| import collections |
| import dataclasses |
| import enum |
| import functools |
| import inspect |
| import operator |
| import re |
| import types |
| from typing import Any, NamedTuple, Optional, Union |
| |
| import torch |
| |
| from torch import SymInt |
| from torch._guards import GuardSource |
| from torch._ops import PyOperator |
| from torch._subclasses.fake_tensor import FakeTensor |
| from torch.fx.immutable_collections import immutable_list |
| |
| from .. import config, mutation_guard, replay_record, skipfiles |
| from ..allowed_functions import is_allowed, is_builtin_callable, is_numpy |
| from ..exc import unimplemented |
| from ..guards import GuardBuilder |
| from ..side_effects import SideEffects |
| from ..source import ( |
| AttrSource, |
| ConstantSource, |
| GetItemSource, |
| GlobalSource, |
| GlobalWeakRefSource, |
| is_constant_source, |
| LocalInputSource, |
| LocalSource, |
| RandomValueSource, |
| Source, |
| TupleIteratorGetItemSource, |
| ) |
| from ..utils import ( |
| clone_input, |
| get_fake_value, |
| getfile, |
| global_key_name, |
| HAS_NUMPY, |
| is_namedtuple, |
| is_numpy_int_type, |
| is_typing, |
| istype, |
| np, |
| odict_values, |
| preserve_rng_state, |
| tensor_always_has_static_shape, |
| tensor_static_reason_to_message, |
| tuple_iterator, |
| tuple_iterator_getitem, |
| tuple_iterator_len, |
| wrap_fake_exception, |
| ) |
| |
| from .base import MutableLocal, typestr, VariableTracker |
| from .builtin import BuiltinVariable |
| from .constant import ConstantVariable, EnumVariable |
| from .dicts import ( |
| ConstDictVariable, |
| DataClassVariable, |
| DefaultDictVariable, |
| HFPretrainedConfigVariable, |
| ) |
| from .functions import UserFunctionVariable, UserMethodVariable |
| from .lists import ( |
| ListIteratorVariable, |
| ListVariable, |
| NamedTupleVariable, |
| RangeVariable, |
| SizeVariable, |
| SliceVariable, |
| TupleVariable, |
| ) |
| from .misc import ( |
| AutogradFunctionContextVariable, |
| AutogradFunctionVariable, |
| ComptimeVariable, |
| CUDAStreamVariable, |
| GetAttrVariable, |
| InspectSignatureVariable, |
| LambdaVariable, |
| NumpyVariable, |
| PythonModuleVariable, |
| SkipFilesVariable, |
| TypingVariable, |
| ) |
| from .nn_module import UnspecializedNNModuleVariable |
| from .tensor import ( |
| SymNodeVariable, |
| TensorVariable, |
| TensorWithTFOverrideVariable, |
| UnspecializedPythonVariable, |
| ) |
| from .torch import ( |
| tensor_dunder_fns, |
| torch_special_class_types, |
| TorchPyOperator, |
| TorchVariable, |
| ) |
| from .user_defined import UserDefinedClassVariable, UserDefinedObjectVariable |
| |
| |
| class _missing: |
| pass |
| |
| |
| @dataclasses.dataclass |
| class GraphArg: |
| source: Source |
| example: Any |
| is_unspecialized: bool |
| fake_tensor: Optional[torch._subclasses.fake_tensor.FakeTensor] |
| # UnspecializedPythonVariable often masquerades as a tensor. |
| # We MUST NOT generate shape guard code |
| # that actually tries to access tensor properties on these values. |
| # is_tensor lets us tell if this graph arg actually is a tensor |
| # or not. |
| is_tensor: bool = True |
| |
| def __post_init__(self): |
| if isinstance(self.example, torch.Tensor): |
| assert isinstance( |
| self.fake_tensor, torch._subclasses.fake_tensor.FakeTensor |
| ) |
| # Mapping for downstream systems to remap back into dynamo arg positions |
| if isinstance(self.source, LocalInputSource): |
| if "graph_arg_pos" not in self.fake_tensor.__dict__: |
| self.fake_tensor.__dict__["graph_arg_pos"] = [] |
| self.fake_tensor.__dict__["graph_arg_pos"].append(self.source.pos) |
| if isinstance(self.example, torch._subclasses.fake_tensor.FakeTensor): |
| raise AssertionError("Fake Tensor observed in TorchDynamo Fx graph inputs") |
| |
| def load(self, tx): |
| return self.source.reconstruct(tx) |
| |
| def get_examples(self): |
| return [self.example] |
| |
| def get_fake_examples(self): |
| if self.fake_tensor is not None: |
| assert isinstance( |
| self.fake_tensor, torch._subclasses.fake_tensor.FakeTensor |
| ) |
| return [self.fake_tensor] |
| |
| def __len__(self): |
| return 1 |
| |
| def erase(self): |
| self.example = None |
| |
| |
| class VariableBuilder: |
| """Wrap a python value in a VariableTracker() instance""" |
| |
| def __init__( |
| self, |
| tx, |
| source: Source, |
| ): |
| assert source is not None |
| super().__init__() |
| self.tx = tx |
| self.source = source |
| self.name = source.name() |
| |
| def __call__(self, value): |
| if value in self.tx.output.side_effects: |
| # TODO(jansel): add guard for alias relationship |
| return self.tx.output.side_effects[value] |
| return self._wrap(value).clone(**self.options()) |
| |
| @staticmethod |
| @functools.lru_cache(None) |
| def _common_constants(): |
| return { |
| # We zero-one specialize shapes, so specialize these constants |
| # too |
| 0, |
| 1, |
| # NB: There used to be more constants here, but honestly it was |
| # pretty confusing. Note we specialize floats by default, and |
| # DON'T specialize ints by default. This all only matters with |
| # dynamic_shapes |
| } |
| |
| @staticmethod |
| def list_type(value): |
| if is_namedtuple(value): |
| return functools.partial(NamedTupleVariable, tuple_cls=type(value)) |
| return { |
| tuple: TupleVariable, |
| list: ListVariable, |
| odict_values: ListVariable, |
| torch.nn.ParameterList: ListVariable, |
| torch.nn.ModuleList: ListVariable, |
| }[type(value)] |
| |
| def get_source(self): |
| return self.source |
| |
| def options(self): |
| return {"source": self.get_source()} |
| |
| def make_guards(self, *guards): |
| source = self.get_source() |
| if ( |
| isinstance(source, ConstantSource) |
| or source.guard_source() == GuardSource.CONSTANT |
| ): |
| return None |
| return {source.make_guard(guard) for guard in guards} |
| |
| @classmethod |
| @functools.lru_cache(None) |
| def _type_dispatch(cls): |
| # NB: Careful not to close over self to avoid ref cycle from lru_cache |
| entries = [ |
| ( |
| (torch.Tensor, torch.nn.Parameter, torch._subclasses.FakeTensor), |
| cls.wrap_tensor, |
| ), |
| ((torch.SymInt, torch.SymFloat), cls.wrap_sym), |
| ((tuple, list, odict_values), cls.wrap_listlike), |
| (tuple_iterator, cls.wrap_tuple_iterator), |
| ((slice, range), cls.wrap_slice_range), |
| ( |
| ( |
| int, |
| float, |
| bool, |
| type(None), |
| str, |
| torch.Size, |
| torch.device, |
| torch.dtype, |
| ), |
| cls.wrap_literal, |
| ), |
| ] |
| |
| result = {} |
| for ts, fn in entries: |
| for t in ts if isinstance(ts, tuple) else (ts,): |
| assert t not in result |
| result[t] = fn |
| |
| return result |
| |
| @classmethod |
| @functools.lru_cache(None) |
| def _id_dispatch(cls): |
| from ..comptime import comptime |
| |
| entries = [ |
| ( |
| inspect.signature, |
| lambda self, value: LambdaVariable( |
| InspectSignatureVariable.create, |
| source=self.source, |
| guards=self.make_guards(GuardBuilder.FUNCTION_MATCH), |
| ), |
| ), |
| (comptime, lambda self, value: ComptimeVariable()), |
| ( |
| dataclasses.fields, |
| lambda self, value: LambdaVariable( |
| _dataclasses_fields_lambda, |
| source=self.source, |
| guards=self.make_guards(GuardBuilder.FUNCTION_MATCH), |
| ), |
| ), |
| ( |
| tensor_dunder_fns, |
| lambda self, value: TorchVariable( |
| value, |
| source=self.source, |
| guards=self.make_guards(GuardBuilder.FUNCTION_MATCH), |
| ), |
| ), |
| ] |
| |
| result = {} |
| for ts, fn in entries: |
| for t in ts if isinstance(ts, (tuple, list)) else (ts,): |
| assert t not in result |
| result[id(t)] = fn |
| |
| return result |
| |
| def _wrap(self, value): |
| make_guards = self.make_guards |
| |
| # Handle exact type() match |
| type_dispatch = self._type_dispatch().get(type(value)) |
| if type_dispatch is not None: |
| return type_dispatch(self, value) |
| |
| # Handle exact id() match |
| id_dispatch = self._id_dispatch().get(id(value)) |
| if id_dispatch is not None: |
| return id_dispatch(self, value) |
| |
| # Note - There are some nested values where types mismatch! |
| # We want to get those out and wrap those. |
| value = inspect.getattr_static(value, "_torchdynamo_inline", value) |
| |
| # Everything else (NB: order matters!) |
| if istype(value, config.traceable_tensor_subclasses): |
| return self.wrap_tensor(value) |
| elif is_namedtuple(value): |
| return self.wrap_listlike(value) |
| elif istype( |
| value, (dict, collections.defaultdict, collections.OrderedDict) |
| ) and all( |
| map( |
| lambda k: ConstantVariable.is_literal(k) |
| or self.tensor_can_be_dict_key(k) |
| or isinstance(k, enum.Enum), |
| value.keys(), |
| ) |
| ): |
| if not value and self.get_source().is_nn_module(): |
| # It is faster to guard on 'false' property than to guard |
| # on actual dict keys, but we can't do this fast guard in general because |
| # it omits a crucial type check that ensures the value is actually still a dict at runtime. |
| |
| # Why is this OK for (specialized) nnmodules? We set up a setattr hook |
| # to check for module property mutations, which does a reasonable, |
| # but not completely secure job ensuring a property wasn't changed. |
| guards = self.make_guards(GuardBuilder.BOOL_FALSE) |
| else: |
| guards = self.make_guards(GuardBuilder.DICT_KEYS) |
| |
| # store key variables in global location for reconstruction |
| for key in value.keys(): |
| if self.tensor_can_be_dict_key(key): |
| self.tx.store_dict_key(global_key_name(key), key) |
| |
| def index_source(key): |
| if self.tensor_can_be_dict_key(key): |
| return GlobalWeakRefSource(global_key_name(key)) |
| else: |
| return key |
| |
| result = { |
| k: VariableBuilder( |
| self.tx, GetItemSource(self.get_source(), index_source(k)) |
| )(value[k]).add_guards(guards) |
| for k in value.keys() |
| } |
| |
| if istype(value, collections.defaultdict): |
| result = DefaultDictVariable( |
| result, type(value), value.default_factory, guards=guards |
| ) |
| else: |
| result = ConstDictVariable(result, type(value), guards=guards) |
| |
| return self.tx.output.side_effects.track_dict(self.source, value, result) |
| elif isinstance(value, torch.nn.Module): |
| return self.wrap_module(value) |
| elif ConstantVariable.is_literal(value): # non-atomic literals |
| return self.wrap_literal(value) |
| elif istype(value, frozenset) and ( |
| all(is_allowed(x) or ConstantVariable.is_literal(x) for x in value) |
| ): |
| # For frozenset, we can guard by object ID instead of value |
| # equality, this allows us to handle non-literal values |
| return ConstantVariable( |
| value=value, |
| source=self.source, |
| guards=make_guards(GuardBuilder.ID_MATCH), |
| ) |
| elif isinstance(value, enum.Enum): |
| return EnumVariable( |
| value=value, |
| source=self.source, |
| guards=make_guards(GuardBuilder.ID_MATCH), |
| ) |
| elif is_builtin_callable(value): |
| return BuiltinVariable( |
| value, |
| source=self.source, |
| guards=make_guards(GuardBuilder.BUILTIN_MATCH), |
| ) |
| elif is_allowed(value): |
| return TorchVariable( |
| value, |
| source=self.source, |
| guards=make_guards(GuardBuilder.FUNCTION_MATCH), |
| ) |
| elif is_typing(value): |
| # typing.List, typing.Mapping, etc. |
| return TypingVariable( |
| value, |
| source=self.source, |
| guards=make_guards(GuardBuilder.ID_MATCH), |
| ) |
| elif is_numpy(value): |
| return NumpyVariable( |
| value, |
| source=self.source, |
| guards=make_guards( |
| GuardBuilder.FUNCTION_MATCH |
| if callable(value) |
| else GuardBuilder.TYPE_MATCH |
| ), |
| ) |
| elif ( |
| istype(value, (type, types.FunctionType)) |
| and skipfiles.check(getfile(value), allow_torch=True) |
| and not inspect.getattr_static(value, "_torchdynamo_inline", False) |
| ): |
| return SkipFilesVariable( |
| value, |
| source=self.source, |
| guards=make_guards(GuardBuilder.FUNCTION_MATCH), |
| ) |
| # NB: These can't be put in type_dispatch, they have to run later |
| elif istype(value, (types.FunctionType, torch.jit.ScriptFunction)): |
| return UserFunctionVariable( |
| value, |
| source=self.source, |
| guards=make_guards(GuardBuilder.FUNCTION_MATCH), |
| ) |
| elif istype(value, (types.ModuleType, replay_record.DummyModule)): |
| return PythonModuleVariable( |
| value, |
| source=self.source, |
| guards=make_guards(GuardBuilder.PYMODULE_MATCH), |
| ) |
| elif istype(value, torch.autograd.function.FunctionMeta): |
| return AutogradFunctionVariable( |
| value, |
| source=self.source, |
| guards=make_guards(GuardBuilder.FUNCTION_MATCH), |
| ) |
| elif isinstance(value, torch.autograd.function.FunctionCtx): |
| # The autograd.function context |
| return AutogradFunctionContextVariable() |
| elif ( |
| isinstance(value, types.MethodType) |
| and istype( |
| getattr(value, "__self__", None), torch.autograd.function.FunctionMeta |
| ) |
| and getattr(value, "__name__", "") == "apply" |
| and value == getattr(value.__self__, "apply", None) |
| ): |
| # handle aliased autograd function `apply` calls |
| return GetAttrVariable( |
| AutogradFunctionVariable( |
| value.__self__, |
| source=self.source, |
| guards=make_guards(GuardBuilder.FUNCTION_MATCH), |
| ), |
| "apply", |
| ) |
| elif HAS_NUMPY and isinstance(value, np.number): |
| return self.wrap_unspecialized_primitive(value) |
| elif DataClassVariable.is_matching_object(value): |
| return DataClassVariable.wrap(self, value).add_guards( |
| make_guards(GuardBuilder.TYPE_MATCH) |
| ) |
| elif HFPretrainedConfigVariable.is_matching_object(value): |
| return HFPretrainedConfigVariable( |
| value, guards=make_guards(GuardBuilder.TYPE_MATCH) |
| ) |
| elif isinstance(value, PyOperator): |
| return TorchPyOperator( |
| value, |
| guards=self.make_guards( |
| GuardBuilder.TYPE_MATCH, GuardBuilder.NAME_MATCH |
| ), |
| ) |
| elif type(value).__name__ == "builtin_function_or_method" and isinstance( |
| value.__self__, torch_special_class_types |
| ): |
| return TorchVariable( |
| value, |
| guards=make_guards(GuardBuilder.FUNCTION_MATCH), |
| ) |
| elif isinstance(value, torch.cuda.streams.Stream): |
| return CUDAStreamVariable( |
| None, |
| value, |
| source=self.source, |
| guards=self.make_guards(GuardBuilder.ID_MATCH), |
| ) |
| elif issubclass(type(value), type): |
| # TODO(whc) the following seems preferable but breaks some tests, debug |
| # elif inspect.isclass(value): |
| return UserDefinedClassVariable( |
| value, |
| source=self.source, |
| guards=make_guards(GuardBuilder.FUNCTION_MATCH), |
| ) |
| elif isinstance(value, types.MethodType) and isinstance( |
| value.__self__, torch.nn.Module |
| ): |
| # don't let MethodTypes fall through to UserDefinedObject, |
| # which doesn't support 'CALL_FUNCTION' |
| |
| # TODO(whc): Why do we limit this to methods on NNModules? |
| # I don't have a good reason for this, but it preserves the existing behavior |
| # for MBartForConditionalGeneration, which generates many graph breaks and OOMs otherwise. |
| # I suspect we probably want to relax this check and dig deeper there. |
| |
| # In order to construct a MethodVariable in Dynamo, we start with an actual method obj from python, |
| # but need to separately wrap its underlying `__func__` and its `self` argument. We wrap `self` here |
| # and then `__func__` gets wrapped inside UserMethodVariable. |
| self_obj = VariableBuilder( |
| self.tx, source=AttrSource(self.source, "__self__") |
| )(value.__self__) |
| assert self_obj and isinstance( |
| self_obj, VariableTracker |
| ), "Failed to produce a valid self obj" |
| return UserMethodVariable( |
| value.__func__, |
| self_obj, |
| source=self.source, |
| guards=make_guards(GuardBuilder.FUNCTION_MATCH), |
| ) |
| else: |
| result = UserDefinedObjectVariable( |
| value, |
| source=self.source, |
| guards=self.make_guards(GuardBuilder.TYPE_MATCH), |
| ) |
| if not SideEffects.cls_supports_mutation_side_effects(type(value)): |
| # don't allow STORE_ATTR mutation with custom __setattr__ |
| return result |
| return self.tx.output.side_effects.track_object_existing( |
| self.source, value, result |
| ) |
| |
| def tensor_can_be_dict_key(self, value): |
| # only allow Parameter and another specific Tensor can be used as dict key |
| return ( |
| isinstance(value, torch.nn.Parameter) |
| or isinstance(self.source, AttrSource) |
| and self.source.member == "state" |
| and isinstance(self.source.base, LocalSource) |
| ) |
| |
| def tensor_should_specialize(self): |
| return ( |
| self.source |
| and isinstance(self.source, GetItemSource) |
| and isinstance(self.source.base, GetItemSource) |
| and self.source.base.index == "params" |
| and isinstance(self.source.base.base, GetItemSource) |
| and isinstance(self.source.base.base.base, AttrSource) |
| and self.source.base.base.base.member == "param_groups" |
| and isinstance(self.source.base.base.base.base, LocalSource) |
| and ( |
| isinstance( |
| self.tx.f_locals[self.source.base.base.base.base.local_name], |
| torch.optim.Optimizer, |
| ) |
| if self.source.base.base.base.base.local_name in self.tx.f_locals.keys() |
| else True |
| ) |
| ) |
| |
| def wrap_sym(self, value: Union[torch.SymInt, torch.SymFloat]): |
| if not is_constant_source(self.get_source()): |
| self.tx.output.add_grapharg(GraphArg(self.get_source(), value, False, None)) |
| elif is_constant_source(self.get_source()): |
| return self.tx.output.register_attr_or_module( |
| value, |
| re.sub(r"[^a-zA-Z0-9]+", "_", self.name), |
| source=None, |
| sym_num=value |
| # shape Guards live their own rich life via shape_env |
| ) |
| return SymNodeVariable.create( |
| tx=self.tx, |
| proxy=self.tx.output.create_graph_input( |
| re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(value) |
| ), |
| sym_num=value |
| # shape Guards live their own rich life via shape_env |
| ) |
| |
| def wrap_listlike(self, value: Union[tuple, list, odict_values, NamedTuple]): |
| # One can index a tensor with a list/tuple. Therefore, we need to |
| # have a stricter match. |
| if istype(value, (tuple, list)) and all( |
| [isinstance(x, int) or is_numpy_int_type(x) or x is None for x in value] |
| ): |
| guards = self.make_guards(GuardBuilder.EQUALS_MATCH) |
| else: |
| guards = self.make_guards(GuardBuilder.LIST_LENGTH) |
| output = [ |
| VariableBuilder(self.tx, GetItemSource(self.get_source(), i))( |
| item |
| ).add_guards(guards) |
| for i, item in enumerate(value) |
| ] |
| result = self.list_type(value)(output, guards=guards) |
| if istype(value, list): |
| return self.tx.output.side_effects.track_list(self.source, value, result) |
| return result |
| |
| def wrap_tuple_iterator(self, value: tuple_iterator): |
| guards = self.make_guards(GuardBuilder.TUPLE_ITERATOR_LEN) |
| output = [ |
| VariableBuilder(self.tx, TupleIteratorGetItemSource(self.get_source(), i))( |
| tuple_iterator_getitem(value, i) |
| ).add_guards(guards) |
| for i in range(tuple_iterator_len(value)) |
| ] |
| return ListIteratorVariable(output, mutable_local=MutableLocal(), guards=guards) |
| |
| def wrap_slice_range(self, value: Union[slice, range]): |
| items = [ |
| VariableBuilder(self.tx, AttrSource(self.get_source(), k))( |
| getattr(value, k) |
| ) |
| for k in ("start", "stop", "step") |
| ] |
| if isinstance(value, slice): |
| return SliceVariable( |
| items, guards=self.make_guards(GuardBuilder.TYPE_MATCH) |
| ) |
| else: |
| return RangeVariable( |
| items, guards=self.make_guards(GuardBuilder.EQUALS_MATCH) |
| ) |
| |
| def wrap_module(self, value: torch.nn.Module): |
| if ( |
| isinstance(value, (torch.nn.RNN, torch.nn.GRU, torch.nn.LSTM)) |
| and not config.allow_rnn |
| ): |
| unimplemented("TorchDynamo purposely graph breaks on RNN, GRU, LSTMs") |
| if mutation_guard.is_dynamic_nn_module(value): |
| # created dynamically, don't specialize on it |
| result = UnspecializedNNModuleVariable( |
| value, guards=self.make_guards(GuardBuilder.TYPE_MATCH) |
| ) |
| if not SideEffects.cls_supports_mutation_side_effects(type(value)): |
| # don't allow STORE_ATTR mutation with custom __setattr__ |
| return result |
| return self.tx.output.side_effects.track_object_existing( |
| self.source, value, result |
| ) |
| elif getattr(value, "_is_fsdp_managed_module", False) or issubclass( |
| value.__class__, torch.nn.parallel.distributed.DistributedDataParallel |
| ): |
| if getattr(value, "_is_fsdp_managed_module", False): |
| # Note: we can't do this assert inside FSDP constructor, |
| # since we don't know yet whether dynamo will be used |
| assert getattr( |
| value, "_fsdp_use_orig_params", False |
| ), "Dynamo only supports FSDP with use_orig_params=True" |
| |
| # See note [Dynamo treats FSDP wrapped modules as UnspecializedNNModule] |
| # in fully_sharded_data_parallel.py for more information |
| return UnspecializedNNModuleVariable( |
| value, guards=self.make_guards(GuardBuilder.TYPE_MATCH) |
| ) |
| else: |
| return self.tx.output.register_attr_or_module( |
| value, |
| self.name, |
| source=self.get_source(), |
| # Guards are added inside register_attr_or_module |
| ) |
| |
| def wrap_literal(self, value): |
| if type(value) is int and not config.specialize_int and config.dynamic_shapes: |
| # unspecializing int by default, but still |
| # specialize for the following conditions |
| if ( |
| value in self._common_constants() |
| or isinstance(self.source, GlobalSource) |
| or isinstance(self.source, GetItemSource) |
| or ( |
| isinstance(self.source, AttrSource) |
| and isinstance(self.source.base, GlobalSource) |
| ) |
| # Assume that integers that came from NN modules want to be |
| # specialized (as we don't expect users to be changing the |
| # NN modules on the fly) |
| or self.source.guard_source().is_nn_module() |
| ): |
| return ConstantVariable( |
| value=value, |
| guards=self.make_guards(GuardBuilder.CONSTANT_MATCH), |
| ) |
| else: |
| return self.wrap_unspecialized_primitive(value) |
| else: |
| return ConstantVariable( |
| value=value, |
| guards=self.make_guards(GuardBuilder.CONSTANT_MATCH), |
| ) |
| |
| def wrap_tensor(self, value: torch.Tensor): |
| if self.get_source().guard_source().is_nn_module(): |
| return self.tx.output.register_attr_or_module( |
| value, |
| self.name, |
| source=self.get_source(), |
| # Guards are done inside register_attr_or_module |
| # guards=self.make_guards(GuardBuilder.TENSOR_MATCH), |
| ) |
| |
| if is_constant_source(self.get_source()): |
| return self.tx.output.register_attr_or_module( |
| value, |
| re.sub(r"[^a-zA-Z0-9]+", "_", self.name), |
| source=self.get_source(), |
| # Guards are added inside register_attr_or_module |
| ) |
| |
| if type(value) in config.traceable_tensor_subclasses: |
| # Ordinarily, we would fakeify a tensor so that it can get dynamic |
| # shapes and be computed on without triggering actual operations. |
| # However, how can we fakeify a tensor subclass? Ordinary |
| # inheritance (nor multiple inheritance) won't work work. |
| # |
| # Instead, our plan is to *manually simulate* the tensor subclass |
| # inheriting from a fake tensor with dynamo. This means our |
| # data representation for a tensor subclass will be a fake tensor |
| # + tensor subclass type + any extra data the subclass may have |
| # been storing on the tensor. Because all Python accesses are |
| # mediated through TensorWithTFOverrideVariable, we can ensure |
| # that we dispatch differently, e.g., according to |
| # __torch_function__ |
| # |
| # To simplify things for now, the __dict__ tracking bits haven't |
| # been implemented yet, but they can be added into this design at |
| # a later point in time. |
| ignore_subclass = True |
| else: |
| assert type(value) in (torch.Tensor, torch.nn.Parameter) |
| ignore_subclass = False |
| |
| tensor_proxy = self.tx.output.create_graph_input( |
| re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(value) |
| ) |
| tensor_variable = wrap_fx_proxy( |
| tx=self.tx, |
| proxy=tensor_proxy, |
| example_value=value, |
| guards=self.make_guards(GuardBuilder.TENSOR_MATCH), |
| should_specialize=self.tensor_should_specialize(), |
| ignore_subclass=ignore_subclass, |
| source=self.get_source(), |
| ) |
| assert "tensor_dict" not in tensor_proxy.node.meta |
| tensor_proxy.node.meta["tensor_dict"] = value.__dict__.copy() |
| |
| # TODO: I think the result is guaranteed to be fake with |
| # ignore_subclass changes |
| fake_tensor_value = None |
| example_value = tensor_variable.proxy.node.meta["example_value"] |
| if isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor): |
| fake_tensor_value = example_value |
| |
| self.tx.output.add_grapharg( |
| GraphArg(self.get_source(), value, False, fake_tensor_value) |
| ) |
| |
| if type(value) in config.traceable_tensor_subclasses: |
| subclass_torch_function__func = value.__torch_function__.__func__ |
| subclass_type = type(value) |
| # NB: This is slightly misnamed, a tensor subclass might not have |
| # any explicit __torch_function__ implementation and is relying |
| # on the default inherited from torch.Tensor |
| return TensorWithTFOverrideVariable( |
| tensor_variable, |
| self.get_source(), |
| subclass_torch_function__func, |
| subclass_type, |
| ) |
| |
| return tensor_variable |
| |
| def wrap_unspecialized_primitive(self, value): |
| if self.name in self.tx.output.unspec_variable_map: |
| return self.tx.output.unspec_variable_map[self.name] |
| else: |
| if ( |
| config.dynamic_shapes |
| and isinstance(value, int) |
| and not is_constant_source(self.get_source()) |
| ): |
| shape_env = self.tx.output.shape_env |
| wrapped_value = shape_env.create_symintnode( |
| shape_env.create_symbol(value, source=self.source), hint=value |
| ) |
| self.tx.output.tracked_fakes.append( |
| TrackedFake(wrapped_value, self.source) |
| ) |
| # TODO: Do float? |
| # Not entirely clear we want to do this, as float inputs don't |
| # work with inductor codegen at the moment |
| else: |
| # TODO: Eliminate this case entirely |
| wrapped_value = torch.tensor(value) |
| if not isinstance(self.get_source(), RandomValueSource): |
| guards = {self.get_source().make_guard(GuardBuilder.TYPE_MATCH, True)} |
| options = {"guards": guards} |
| else: |
| options = {} |
| options.update({"source": self.get_source()}) |
| if isinstance(wrapped_value, torch.Tensor): |
| options.update({"raw_value": value}) |
| |
| proxy = self.tx.output.create_graph_input( |
| re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(wrapped_value) |
| ) |
| |
| unspec_var = wrap_fx_proxy_cls( |
| UnspecializedPythonVariable, |
| tx=self.tx, |
| proxy=proxy, |
| example_value=wrapped_value, |
| **options, |
| ) |
| self.tx.output.unspec_variable_map[self.name] = unspec_var |
| if not is_constant_source(self.get_source()): |
| fake_tensor_value = None |
| example_value = unspec_var.proxy.node.meta["example_value"] |
| if isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor): |
| fake_tensor_value = example_value |
| self.tx.output.add_grapharg( |
| GraphArg( |
| self.get_source(), |
| wrapped_value, |
| isinstance(wrapped_value, torch.Tensor), |
| fake_tensor_value, |
| is_tensor=False, |
| ) |
| ) |
| return unspec_var |
| |
| |
| def _dataclasses_fields_lambda(obj): |
| if isinstance(obj, UserDefinedObjectVariable): |
| value = obj.value |
| elif isinstance(obj, DataClassVariable): |
| value = obj.user_cls |
| else: |
| unimplemented(f"Dataclass fields handling fails for type {obj}") |
| items = [] |
| for field in dataclasses.fields(value): |
| source = None |
| if obj.source: |
| source = GetItemSource( |
| AttrSource(obj.source, "__dataclass_fields__"), field.name |
| ) |
| items.append(UserDefinedObjectVariable(field, source=source).add_options(obj)) |
| return TupleVariable(items).add_options(obj) |
| |
| |
| def wrap_fx_proxy(tx, proxy, example_value=None, **options): |
| return wrap_fx_proxy_cls( |
| target_cls=TensorVariable, |
| tx=tx, |
| proxy=proxy, |
| example_value=example_value, |
| **options, |
| ) |
| |
| |
| # Note: Unfortunate split due to some gross classes existing that subclass TensorVariable |
| # Should be compositional instead |
| def wrap_fx_proxy_cls( |
| target_cls, tx, proxy, example_value=None, ignore_subclass=False, **options |
| ): |
| from ..symbolic_convert import InstructionTranslatorBase |
| |
| assert isinstance(tx, InstructionTranslatorBase) |
| if "guards" in options and options["guards"] is not None: |
| tx.output.guards.update(options["guards"]) |
| |
| assert "example_value" not in proxy.node.meta |
| |
| initial_example_value = example_value |
| |
| def _clone_input(value): |
| if isinstance(value, torch.Tensor): |
| # tensor subclasses will not be converted to FakeTensors and need to be cloned |
| if not isinstance(value, torch._subclasses.fake_tensor.FakeTensor): |
| # NB: ensure strides are preserved |
| value = clone_input(value) |
| |
| return value |
| |
| with preserve_rng_state(): |
| if example_value is None: |
| example_value = get_fake_value(proxy.node, tx) |
| |
| # Handle recursive calls here |
| elif isinstance(example_value, FakeTensor): |
| pass |
| |
| elif isinstance(example_value, torch.Tensor): |
| if tx.export: |
| # The legacy behavior for real value cache with subclasses was |
| # to perform a clone WITHOUT preserving the subclass. It's |
| # not entirely clear this is what you actually want though. |
| with torch._C.DisableTorchFunctionSubclass(): |
| proxy.tracer.real_value_cache[proxy.node] = _clone_input( |
| example_value |
| ) |
| # NB: If we're ignoring subclass, then the expectation is you will |
| # take the returned TensorVariable and wrap it into a more |
| # accurate TensorVariable that is able to track subclass-ness; |
| # otherwise this is wrong! |
| kwargs = { |
| "ignore_subclass": ignore_subclass, |
| "is_tensor": target_cls is TensorVariable, |
| } |
| assert "source" in options and options["source"] is not None |
| kwargs["source"] = options["source"] |
| example_value = wrap_to_fake_tensor_and_record( |
| example_value, tx=tx, **kwargs |
| ) |
| |
| if isinstance(example_value, torch.Tensor): |
| is_parameter = isinstance(example_value, torch.nn.Parameter) |
| should_specialize = options.pop("should_specialize", False) |
| if is_parameter or should_specialize: |
| specialized_value = initial_example_value |
| else: |
| specialized_value = None |
| |
| # NB: In most (all?) cases, this does not actually do a clone. |
| # (WARNING: this means that if we mutate metadata on the fake |
| # tensor, the stored example value will update too!) |
| example_value = _clone_input(example_value) |
| proxy.node.meta["example_value"] = example_value |
| specialized_props = target_cls.specialize(example_value) |
| if isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor): |
| # NB: This will be wrong for ignore_subclass; fix it up later! |
| specialized_props["class_type"] = ( |
| torch.nn.Parameter if is_parameter else torch.Tensor |
| ) |
| |
| specialized_props["specialized_value"] = specialized_value |
| |
| options.update(specialized_props) |
| return target_cls(proxy, **options) |
| elif ( |
| hasattr(proxy.node.target, "__name__") |
| and proxy.node.target.__name__ == "set_state" |
| and isinstance(proxy.node.target.__self__, torch._C.Generator) |
| or proxy.node.target == torch.random.set_rng_state |
| ): |
| from . import TorchVariable |
| |
| return TorchVariable(proxy.node.target) |
| elif ( |
| proxy.node.target == torch._C._DisableFuncTorch |
| or proxy.node.target == torch.cuda._is_in_bad_fork |
| ): |
| from . import UserDefinedObjectVariable |
| |
| return UserDefinedObjectVariable(example_value) |
| elif istype(example_value, (int, bool, float)) and config.dynamic_shapes: |
| proxy.node.meta["example_value"] = example_value |
| return SymNodeVariable.create(tx, proxy, example_value, **options) |
| elif istype(example_value, torch.Size) and config.dynamic_shapes: |
| proxy.node.meta["example_value"] = example_value |
| sizes = [] |
| for i, v in enumerate(example_value): |
| proxy_i = proxy[i] |
| sizes.append(SymNodeVariable.create(tx, proxy_i, v, **options)) |
| return SizeVariable(sizes, proxy, **options) |
| elif istype(example_value, int) and proxy.node.target in ( |
| torch.seed, |
| operator.mod, |
| # some mac builds are missing torch.distributed.get_rank() |
| getattr(torch.distributed, "get_rank", _missing), |
| getattr(torch.distributed, "get_world_size", _missing), |
| ): |
| if config.dynamic_shapes: |
| proxy.node.meta["example_value"] = example_value |
| return SymNodeVariable.create(tx, proxy, example_value, **options) |
| else: |
| return ConstantVariable(example_value, **options) |
| elif istype(example_value, torch.Size) and all( |
| [isinstance(x, int) for x in example_value] |
| ): |
| sizes = [ConstantVariable(x) for x in example_value] |
| return SizeVariable(sizes, **options) |
| elif isinstance(example_value, (tuple, list)): |
| unpacked = [] |
| for i, val in enumerate(example_value): |
| if val is None: |
| # nn.MultiheadAttention() can return None, see issue #175 |
| unpacked.append( |
| ConstantVariable(None, **options), |
| ) |
| else: |
| unpacked.append( |
| wrap_fx_proxy( |
| tx, |
| proxy.tracer.create_proxy( |
| "call_function", operator.getitem, (proxy, i), {} |
| ), |
| example_value=val, |
| **options, |
| ) |
| ) |
| if istype(example_value, tuple): |
| return TupleVariable(unpacked, **options) |
| elif istype(example_value, (list, immutable_list)): |
| return ListVariable(unpacked, mutable_local=MutableLocal(), **options) |
| else: |
| assert ( |
| example_value.__class__.__module__ == "torch.return_types" |
| or hasattr(example_value, "_fields") |
| ), ("namedtuple?") |
| return NamedTupleVariable(unpacked, example_value.__class__, **options) |
| elif example_value is None or proxy.node.target is torch.manual_seed: |
| return ConstantVariable(None, **options) |
| elif ( |
| isinstance(example_value, int) |
| and proxy.node.target is torch._utils._element_size |
| ): |
| proxy.node.meta["example_value"] = example_value |
| return ConstantVariable(example_value, **options) |
| elif isinstance(example_value, (torch.SymInt, torch.SymFloat)): |
| proxy.node.meta["example_value"] = example_value |
| return SymNodeVariable(proxy, example_value, **options) |
| elif proxy.node.target in [torch.cuda.streams.Stream, torch.cuda.current_stream]: |
| proxy.node.meta["example_value"] = example_value |
| return CUDAStreamVariable(proxy, example_value, **options) |
| else: |
| unimplemented( |
| "torch.* op returned non-Tensor " |
| + f"{typestr(example_value)} {proxy.node.op} {proxy.node.target}" |
| ) |
| |
| |
| # Tracks the sources of all fake tensors we wrap in Dynamo. |
| # Used by shape guard computation. |
| @dataclasses.dataclass |
| class TrackedFake: |
| fake: Union[FakeTensor, SymInt] |
| source: Source |
| |
| |
| def wrap_to_fake_tensor_and_record( |
| e, tx, ignore_subclass=False, *, source: Optional[Source], is_tensor: bool |
| ): |
| if type(e) in (torch.Tensor, torch.nn.Parameter) or ( |
| ignore_subclass and isinstance(e, torch.Tensor) |
| ): |
| static_shapes, reason = tensor_always_has_static_shape(e, source, is_tensor) |
| |
| fake_e = wrap_fake_exception( |
| lambda: tx.fake_mode.from_tensor( |
| e, |
| static_shapes=static_shapes, |
| ignore_subclass=ignore_subclass, |
| source=source, |
| ) |
| ) |
| if hasattr(e, "_dynamo_dynamic_indices"): |
| fake_e._dynamo_dynamic_indices = e._dynamo_dynamic_indices |
| assert not static_shapes, tensor_static_reason_to_message(reason) |
| if is_tensor: |
| tx.output.tracked_fakes.append(TrackedFake(fake_e, source)) |
| return fake_e |
| else: |
| return e |