blob: fde2a372b54a326adcb3adcf9644718f50bfc416 [file] [log] [blame]
#include <gtest/gtest.h>
#include <filesystem>
#include <string>
#include <vector>
#include <torch/csrc/inductor/aoti_runner/model_container_runner_cpu.h>
#ifdef USE_CUDA
#include <torch/csrc/inductor/aoti_runner/model_container_runner_cuda.h>
#endif
#include <torch/script.h>
#include <torch/torch.h>
#define STR_VALUE(x) #x
#define STRINGIZE(x) STR_VALUE(x)
namespace {
void test_aoti(const std::string& device, bool use_runtime_constant_folding) {
torch::NoGradGuard no_grad;
std::string data_path =
(std::filesystem::path(STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / "data.pt")
.string();
torch::jit::script::Module data_loader = torch::jit::load(data_path);
std::string suffix = use_runtime_constant_folding
? device + "_use_runtime_constant_folding"
: device;
std::string path_attr = "model_so_path_" + suffix;
std::string inputs_attr = "inputs_" + suffix;
std::string outputs_attr = "outputs_" + suffix;
const auto& model_so_path = data_loader.attr(path_attr.c_str()).toStringRef();
auto input_tensors =
data_loader.attr(inputs_attr.c_str()).toTensorList().vec();
const auto& ref_output_tensors =
data_loader.attr(outputs_attr.c_str()).toTensorList().vec();
std::unique_ptr<torch::inductor::AOTIModelContainerRunner> runner;
if (device == "cuda") {
runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCuda>(
model_so_path);
} else if (device == "cpu") {
runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCpu>(
model_so_path);
} else {
testing::AssertionFailure() << "unsupported device: " << device;
}
auto actual_output_tensors = runner->run(input_tensors);
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
}
void test_aoti_script(const std::string& device) {
torch::NoGradGuard no_grad;
std::string script_model = "script_model_" + device + ".pt";
std::string model_path =
(std::filesystem::path(
STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / script_model.c_str())
.string();
torch::jit::script::Module model = torch::jit::load(model_path);
std::string sample_data_path =
(std::filesystem::path(
STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / "script_data.pt")
.string();
torch::jit::script::Module sample_data = torch::jit::load(sample_data_path);
std::string inputs_attr = "inputs_" + device;
std::string outputs_attr = "outputs_" + device;
const auto& inputs = sample_data.attr(inputs_attr.c_str()).toList().vec();
const auto& ref_output_tensors =
sample_data.attr(outputs_attr.c_str()).toTensorVector();
auto outputs = model.forward(inputs).toTuple()->elements();
ASSERT_EQ(outputs.size(), ref_output_tensors.size());
for (size_t i = 0; i < ref_output_tensors.size(); i++) {
ASSERT_TRUE(torch::allclose(outputs[i].toTensor(), ref_output_tensors[i]));
}
}
void test_aoti_constants_update(
const std::string& device,
bool use_runtime_constant_folding) {
torch::NoGradGuard no_grad;
std::string data_path =
(std::filesystem::path(STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / "data.pt")
.string();
torch::jit::script::Module data_loader = torch::jit::load(data_path);
std::string suffix = use_runtime_constant_folding
? device + "_use_runtime_constant_folding"
: device;
std::string path_attr = "model_so_path_" + suffix;
std::string inputs_attr = "inputs_" + suffix;
std::string outputs_attr = "outputs_" + suffix;
std::string weights_attr = "w_pre_" + suffix;
std::string add_attr = "w_add_" + suffix;
const auto& model_so_path = data_loader.attr(path_attr.c_str()).toStringRef();
auto input_tensors =
data_loader.attr(inputs_attr.c_str()).toTensorList().vec();
const auto& ref_output_tensors =
data_loader.attr(outputs_attr.c_str()).toTensorList().vec();
const auto& weight_tensors =
data_loader.attr(weights_attr.c_str()).toTensor();
const auto& add_tensors = data_loader.attr(add_attr.c_str()).toTensor();
torch::inductor::TensorConstantMap missing_map, rand_map, real_map;
missing_map.emplace("L__self___w_pre", new at::Tensor(at::randn({4, 4})));
rand_map.emplace("L__self___w_pre", new at::Tensor(at::randn({10})));
rand_map.emplace("L__self___w_add", new at::Tensor(at::randn({10})));
real_map.emplace("L__self___w_pre", new at::Tensor(weight_tensors));
real_map.emplace("L__self___w_add", new at::Tensor(add_tensors));
std::unique_ptr<torch::inductor::AOTIModelContainerRunner> runner;
if (device == "cuda") {
runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCuda>(
model_so_path);
} else if (device == "cpu") {
runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCpu>(
model_so_path);
} else {
testing::AssertionFailure() << "unsupported device: " << device;
}
// By default, buffer #1 get loaded with burned in weights. Correct results.
auto actual_output_tensors = runner->run(input_tensors);
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
// Update with missing map which should throw.
EXPECT_THROW(
runner->update_constant_buffer(missing_map, false, true),
std::runtime_error);
// Update random weight to buffer #1.
runner->update_constant_buffer(missing_map, false, false);
actual_output_tensors = runner->run(input_tensors);
if (use_runtime_constant_folding) {
// At this moment, this update is applied on the original weight.
// The weight being consumed is "folded", so will have no affect.
ASSERT_TRUE(
torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
runner->run_const_fold(/* use_inactive = */ false);
actual_output_tensors = runner->run(input_tensors);
}
ASSERT_FALSE(
torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
// Update with real map.
runner->update_constant_buffer(real_map, false, false);
actual_output_tensors = runner->run(input_tensors);
if (use_runtime_constant_folding) {
runner->run_const_fold(/* use_inactive = */ false);
}
actual_output_tensors = runner->run(input_tensors);
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
// Update with full random map.
runner->update_constant_buffer(rand_map, false, false);
if (use_runtime_constant_folding) {
runner->run_const_fold(/* use_inactive = */ false);
}
actual_output_tensors = runner->run(input_tensors);
ASSERT_FALSE(
torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
}
void test_aoti_double_buffering(
const std::string& device,
bool use_runtime_constant_folding) {
torch::NoGradGuard no_grad;
std::string data_path =
(std::filesystem::path(STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) / "data.pt")
.string();
torch::jit::script::Module data_loader = torch::jit::load(data_path);
std::string suffix = use_runtime_constant_folding
? device + "_use_runtime_constant_folding"
: device;
std::string path_attr = "model_so_path_" + suffix;
std::string inputs_attr = "inputs_" + suffix;
std::string outputs_attr = "outputs_" + suffix;
std::string weights_attr = "w_pre_" + suffix;
std::string add_attr = "w_add_" + suffix;
const auto& model_so_path = data_loader.attr(path_attr.c_str()).toStringRef();
auto input_tensors =
data_loader.attr(inputs_attr.c_str()).toTensorList().vec();
const auto& ref_output_tensors =
data_loader.attr(outputs_attr.c_str()).toTensorList().vec();
const auto& weight_tensors =
data_loader.attr(weights_attr.c_str()).toTensor();
const auto& add_tensors = data_loader.attr(add_attr.c_str()).toTensor();
torch::inductor::TensorConstantMap rand_map, real_map;
rand_map.emplace("L__self___w_pre", new at::Tensor(at::randn({4, 4})));
rand_map.emplace("L__self___w_add", new at::Tensor(at::randn({4, 4})));
real_map.emplace("L__self___w_pre", new at::Tensor(weight_tensors));
real_map.emplace("L__self___w_add", new at::Tensor(add_tensors));
std::unique_ptr<torch::inductor::AOTIModelContainerRunner> runner;
if (device == "cuda") {
runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCuda>(
model_so_path.c_str());
} else if (device == "cpu") {
runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCpu>(
model_so_path.c_str());
} else {
testing::AssertionFailure() << "unsupported device: " << device;
}
// By default, buffer #1 get loaded with burned in weights. Correct results.
auto actual_output_tensors = runner->run(input_tensors);
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
// We update the weights to buffer #2 and activate it. This should still
// produce correct result, as it's the real constant map.
runner->update_inactive_constant_buffer(real_map);
if (use_runtime_constant_folding) {
runner->run_const_fold(/* use_inactive = */ true);
}
runner->swap_constant_buffer();
actual_output_tensors = runner->run(input_tensors);
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
// We update random weights to buffer #1. But do not swap in the weight yet.
runner->update_inactive_constant_buffer(rand_map);
if (use_runtime_constant_folding) {
runner->run_const_fold(/* use_inactive = */ true);
}
actual_output_tensors = runner->run(input_tensors);
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
// We swap and activate the weight to buffer #1. This is random weight and
// should produce incorrect results.
runner->swap_constant_buffer();
actual_output_tensors = runner->run(input_tensors);
ASSERT_FALSE(
torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
// Swap back to buffer #2 which is the real constants.
runner->swap_constant_buffer();
actual_output_tensors = runner->run(input_tensors);
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
}
void test_aoti_double_buffering_with_tensor_constants() {
torch::NoGradGuard no_grad;
std::string data_path = (std::filesystem::path(
STRINGIZE(CMAKE_CURRENT_BINARY_DIR)) /
"data_with_tensor_constants.pt")
.string();
torch::jit::script::Module data_loader = torch::jit::load(data_path);
std::string path_attr = "model_so_path";
std::string inputs_attr = "inputs";
std::string w_attr = "w";
std::string outputs_attr = "outputs";
const auto& model_so_path = data_loader.attr(path_attr.c_str()).toStringRef();
auto input_tensors =
data_loader.attr(inputs_attr.c_str()).toTensorList().vec();
const auto& w_tensors = data_loader.attr(w_attr.c_str()).toTensor();
const auto& ref_output_tensors =
data_loader.attr(outputs_attr.c_str()).toTensorList().vec();
torch::inductor::TensorConstantMap real_map;
real_map.emplace("L__self___w", new at::Tensor(w_tensors));
std::unique_ptr<torch::inductor::AOTIModelContainerRunner> runner;
runner = std::make_unique<torch::inductor::AOTIModelContainerRunnerCuda>(
model_so_path.c_str());
// By default, buffer #1 get loaded with burned in weights. Correct results.
auto actual_output_tensors = runner->run(input_tensors);
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
// We update the weights to buffer #2 and activate it. This should still
// produce correct result, since we would have copied the tensor_constants.
runner->update_inactive_constant_buffer(real_map);
runner->swap_constant_buffer();
actual_output_tensors = runner->run(input_tensors);
ASSERT_TRUE(torch::allclose(ref_output_tensors[0], actual_output_tensors[0]));
}
} // namespace
namespace torch {
namespace aot_inductor {
TEST(AotInductorTest, BasicTestCpu) {
test_aoti("cpu", false);
}
TEST(AotInductorTest, BasicScriptTestCpu) {
test_aoti_script("cpu");
}
#ifdef USE_CUDA
TEST(AotInductorTest, BasicTestCuda) {
test_aoti("cuda", true);
test_aoti("cuda", false);
}
TEST(AotInductorTest, BasicScriptTestCuda) {
test_aoti_script("cuda");
}
TEST(AotInductorTest, RuntimeUpdateConstantsCuda) {
test_aoti_constants_update("cuda", true);
}
TEST(AotInductorTest, UpdateConstantsCuda) {
test_aoti_constants_update("cuda", false);
}
TEST(AotInductorTest, RuntimeUpdateInactiveConstantsCuda) {
test_aoti_double_buffering("cuda", true);
}
TEST(AotInductorTest, UpdateInactiveConstantsCuda) {
test_aoti_double_buffering("cuda", false);
}
TEST(AotInductorTest, UpdateInactiveConstantsWithTensorConstantsCuda) {
test_aoti_double_buffering_with_tensor_constants();
}
#endif
} // namespace aot_inductor
} // namespace torch