fn.root_name}.h>"], |
| "definitions": [ |
| ComputeOperators( |
| Target.DEFINITION, |
| static_dispatch_backend_indices=static_dispatch_idx, |
| )(fn) |
| ], |
| }, |
| base_env={ |
| "static_dispatch_extra_headers": static_dispatch_extra_headers( |
| static_dispatch_idx |
| ), |
| }, |
| num_shards=5, |
| sharded_keys={ |
| "operator_headers", |
| "definitions", |
| "static_dispatch_extra_headers", |
| }, |
| ) |
| |
| cpu_fm.write("Functions.cpp", lambda: {}) |
| |
| core_fm.write("TensorMethods.cpp", lambda: {}) |
| |
| core_fm.write( |
| "ATenOpList.cpp", |
| lambda: { |
| "aten_ops": list(mapMaybe(compute_aten_op, native_functions)), |
| }, |
| ) |
| |
| def functionalization_env_callable( |
| g: Union[NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup] |
| ) -> Dict[str, List[str]]: |
| def gen_op_headers( |
| g: Union[NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup] |
| ) -> List[str]: |
| if isinstance(g, NativeFunctionsViewGroup): |
| # view ops always get a functionalization kernel |
| headers = [ |
| f"#include <ATen/ops/{g.view.root_name}_native.h>", |
| f"#include <ATen/ops/{g.view.root_name}_ops.h>", |
| ] |
| if g.view_copy is not None: |
| headers += [ |
| f"#include <ATen/ops/{g.view_copy.root_name}_native.h>", |
| f"#include <ATen/ops/{g.view_copy.root_name}_ops.h>", |
| ] |
| return headers |
| elif isinstance(g, NativeFunctionsGroup): |
| headers = [ |
| f"#include <ATen/ops/{g.functional.root_name}_native.h>", |
| f"#include <ATen/ops/{g.functional.root_name}_ops.h>", |
| f"#include <ATen/ops/{g.out.root_name}_native.h>", |
| f"#include <ATen/ops/{g.out.root_name}_ops.h>", |
| ] |
| if g.inplace is not None: |
| headers += [ |
| f"#include <ATen/ops/{g.inplace.root_name}_native.h>", |
| f"#include <ATen/ops/{g.inplace.root_name}_ops.h>", |
| ] |
| if g.mutable is not None: |
| headers += [ |
| f"#include <ATen/ops/{g.mutable.root_name}_native.h>", |
| f"#include <ATen/ops/{g.mutable.root_name}_ops.h>", |
| ] |
| return headers |
| else: |
| return [ |
| f"#include <ATen/ops/{g.root_name}_native.h>", |
| f"#include <ATen/ops/{g.root_name}_ops.h>", |
| ] |
| |
| return { |
| "ops_headers": gen_op_headers(g), |
| "func_definitions": gen_functionalization_definition( |
| selector, |
| g, |
| ), |
| "func_registrations": gen_functionalization_registration( |
| selector, |
| g, |
| backend_indices[DispatchKey.CompositeImplicitAutograd], |
| ), |
| } |
| |
| all_groups: List[ |
| Union[NativeFunction, NativeFunctionsGroup, NativeFunctionsViewGroup] |
| ] = list(structured_native_functions) + list( |
| view_groups # type: ignore[assignment, arg-type, operator] |
| ) |
| # Note: all operators that functionalization needs to handle (mutable and aliasing ops) should be grouped properly. |
| # The only reason we really need to deal with direct NativeFunctions here (instead of the groups) is because: |
| # (1) We can provide better error checking (error out if someone introduces a mutable op that doesn't obey the grouping logic) |
| # (2) functionalization needs to manually register CompositeImplicitAutograd kernels, which might not be grouped. |
| # Although this could go away long-term if we add a dedicated dispatch key for decompositions. |
| structured_map: Dict[OperatorName, NativeFunction] = { |
| f.func.name: f |
| for f in concatMap(lambda g: list(g.functions()), structured_native_functions) |
| } |
| view_map: Dict[OperatorName, NativeFunction] = { |
| f.func.name: f for f in concatMap(lambda g: list(g.functions()), view_groups) |
| } |
| for f in native_functions: |
| if f.func.name not in structured_map and f.func.name not in view_map: |
| all_groups.append(f) |
| |
| cpu_fm.write_sharded( |
| "RegisterFunctionalization.cpp", |
| all_groups, |
| key_fn=key_func, |
| env_callable=functionalization_env_callable, |
| num_shards=4, |
| sharded_keys={ |
| "ops_headers", |
| "func_definitions", |
| "func_registrations", |
| "func_add_back_views_definitions", |
| "func_add_back_views_registrations", |
| }, |
| ) |
| |
| cpu_fm.write( |
| "FunctionalInverses.h", |
| lambda: { |
| "view_inverse_declarations": list( |
| mapMaybe( |
| lambda g: gen_functionalization_view_inverse_declaration( |
| selector, g |
| ), |
| view_groups, |
| ) |
| ) |
| }, |
| ) |
| view_copy_with_symint_pairs: List[Tuple[NativeFunction, NativeFunction]] = [] |
| for g1 in view_groups: |
| for g2 in view_groups: |
| if g1.view_copy is None or g2.view_copy is None: |
| continue |
| # TODO: make this more first class in the data model |
| g1_base_name = str(g1.view_copy.func.name.name) |
| g2_base_name = str(g2.view_copy.func.name.name) |
| |
| same_base_op = ( |
| g1_base_name == g2_base_name |
| and g1.view_copy.func.arguments.symints_to_ints() |
| == g2.view_copy.func.arguments.symints_to_ints() |
| ) |
| op1_not_symint = "SymInt" not in str(g1.view_copy.func.name.overload_name) |
| op2_symint = "SymInt" in str(g2.view_copy.func.name.overload_name) |
| if same_base_op and op1_not_symint and op2_symint: |
| view_copy_with_symint_pairs.append( |
| ( |
| g1.view_copy, |
| g2.view_copy, |
| ) |
| ) |
| |
| # Note [view_copy NativeFunctions] |
| # Every view operator in native_functions.yaml that is not CompositeImplicitAutograd |
| # needs to have a corresponding non-aliasing {view}_copy variant. |
| # Backends that use functionalization and don't know how to handle aliasing ops |
| # are expected to implement kernels for these {view}_copy kernels instead. |
| # The code for {view}_copy operators in core is pretty boilerplate-heavy however, |
| # so we codegen the following: |
| # (1) A CompositeExplicitAutogradNonFunctional kernel for every {view}_copy operator. |
| # These are never explicitly invoked by the functionalization pass, |
| # but they could theoretically be called from user code (I added these kernels for completeness, |
| # since the ops are part of the public API). |
| # (2) A derivative formula for every {view}_copy operator |
| # {view}_copy operators can re-use the same derivative formulas as their {view} op counterparts, |
| # so rather than stamping all of the entries out in derivatives.yaml, |
| # we codegen them in. |
| # This is similar to how autograd codegen doesn't require inplace ops to have a derivatives.yaml entry. |
| cpu_fm.write( |
| "CompositeViewCopyKernels.cpp", |
| lambda: { |
| "ops_headers": [ |
| "\n".join( |
| f"#include <ATen/ops/{f.root_name}_ops.h>" |
| for f in ( |
| [g.view] if g.view_copy is None else [g.view, g.view_copy] |
| ) |
| ) |
| for g in view_groups |
| ] |
| + [ |
| "\n".join( |
| f"#include <ATen/ops/{f.root_name}_ops.h>" |
| for f in [g.inplace, g.mutable] |
| if f is not None and "generated" not in f.tags |
| ) |
| for g in structured_native_functions |
| ], |
| "CompositeViewCopyKernel_Definitions": list( |
| mapMaybe(gen_composite_view_copy_kernel, view_groups) |
| ), |
| "SymIntViewCopyKernel_Definitions": list( |
| mapMaybe( |
| lambda pair: gen_symint_view_copy_kernel(pair[0], pair[1]), |
| view_copy_with_symint_pairs, |
| ) |
| ), |
| "GeneratedCompositeFunctional_Definitions": list( |
| mapMaybe( |
| gen_composite_functional_kernel, |
| structured_native_functions, |
| ) |
| ), |
| "GeneratedCompositeOut_Definitions": list( |
| mapMaybe( |
| gen_composite_out_kernel, |
| structured_native_functions, |
| ) |
| ), |
| }, |
| ) |
| |
| |
| def gen_declarations_yaml( |
| cpu_fm: FileManager, native_functions: Sequence[NativeFunction] |
| ) -> None: |
| cpu_fm.write( |
| "Declarations.yaml", |
| lambda: format_yaml([compute_declaration_yaml(f) for f in native_functions]), |
| ) |
| |
| |
| def get_torchgen_root() -> pathlib.Path: |
| """ |
| If you're depending on torchgen out-of-tree, you can use the root to figure |
| out the path to native_functions.yaml |
| """ |
| return pathlib.Path(__file__).parent.resolve() |
| |
| |
| def main() -> None: |
| parser = argparse.ArgumentParser(description="Generate ATen source files") |
| parser.add_argument( |
| "-s", |
| "--source-path", |
| help="path to source directory for ATen", |
| default="aten/src/ATen", |
| ) |
| parser.add_argument( |
| "-o", |
| "--output-dependencies", |
| help="output a list of dependencies into the given file and exit", |
| ) |
| parser.add_argument( |
| "--dry-run", |
| action="store_true", |
| help="run without writing any files (still updates outputs)", |
| ) |
| parser.add_argument( |
| "--per-operator-headers", |
| action="store_true", |
| help="generate separate headers per operator in ATen/ops", |
| ) |
| parser.add_argument( |
| "-d", "--install_dir", help="output directory", default="build/aten/src/ATen" |
| ) |
| parser.add_argument( |
| "--rocm", |
| action="store_true", |
| help="reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly", |
| ) |
| parser.add_argument( |
| "--mps", |
| action="store_true", |
| help="Generate MPS registration code when set", |
| ) |
| # TODO: --op_registration_whitelist will be removed when all call-sites |
| # for gen.py are moved over to using the operator YAML file for mobile |
| # custom build. |
| parser.add_argument( |
| "--op_registration_whitelist", |
| nargs="*", |
| help="filter op registrations by the whitelist (if set); " |
| "each item is `namespace`::`operator name` without overload name; " |
| "e.g.: aten::empty aten::conv2d ...", |
| ) |
| parser.add_argument( |
| "--op_selection_yaml_path", |
| help="Provide a path to the operator selection (for custom build) YAML " |
| "that contains the information about the set of selected operators " |
| "and their categories (training, ...). Each operator is either a " |
| "full operator name with overload or just a bare operator name. " |
| "The operator names also contain the namespace prefix (e.g. aten::)", |
| ) |
| parser.add_argument( |
| "--backend_whitelist", |
| nargs="*", |
| help="filter dispatch backend by the whitelist (if set), " |
| "e.g.: CPU CUDA QuantizedCPU ...", |
| ) |
| parser.add_argument( |
| "--static_dispatch_backend", |
| nargs="*", |
| help="generate static dispatch code for the specific backend (if set)", |
| ) |
| parser.add_argument( |
| "--skip_dispatcher_op_registration", |
| action="store_true", |
| help="Avoid registering operators into the dispatcher.", |
| ) |
| parser.add_argument( |
| "--force_schema_registration", |
| action="store_true", |
| help="force it to generate schema-only registrations for all ops, including" |
| "those that are not listed on --op_registration_whitelist", |
| ) |
| parser.add_argument( |
| "--generate", |
| type=str, |
| nargs="*", |
| choices=["headers", "sources", "declarations_yaml"], |
| default=["headers", "sources", "declarations_yaml"], |
| help="Generate only a subset of files", |
| ) |
| |
| options = parser.parse_args() |
| |
| selector = get_custom_build_selector( |
| options.op_registration_whitelist, |
| options.op_selection_yaml_path, |
| ) |
| |
| native_yaml_path = os.path.join(options.source_path, "native/native_functions.yaml") |
| tags_yaml_path = os.path.join(options.source_path, "native/tags.yaml") |
| |
| from torchgen.model import dispatch_keys |
| |
| # TODO: stop generating CUDA kernels for non-CUDA builds |
| ignore_keys = set() |
| if not options.mps: |
| ignore_keys.add(DispatchKey.MPS) |
| |
| if DispatchKey.MPS in dispatch_keys: |
| del dispatch_keys[dispatch_keys.index(DispatchKey.MPS)] |
| |
| parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path, ignore_keys) |
| valid_tags = _GLOBAL_PARSE_TAGS_YAML_CACHE[tags_yaml_path] |
| native_functions, backend_indices = ( |
| parsed_yaml.native_functions, |
| parsed_yaml.backend_indices, |
| ) |
| |
| grouped_native_functions = get_grouped_native_functions(native_functions) |
| |
| structured_native_functions = [ |
| g for g in grouped_native_functions if isinstance(g, NativeFunctionsGroup) |
| ] |
| native_functions_with_view_groups = get_grouped_by_view_native_functions( |
| native_functions |
| ) |
| view_groups = [ |
| g |
| for g in native_functions_with_view_groups |
| if isinstance(g, NativeFunctionsViewGroup) |
| ] |
| |
| # NB: It is mandatory to NOT use os.path.join here, as the install directory |
| # will eventually be ingested by cmake, which does not respect Windows style |
| # path slashes. If you switch this to use os.path.join, you'll get an error |
| # like: |
| # |
| # Syntax error in cmake code when parsing string |
| # |
| # C:/Jenkins/workspace/pytorch-builds/pytorch-win-ws2016-cuda9-cudnn7-py3-build/build/aten/src/ATen\core/TensorMethods.h |
| # |
| # Invalid character escape '\c'. |
| core_install_dir = f"{options.install_dir}/core" |
| pathlib.Path(core_install_dir).mkdir(parents=True, exist_ok=True) |
| ops_install_dir = f"{options.install_dir}/ops" |
| pathlib.Path(ops_install_dir).mkdir(parents=True, exist_ok=True) |
| |
| core_fm = make_file_manager(options=options, install_dir=core_install_dir) |
| cpu_fm = make_file_manager(options=options) |
| cpu_vec_fm = make_file_manager(options=options) |
| cuda_fm = make_file_manager(options=options) |
| ops_fm = make_file_manager(options=options, install_dir=ops_install_dir) |
| |
| # Only a limited set of dispatch keys get CPUFunctions.h headers generated |
| # for them; this is the set |
| functions_keys = { |
| DispatchKey.CPU, |
| DispatchKey.CUDA, |
| DispatchKey.CompositeImplicitAutograd, |
| DispatchKey.CompositeExplicitAutograd, |
| DispatchKey.CompositeExplicitAutogradNonFunctional, |
| DispatchKey.Meta, |
| } |
| if options.mps: |
| functions_keys.add(DispatchKey.MPS) |
| |
| if options.backend_whitelist: |
| dispatch_keys = [ |
| k |
| for k in dispatch_keys |
| if is_generic_dispatch_key(k) or str(k) in options.backend_whitelist |
| ] |
| |
| static_dispatch_idx: List[BackendIndex] = [] |
| if options.static_dispatch_backend: |
| static_dispatch_idx = [ |
| backend_indices[DispatchKey.parse(key)] |
| for key in options.static_dispatch_backend |
| ] |
| for key in options.static_dispatch_backend: |
| dp_key = DispatchKey.parse(key) |
| if dp_key not in functions_keys: |
| functions_keys.add(dp_key) |
| |
| if "sources" in options.generate: |
| gen_source_files( |
| native_functions=native_functions, |
| grouped_native_functions=grouped_native_functions, |
| structured_native_functions=structured_native_functions, |
| view_groups=view_groups, |
| selector=selector, |
| static_dispatch_idx=static_dispatch_idx, |
| backend_indices=backend_indices, |
| core_fm=core_fm, |
| cpu_fm=cpu_fm, |
| cpu_vec_fm=cpu_vec_fm, |
| cuda_fm=cuda_fm, |
| dispatch_keys=dispatch_keys, |
| functions_keys=functions_keys, |
| rocm=options.rocm, |
| force_schema_registration=options.force_schema_registration, |
| per_operator_headers=options.per_operator_headers, |
| skip_dispatcher_op_registration=options.skip_dispatcher_op_registration, |
| ) |
| |
| if "headers" in options.generate: |
| gen_headers( |
| native_functions=native_functions, |
| valid_tags=valid_tags, |
| grouped_native_functions=grouped_native_functions, |
| structured_native_functions=structured_native_functions, |
| static_dispatch_idx=static_dispatch_idx, |
| selector=selector, |
| backend_indices=backend_indices, |
| core_fm=core_fm, |
| cpu_fm=cpu_fm, |
| cuda_fm=cuda_fm, |
| ops_fm=ops_fm, |
| dispatch_keys=dispatch_keys, |
| functions_keys=functions_keys, |
| rocm=options.rocm, |
| per_operator_headers=options.per_operator_headers, |
| ) |
| |
| if "declarations_yaml" in options.generate: |
| gen_declarations_yaml(native_functions=native_functions, cpu_fm=cpu_fm) |
| |
| if options.output_dependencies: |
| depfile_path = pathlib.Path(options.output_dependencies).resolve() |
| depfile_name = depfile_path.name |
| depfile_stem = depfile_path.stem |
| |
| for fm, prefix in [ |
| (cpu_fm, ""), |
| (cpu_vec_fm, "cpu_vec_"), |
| (core_fm, "core_"), |
| (cuda_fm, "cuda_"), |
| (ops_fm, "ops_"), |
| ]: |
| varname = prefix + depfile_stem |
| path = depfile_path.parent / (prefix + depfile_name) |
| fm.write_outputs(varname, str(path)) |
| |
| |
| if __name__ == "__main__": |
| main() |