| import functools |
| import logging |
| |
| import torch |
| from torch._dynamo import eval_frame |
| from torch._dynamo.utils import counters |
| from torch._functorch.aot_autograd import aot_module_simplified |
| from torch._subclasses import FakeTensor |
| from torch.utils._python_dispatch import _disable_current_modes |
| |
| log = logging.getLogger(__name__) |
| |
| |
| def aot_autograd(**kwargs): |
| def compiler_fn(gm: torch.fx.GraphModule, example_inputs): |
| import functorch.compile |
| |
| # Hack to get around circular import problems with aot_eager_decomp_partition |
| if callable(kwargs.get("decompositions")): |
| kwargs["decompositions"] = kwargs["decompositions"]() |
| |
| # TODO: stop monkeypatching here (without even cleaning up, UGH!) |
| functorch.compile.config.use_functionalize = True |
| functorch.compile.config.use_fake_tensor = True |
| |
| counters["aot_autograd"]["total"] += 1 |
| use_fallback = False |
| |
| if use_fallback: |
| log.debug("Unable to use AOT Autograd because graph has mutation") |
| counters["aot_autograd"]["not_ok"] += 1 |
| return gm |
| |
| # OK attempt to compile |
| |
| def _wrapped_bw_compiler(*args, **kwargs): |
| # stop TorchDynamo from trying to compile our generated backwards pass |
| return eval_frame.disable(eval_frame.disable(bw_compiler)(*args, **kwargs)) |
| |
| bw_compiler = kwargs.get("bw_compiler") or kwargs["fw_compiler"] |
| kwargs["bw_compiler"] = _wrapped_bw_compiler |
| |
| from torch._inductor.debug import enable_aot_logging |
| |
| try: |
| # NB: NOT cloned! |
| with enable_aot_logging(): |
| cg = aot_module_simplified(gm, example_inputs, **kwargs) |
| counters["aot_autograd"]["ok"] += 1 |
| return eval_frame.disable(cg) |
| except Exception: |
| counters["aot_autograd"]["not_ok"] += 1 |
| raise |
| |
| return compiler_fn |
| |
| |
| def mem_efficient_fusion_kwargs(use_decomps): |
| from functorch.compile import ( |
| default_decompositions, |
| min_cut_rematerialization_partition, |
| ts_compile, |
| ) |
| |
| kwargs = { |
| # these are taken from memory_efficient_fusion() |
| "fw_compiler": ts_compile, |
| "bw_compiler": ts_compile, |
| "partition_fn": min_cut_rematerialization_partition, |
| } |
| |
| if use_decomps: |
| kwargs["decompositions"] = default_decompositions |
| |
| return kwargs |
| |
| |
| def fake_tensor_unsupported(fn): |
| """ |
| Decorator for backends that need real inputs. We swap out fake |
| tensors for zero tensors. |
| """ |
| |
| def defake(x): |
| if not isinstance(x, FakeTensor): |
| return x |
| if x._has_symbolic_sizes_strides: |
| size = [s.node.shape_env.size_hint(s.node.expr) for s in x.size()] |
| stride = [s.node.shape_env.size_hint(s.node.expr) for s in x.stride()] |
| else: |
| size = x.size() |
| stride = x.stride() |
| y = torch.empty_strided( |
| size, |
| stride, |
| dtype=x.dtype, |
| device=x.device, |
| requires_grad=x.requires_grad, |
| ) |
| y.zero_() |
| return y |
| |
| @functools.wraps(fn) |
| def wrapper(model, inputs, **kwargs): |
| with _disable_current_modes(): |
| inputs = list(map(defake, inputs)) |
| return fn(model, inputs, **kwargs) |
| |
| return wrapper |
| |
| |
| def device_from_inputs(example_inputs) -> torch.device: |
| for x in example_inputs: |
| if hasattr(x, "device"): |
| return x.device |
| |
| |
| def dtype_from_inputs(example_inputs) -> torch.dtype: |
| for x in example_inputs: |
| if hasattr(x, "dtype"): |
| return x.dtype |