blob: 76aab44ac290da80f234de8fc61eed0adac20efb [file] [log] [blame]
#include <gtest/gtest.h>
#include <c10/util/irange.h>
#include <torch/torch.h>
#include <test/cpp/api/support.h>
#include <algorithm>
#include <random>
#include <sstream>
#include <string>
using namespace torch::nn;
namespace rnn_utils = torch::nn::utils::rnn;
struct NNUtilsTest : torch::test::SeedingFixture {};
struct PackedSequenceTest : torch::test::SeedingFixture {};
TEST_F(NNUtilsTest, ClipGradNorm) {
auto l = Linear(10, 10);
float max_norm = 2;
auto compute_norm = [&](float norm_type) -> float {
float total_norm = 0.0;
if (norm_type != std::numeric_limits<float>::infinity()) {
for (const auto& p : l->parameters()) {
total_norm +=
p.grad().data().abs().pow(norm_type).sum().item().toFloat();
}
return std::pow(total_norm, 1.0 / norm_type);
} else {
for (const auto& p : l->parameters()) {
auto param_max = p.grad().data().abs().max().item().toFloat();
if (param_max > total_norm) {
total_norm = param_max;
}
}
return total_norm;
}
};
auto compare_scaling =
[&](const std::vector<torch::Tensor>& grads) -> torch::Tensor {
std::vector<torch::Tensor> p_scale;
for (const auto i : c10::irange(grads.size())) {
auto param = l->parameters()[i];
auto grad = grads[i];
p_scale.push_back(param.grad().data().div(grad).view(-1));
}
auto scale = torch::cat(p_scale);
return scale; // need to assert std is 0.
};
std::vector<torch::Tensor> grads = {
torch::arange(1.0, 101).view({10, 10}),
torch::ones({10}).div(1000),
};
std::vector<float> norm_types = {
0.5,
1.5,
2.0,
4.0,
std::numeric_limits<float>::infinity(),
};
for (auto norm_type : norm_types) {
for (const auto i : c10::irange(grads.size())) {
l->parameters()[i].mutable_grad() =
grads[i].clone().view_as(l->parameters()[i].data());
}
auto norm_before = compute_norm(norm_type);
auto norm = utils::clip_grad_norm_(l->parameters(), max_norm, norm_type);
auto norm_after = compute_norm(norm_type);
ASSERT_FLOAT_EQ(norm, norm_before);
ASSERT_NEAR(norm_after, max_norm, 1e-6);
ASSERT_LE(norm_after, max_norm);
auto scaled = compare_scaling(grads);
ASSERT_NEAR(0, scaled.std().item().toFloat(), 1e-7);
}
// Small gradients should be left unchanged
grads = {
torch::rand({10, 10}).div(10000),
torch::ones(10).div(500),
};
for (auto norm_type : norm_types) {
for (const auto i : c10::irange(grads.size())) {
l->parameters()[i].grad().data().copy_(grads[i]);
}
auto norm_before = compute_norm(norm_type);
auto norm = utils::clip_grad_norm_(l->parameters(), max_norm, norm_type);
auto norm_after = compute_norm(norm_type);
ASSERT_FLOAT_EQ(norm, norm_before);
ASSERT_FLOAT_EQ(norm_before, norm_after);
ASSERT_LE(norm_after, max_norm);
auto scaled = compare_scaling(grads);
ASSERT_NEAR(0, scaled.std().item().toFloat(), 1e-7);
ASSERT_FLOAT_EQ(scaled[0].item().toFloat(), 1);
}
// should accept a single tensor as input
auto p1 = torch::randn({10, 10});
auto p2 = torch::randn({10, 10});
auto g = torch::arange(1., 101).view({10, 10});
p1.mutable_grad() = g.clone();
p2.mutable_grad() = g.clone();
for (const auto norm_type : norm_types) {
utils::clip_grad_norm_(p1, max_norm, norm_type);
utils::clip_grad_norm_({p2}, max_norm, norm_type);
ASSERT_TRUE(torch::allclose(p1.grad(), p2.grad()));
}
}
// Check that clip_grad_norm_ raises an error if the norm of a gradient
// is non-finite
TEST_F(NNUtilsTest, ClipGradNormErrorIfNonfinite) {
double inf = std::numeric_limits<double>::infinity();
double nan = std::numeric_limits<double>::quiet_NaN();
using Vector = std::vector<double>;
Vector norms_pos = {0.1, 1, 2, 3.5, inf};
Vector norms_neg = {-0.1, -1, -2, -3.5};
Vector norms_neg_plus_0 = {0, -0.1, -1, -2, -3.5};
Vector norms_except_0 = {0.1, 1, 2, 3.5, inf, -0.1, -1, -2, -3.5};
Vector norms_all = {0, 0.1, 1, 2, 3.5, inf, -0.1, -1, -2, -3.5};
// Each entry in test_cases has the following values, in this order:
//
// grad_only_one_elem If True, only one element of the parameter's
// gradient is set to the scalar grad, and the
// rest of the elements are 0. If False, all grad
// elements are equal to the scalar.
//
// prefix_finite_grad_param If True, prefix a parameter that has a grad
// of 1.
//
// scalars Scalars to use as the parameter's grad, through
// multiplication
//
// norms_nonfinite Norm types that should produce nonfinite total norm
//
// norms_finite Norm types that should produce finite total norm
std::vector<std::tuple<bool, bool, Vector, Vector, Vector>> test_cases({
// Test errors from an infinite grad
std::make_tuple(
false, false, Vector({inf, -inf}), norms_except_0, Vector({0})),
std::make_tuple(
false, true, Vector({inf, -inf}), norms_pos, norms_neg_plus_0),
std::make_tuple(
true, false, Vector({inf, -inf}), norms_pos, norms_neg_plus_0),
std::make_tuple(
false, true, Vector({inf, -inf}), norms_pos, norms_neg_plus_0),
// Test errors from a NaN grad
std::make_tuple(false, false, Vector({nan}), norms_except_0, Vector({0})),
std::make_tuple(false, true, Vector({nan}), norms_except_0, Vector({0})),
std::make_tuple(true, false, Vector({nan}), norms_except_0, Vector({0})),
std::make_tuple(true, true, Vector({nan}), norms_except_0, Vector({0})),
// Test a grad that should never error
std::make_tuple(false, false, Vector({2e22, -2e22}), Vector(), norms_all),
std::make_tuple(false, true, Vector({2e22, -2e22}), Vector(), norms_all),
std::make_tuple(true, false, Vector({2e22, -2e22}), Vector(), norms_all),
std::make_tuple(true, true, Vector({2e22, -2e22}), Vector(), norms_all),
// Test a grad that will overflow to inf for only some norm orders
std::make_tuple(
false,
false,
Vector({2e200, -2e200}),
Vector({3.5, 2, -2, -3.5}),
Vector({inf, 1, 0.1, 0, -1, -0.1})),
std::make_tuple(
false,
true,
Vector({2e200, -2e200}),
Vector({3.5, 2}),
Vector({inf, 1, 0.1, 0, -1, -0.1, -2, -3.5})),
std::make_tuple(
true,
false,
Vector({2e200, -2e200}),
Vector({3.5, 2}),
Vector({inf, 1, 0.1, 0, -1, -0.1, -2, -3.5})),
std::make_tuple(
false,
true,
Vector({2e200, -2e200}),
Vector({3.5, 2}),
Vector({inf, 1, 0.1, 0, -1, -0.1, -2, -3.5})),
});
auto gen_parameters = [](double scalar,
bool grad_only_one_elem,
bool prefix_finite_grad_param,
torch::DeviceType device_type) {
auto param = torch::ones(
10,
torch::TensorOptions()
.dtype(torch::kDouble)
.device(device_type)
.requires_grad(true));
if (grad_only_one_elem) {
param[1].mul(scalar).sum().backward();
} else {
param.mul(scalar).sum().backward();
}
std::vector<torch::Tensor> parameters;
if (prefix_finite_grad_param) {
auto prefix_param = torch::ones(
1,
torch::TensorOptions()
.dtype(torch::kDouble)
.device(device_type)
.requires_grad(true));
prefix_param.mul(1).sum().backward();
parameters.push_back(prefix_param);
}
parameters.push_back(param);
return parameters;
};
auto run_test_case = [&gen_parameters](
double norm_type,
bool error_if_nonfinite,
double scalar,
bool grad_only_one_elem,
bool prefix_finite_grad_param,
bool is_norm_nonfinite,
torch::DeviceType device_type) {
std::stringstream ss;
ss << "device: " << device_type << ", norm_type: " << norm_type
<< ", error_if_nonfinite: " << error_if_nonfinite
<< ", scalar: " << scalar
<< ", grad_only_one_elem: " << grad_only_one_elem
<< ", prefix_finite_grad_param: " << prefix_finite_grad_param
<< ", is_norm_nonfinite: " << is_norm_nonfinite;
std::string msg = ss.str();
auto parameters = gen_parameters(
scalar, grad_only_one_elem, prefix_finite_grad_param, device_type);
if (is_norm_nonfinite && error_if_nonfinite) {
std::vector<torch::Tensor> grads_before;
// NOLINTNEXTLINE(performance-for-range-copy)
for (auto p : parameters) {
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
grads_before.push_back(p.grad().clone());
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
EXPECT_THROW(
utils::clip_grad_norm_(parameters, 1., norm_type, true),
std::exception)
<< msg;
// Grads should not change if error is thrown
for (const auto p_idx : c10::irange(parameters.size())) {
ASSERT_TRUE(torch::allclose(
parameters[p_idx].grad(),
grads_before[p_idx],
1.0,
0.0,
/*equal_nan*/ true))
<< msg;
}
} else {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
EXPECT_NO_THROW(
utils::clip_grad_norm_(parameters, 1., norm_type, error_if_nonfinite))
<< msg;
}
};
for (auto device_type : {torch::kCPU, torch::kCUDA}) {
if (device_type == torch::kCUDA && !torch::cuda::is_available()) {
continue;
}
for (auto test_case : test_cases) {
auto grad_only_one_elem = std::get<0>(test_case);
auto prefix_finite_grad_param = std::get<1>(test_case);
auto scalars = std::get<2>(test_case);
auto norms_nonfinite = std::get<3>(test_case);
auto norms_finite = std::get<4>(test_case);
for (auto error_if_nonfinite : {false, true}) {
for (auto scalar : scalars) {
for (auto norm_type : norms_nonfinite) {
run_test_case(
norm_type,
error_if_nonfinite,
scalar,
grad_only_one_elem,
prefix_finite_grad_param,
true,
device_type);
}
for (auto norm_type : norms_finite) {
run_test_case(
norm_type,
error_if_nonfinite,
scalar,
grad_only_one_elem,
prefix_finite_grad_param,
false,
device_type);
}
}
}
}
}
}
TEST_F(NNUtilsTest, ClipGradValue) {
auto l = Linear(10, 10);
float clip_value = 2.5;
torch::Tensor grad_w = torch::arange(-50., 50).view({10, 10}).div_(5);
torch::Tensor grad_b = torch::ones({10}).mul_(2);
std::vector<std::vector<torch::Tensor>> grad_lists = {
{grad_w, grad_b}, {grad_w, torch::Tensor()}};
for (auto grad_list : grad_lists) {
for (const auto i : c10::irange(grad_list.size())) {
auto p = l->parameters()[i];
auto g = grad_list[i];
p.mutable_grad() = g.defined() ? g.clone().view_as(p.data()) : g;
}
utils::clip_grad_value_(l->parameters(), clip_value);
for (const auto& p : l->parameters()) {
if (p.grad().defined()) {
ASSERT_LE(p.grad().data().max().item().toFloat(), clip_value);
ASSERT_GE(p.grad().data().min().item().toFloat(), -clip_value);
}
}
}
// Should accept a single Tensor as input
auto p1 = torch::randn({10, 10});
auto p2 = torch::randn({10, 10});
auto g = torch::arange(-50., 50).view({10, 10}).div_(5);
p1.mutable_grad() = g.clone();
p2.mutable_grad() = g.clone();
utils::clip_grad_value_(p1, clip_value);
utils::clip_grad_value_({p2}, clip_value);
ASSERT_TRUE(torch::allclose(p1.grad(), p2.grad()));
}
TEST_F(NNUtilsTest, ConvertParameters) {
std::vector<torch::Tensor> parameters{
torch::arange(9, torch::kFloat32),
torch::arange(9, torch::kFloat32).view({3, 3}),
torch::arange(8, torch::kFloat32).view({2, 2, 2})};
auto expected = torch::cat(
{torch::arange(9, torch::kFloat32),
torch::arange(9, torch::kFloat32).view(-1),
torch::arange(8, torch::kFloat32).view(-1)});
auto vector = utils::parameters_to_vector(parameters);
ASSERT_TRUE(vector.allclose(expected));
std::vector<torch::Tensor> zero_parameters{
torch::zeros({9}, torch::kFloat32),
torch::zeros({9}, torch::kFloat32).view({3, 3}),
torch::zeros({8}, torch::kFloat32).view({2, 2, 2})};
utils::vector_to_parameters(vector, zero_parameters);
for (const auto i : c10::irange(zero_parameters.size())) {
ASSERT_TRUE(zero_parameters[i].allclose(parameters[i]));
}
{
auto conv1 = Conv2d(3, 10, 5);
auto fc1 = Linear(10, 20);
auto model = Sequential(conv1, fc1);
auto vec = utils::parameters_to_vector(model->parameters());
ASSERT_EQ(vec.size(0), 980);
}
{
auto conv1 = Conv2d(3, 10, 5);
auto fc1 = Linear(10, 20);
auto model = Sequential(conv1, fc1);
auto vec = torch::arange(0., 980);
utils::vector_to_parameters(vec, model->parameters());
auto sample = model->parameters()[0][0][0][0];
ASSERT_TRUE(torch::equal(sample.data(), vec.data().slice(0, 0, 5)));
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-avoid-non-const-global-variables)
int64_t PackedSequenceTest_batch_size = 5;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-avoid-non-const-global-variables)
int64_t PackedSequenceTest_max_length = 6;
std::vector<torch::Tensor> PackedSequenceTest_ordered_sequence(
torch::ScalarType tensor_type) {
std::vector<torch::Tensor> seqs;
seqs.reserve(PackedSequenceTest_batch_size);
for (const auto i : c10::irange(PackedSequenceTest_batch_size)) {
(void)i; // Suppress unused variable warning
seqs.emplace_back(torch::empty(
{torch::randint(1, PackedSequenceTest_max_length, {1}).item<int64_t>()},
tensor_type));
}
for (auto& s : seqs) {
s.random_(-128, 128);
}
sort(
seqs.begin(),
seqs.end(),
[&](const torch::Tensor& t1, const torch::Tensor& t2) {
return t1.size(0) > t2.size(0);
});
return seqs;
}
std::tuple<torch::Tensor, torch::Tensor> PackedSequenceTest_padded_sequence(
torch::ScalarType tensor_type) {
// Create Tensor of random padded sequences
auto ordered = PackedSequenceTest_ordered_sequence(tensor_type);
auto lengths = torch::empty({(int64_t)ordered.size()}, torch::kInt64);
for (const auto i : c10::irange(ordered.size())) {
lengths[i] = ordered[i].size(0);
}
auto padded_tensor = rnn_utils::pad_sequence(ordered);
return std::make_tuple(padded_tensor, lengths);
}
void assert_is_equal_packed_sequence(
const rnn_utils::PackedSequence& a,
const rnn_utils::PackedSequence& b) {
ASSERT_TRUE(torch::allclose(a.data(), b.data()));
ASSERT_TRUE(torch::allclose(a.batch_sizes(), b.batch_sizes()));
ASSERT_TRUE(
(!a.sorted_indices().defined() && !b.sorted_indices().defined()) ||
torch::allclose(a.sorted_indices(), b.sorted_indices()));
ASSERT_TRUE(
(!a.unsorted_indices().defined() && !b.unsorted_indices().defined()) ||
torch::allclose(a.unsorted_indices(), b.unsorted_indices()));
}
void assert_is_same_packed_sequence(
const rnn_utils::PackedSequence& a,
const rnn_utils::PackedSequence& b) {
ASSERT_TRUE(a.data().is_same(b.data()));
ASSERT_TRUE(a.batch_sizes().is_same(b.batch_sizes()));
ASSERT_TRUE(a.sorted_indices().is_same(b.sorted_indices()));
ASSERT_TRUE(a.unsorted_indices().is_same(b.unsorted_indices()));
}
TEST_F(PackedSequenceTest, WrongOrder) {
auto a = torch::ones({25, 300});
auto b = torch::ones({22, 300});
auto b_a = rnn_utils::pad_sequence({b, a});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
ASSERT_THROW(
rnn_utils::pack_padded_sequence(
b_a,
torch::tensor({22, 25}),
/*batch_first=*/false,
/*enforce_sorted=*/true),
c10::Error);
}
TEST_F(PackedSequenceTest, TotalLength) {
torch::Tensor padded, lengths;
std::tie(padded, lengths) = PackedSequenceTest_padded_sequence(torch::kFloat);
int64_t max_length = torch::max(lengths).item<int64_t>();
rnn_utils::PackedSequence packed =
rnn_utils::pack_padded_sequence(padded, lengths);
// test ValueError if total_length < max_length
for (int64_t total_length : std::vector<int64_t>{-1, 0, max_length - 1}) {
for (bool batch_first : std::vector<bool>{true, false}) {
auto err_fn = [&]() {
rnn_utils::pad_packed_sequence(
packed,
/*batch_first=*/batch_first,
/*padding_value=*/0.0,
/*total_length=*/total_length);
};
ASSERT_THROWS_WITH(
err_fn(),
"Expected total_length to be at least the length of the longest sequence in input");
}
}
// test that pad_packed_sequence returns results of correct length
for (bool batch_first : std::vector<bool>{true, false}) {
torch::Tensor no_extra_pad, ignored;
std::tie(no_extra_pad, ignored) =
rnn_utils::pad_packed_sequence(packed, /*batch_first=*/batch_first);
for (int64_t total_length_delta : std::vector<int64_t>{0, 1, 8}) {
int64_t total_length = max_length + total_length_delta;
torch::Tensor unpacked, lengths_out;
std::tie(unpacked, lengths_out) = rnn_utils::pad_packed_sequence(
packed,
/*batch_first=*/batch_first,
/*padding_value=*/0.0,
/*total_length=*/total_length);
ASSERT_TRUE(torch::allclose(lengths, lengths_out));
ASSERT_EQ(unpacked.size(batch_first ? 1 : 0), total_length);
torch::Tensor ref_output, extra_pad;
if (total_length_delta == 0) {
ref_output = no_extra_pad;
} else if (batch_first) {
extra_pad = torch::zeros(
{PackedSequenceTest_batch_size, total_length_delta},
no_extra_pad.options());
ref_output = torch::cat({no_extra_pad, extra_pad}, 1);
} else {
extra_pad = torch::zeros(
{total_length_delta, PackedSequenceTest_batch_size},
no_extra_pad.options());
ref_output = torch::cat({no_extra_pad, extra_pad}, 0);
}
ASSERT_TRUE(torch::allclose(unpacked, ref_output));
}
}
}
TEST_F(PackedSequenceTest, To) {
for (bool enforce_sorted : std::vector<bool>{true, false}) {
torch::Tensor padded, lengths;
std::tie(padded, lengths) = PackedSequenceTest_padded_sequence(torch::kInt);
rnn_utils::PackedSequence a = rnn_utils::pack_padded_sequence(
padded,
lengths,
/*batch_first=*/false,
/*enforce_sorted=*/enforce_sorted)
.cpu();
assert_is_same_packed_sequence(a, a.to(torch::kCPU));
assert_is_same_packed_sequence(a, a.cpu());
assert_is_same_packed_sequence(
a, a.to(torch::device(torch::kCPU).dtype(torch::kInt32)));
if (torch::cuda::is_available()) {
auto b = a.cuda();
assert_is_same_packed_sequence(b, b.to(torch::kCUDA));
assert_is_same_packed_sequence(b, b.cuda());
assert_is_equal_packed_sequence(a, b.to(torch::kCPU));
assert_is_equal_packed_sequence(b, a.to(torch::kCUDA));
assert_is_equal_packed_sequence(
a, b.to(torch::device(torch::kCPU).dtype(torch::kInt32)));
assert_is_same_packed_sequence(b, b.to(torch::kInt32));
}
}
}
TEST_F(NNUtilsTest, PackSequence) {
auto _compatibility_test = [&](torch::ArrayRef<torch::Tensor> sequences,
torch::Tensor lengths,
bool batch_first,
bool enforce_sorted = false) {
torch::Tensor padded = rnn_utils::pad_sequence(sequences, batch_first);
rnn_utils::PackedSequence packed =
rnn_utils::pack_sequence(sequences, enforce_sorted);
std::tuple<torch::Tensor, torch::Tensor> unpacked =
rnn_utils::pad_packed_sequence(packed, batch_first);
ASSERT_TRUE(torch::allclose(padded, std::get<0>(unpacked)));
rnn_utils::PackedSequence pack_padded = rnn_utils::pack_padded_sequence(
padded, lengths, batch_first, enforce_sorted);
assert_is_equal_packed_sequence(packed, pack_padded);
};
// single dimensional
auto a = torch::tensor({1, 2, 3});
auto b = torch::tensor({4, 5});
auto c = torch::tensor({6});
rnn_utils::PackedSequence packed =
rnn_utils::pack_sequence({a, b, c}, /*enforce_sorted=*/false);
auto expected = torch::tensor({1, 4, 6, 2, 5, 3});
ASSERT_TRUE(torch::allclose(packed.batch_sizes(), torch::tensor({3, 2, 1})));
ASSERT_TRUE(torch::allclose(packed.data(), expected));
ASSERT_TRUE(
torch::allclose(packed.sorted_indices(), torch::tensor({0, 1, 2})));
ASSERT_TRUE(
torch::allclose(packed.unsorted_indices(), torch::tensor({0, 1, 2})));
rnn_utils::PackedSequence packed_unsorted =
rnn_utils::pack_sequence({b, c, a}, /*enforce_sorted=*/false);
ASSERT_TRUE(
torch::allclose(packed_unsorted.batch_sizes(), torch::tensor({3, 2, 1})));
ASSERT_TRUE(torch::allclose(packed_unsorted.data(), expected));
ASSERT_TRUE(torch::allclose(
packed_unsorted.sorted_indices(), torch::tensor({2, 0, 1})));
ASSERT_TRUE(torch::allclose(
packed_unsorted.unsorted_indices(), torch::tensor({1, 2, 0})));
// single dimensional, enforce_sorted = True
rnn_utils::PackedSequence packed_enforce_sorted =
rnn_utils::pack_sequence({a, b, c}, /*enforce_sorted=*/true);
ASSERT_TRUE(torch::allclose(
packed_enforce_sorted.batch_sizes(), torch::tensor({3, 2, 1})));
ASSERT_TRUE(torch::allclose(packed_enforce_sorted.data(), expected));
ASSERT_FALSE(packed_enforce_sorted.sorted_indices().defined());
ASSERT_FALSE(packed_enforce_sorted.unsorted_indices().defined());
ASSERT_THROWS_WITH(
rnn_utils::pack_sequence({b, c, a}, /*enforce_sorted=*/true),
"must be sorted in decreasing order");
ASSERT_THROWS_WITH(
rnn_utils::pack_sequence({b, c, a}, /*enforce_sorted=*/true),
"You can pass `enforce_sorted=False`");
// more dimensions
int64_t maxlen = 9;
for (int64_t num_dim : std::vector<int64_t>{0, 1, 2, 3}) {
std::vector<torch::Tensor> sequences;
std::vector<int64_t> lengths_vec;
std::vector<int64_t> trailing_dims(num_dim, 4);
for (int64_t i = maxlen; i > 0; i--) {
int64_t seq_len = i * i;
lengths_vec.emplace_back(seq_len);
std::vector<int64_t> tensor_sizes{seq_len, 5};
tensor_sizes.insert(
tensor_sizes.end(), trailing_dims.begin(), trailing_dims.end());
sequences.emplace_back(torch::rand(tensor_sizes));
}
std::vector<torch::Tensor> unsorted_sequences;
for (const auto& s : sequences) {
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
unsorted_sequences.emplace_back(s.clone());
}
std::shuffle(
std::begin(unsorted_sequences),
std::end(unsorted_sequences),
std::default_random_engine{});
std::vector<int64_t> unsorted_sequences_lengths_vec;
for (const auto& t : unsorted_sequences) {
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
unsorted_sequences_lengths_vec.emplace_back(t.size(0));
}
// compatibility with other utilities
for (bool batch_first : std::vector<bool>{true, false}) {
for (bool enforce_sorted : std::vector<bool>{true, false}) {
_compatibility_test(
sequences, torch::tensor(lengths_vec), batch_first, enforce_sorted);
}
_compatibility_test(
unsorted_sequences,
torch::tensor(unsorted_sequences_lengths_vec),
batch_first);
}
}
}
TEST_F(NNUtilsTest, PackPaddedSequence) {
auto generate_test_case = [&](torch::ArrayRef<int64_t> sorted_lengths,
bool should_shuffle) {
auto pad = [&](torch::Tensor tensor, int64_t length) {
std::vector<int64_t> tensor_sizes{length - tensor.size(0)};
tensor_sizes.insert(
tensor_sizes.end(),
tensor.sizes().slice(1).begin(),
tensor.sizes().slice(1).end());
return torch::cat({tensor, torch::zeros(tensor_sizes, tensor.options())});
};
int64_t max_length = sorted_lengths[0];
torch::Tensor batch_sizes = torch::empty({max_length}, torch::kInt64);
for (int64_t i = 1; i < max_length + 1; i++) {
int64_t total = 0;
for (const auto& x : sorted_lengths) {
if (x >= i) {
total++;
}
}
batch_sizes[i - 1] = total;
}
std::vector<torch::Tensor> tensors_to_be_cat;
for (int64_t i = 1; i < static_cast<int64_t>(sorted_lengths.size() + 1);
i++) {
int64_t l = sorted_lengths.at(i - 1);
tensors_to_be_cat.emplace_back(pad(
i * 100 + torch::arange(1., 5 * l + 1).view({l, 1, 5}), max_length));
}
auto padded = torch::cat(tensors_to_be_cat, 1);
std::vector<torch::Tensor> expected_data_vec;
for (const auto n : c10::irange(batch_sizes.size(0))) {
int64_t batch_size = batch_sizes[n].item<int64_t>();
for (const auto i : c10::irange(batch_size)) {
expected_data_vec.emplace_back(
torch::arange(1., 6) + (i + 1) * 100 + 5 * n);
}
}
auto expected_data = torch::stack(expected_data_vec, /*dim=*/0);
torch::Tensor unsorted_indices, lengths;
if (should_shuffle) {
// Shuffle the padded sequence to create an unsorted sequence
std::vector<int64_t> permutation;
for (const auto i : c10::irange(sorted_lengths.size())) {
permutation.emplace_back(i);
}
std::shuffle(
std::begin(permutation),
std::end(permutation),
std::default_random_engine{});
unsorted_indices = torch::tensor(permutation);
padded = padded.index_select(1, unsorted_indices);
lengths = torch::tensor(sorted_lengths).index_select(0, unsorted_indices);
} else {
unsorted_indices = torch::Tensor();
lengths = torch::tensor(sorted_lengths);
}
return std::make_tuple(
padded.requires_grad_(),
lengths,
expected_data,
batch_sizes,
unsorted_indices);
};
std::vector<std::pair<std::vector<int64_t>, bool>> test_cases = {
// sorted_lengths, should_shuffle
{{10, 8, 4, 2, 2, 2, 1}, false},
{{11, 10, 8, 6, 4, 3, 1}, false},
{{11, 10, 8, 6, 4, 3, 1}, true}};
for (const auto& test_case : test_cases) {
for (bool batch_first : std::vector<bool>{true, false}) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
std::vector<int64_t> sorted_lengths = std::get<0>(test_case);
bool should_shuffle = std::get<1>(test_case);
torch::Tensor padded, lengths, expected_data, batch_sizes,
unsorted_indices;
std::tie(padded, lengths, expected_data, batch_sizes, unsorted_indices) =
generate_test_case(sorted_lengths, should_shuffle);
auto src = padded;
if (batch_first) {
src = src.transpose(0, 1);
}
// check output
rnn_utils::PackedSequence packed = rnn_utils::pack_padded_sequence(
src,
lengths,
/*batch_first=*/batch_first,
/*enforce_sorted=*/!should_shuffle);
ASSERT_TRUE(torch::allclose(packed.data(), expected_data));
ASSERT_TRUE(torch::allclose(packed.batch_sizes(), batch_sizes));
ASSERT_TRUE(
(!packed.unsorted_indices().defined() &&
!unsorted_indices.defined()) ||
torch::allclose(packed.unsorted_indices(), unsorted_indices));
// test inverse
torch::Tensor unpacked, unpacked_len;
std::tie(unpacked, unpacked_len) =
rnn_utils::pad_packed_sequence(packed, /*batch_first=*/batch_first);
ASSERT_TRUE(torch::allclose(unpacked, src));
ASSERT_TRUE(torch::allclose(unpacked_len, lengths));
// check grad
if (padded.grad().defined()) {
torch::NoGradGuard no_grad;
padded.grad().zero_();
}
torch::Tensor grad_output;
{
torch::NoGradGuard no_grad;
grad_output = unpacked.clone().normal_();
}
unpacked.backward(grad_output);
if (batch_first) {
grad_output.transpose_(0, 1);
}
for (const auto i : c10::irange(lengths.size(0))) {
int64_t l = lengths[i].item<int64_t>();
ASSERT_TRUE(torch::allclose(
padded.grad().narrow(0, 0, l).select(1, i),
grad_output.narrow(0, 0, l).select(1, i)));
if (l < 10) {
ASSERT_EQ(
padded.grad()
.narrow(0, l, padded.grad().size(0) - l)
.select(1, i)
.abs()
.sum()
.item<double>(),
0);
}
}
}
}
// test error messages
ASSERT_THROWS_WITH(
rnn_utils::pack_padded_sequence(
torch::randn({3, 3}), torch::tensor({1, 3, 2})),
"You can pass `enforce_sorted=False`");
ASSERT_THROWS_WITH(
rnn_utils::pack_padded_sequence(torch::randn({0, 0}), torch::tensor({})),
"empty tensor");
}
TEST_F(NNUtilsTest, PadSequence) {
auto pad = [&](const torch::Tensor& tensor, int64_t length) {
torch::NoGradGuard no_grad;
std::vector<int64_t> tensor_sizes{length - tensor.size(0)};
tensor_sizes.insert(
tensor_sizes.end(),
tensor.sizes().slice(1).begin(),
tensor.sizes().slice(1).end());
return torch::cat({tensor, torch::zeros(tensor_sizes, tensor.options())});
};
// single dimensional
auto a = torch::tensor({1, 2, 3});
auto b = torch::tensor({4, 5});
auto c = torch::tensor({6});
torch::Tensor expected, padded;
// batch_first = true
expected = torch::tensor({{4, 5, 0}, {1, 2, 3}, {6, 0, 0}});
padded = rnn_utils::pad_sequence({b, a, c}, true);
ASSERT_TRUE(padded.allclose(expected));
// batch_first = false
padded = rnn_utils::pad_sequence({b, a, c});
ASSERT_TRUE(padded.allclose(expected.transpose(0, 1)));
// pad with non-zero value
expected = torch::tensor({{4, 5, 1}, {1, 2, 3}, {6, 1, 1}});
padded = rnn_utils::pad_sequence({b, a, c}, true, 1);
ASSERT_TRUE(padded.allclose(expected));
// Test pad sorted sequence
expected = torch::tensor({{1, 2, 3}, {4, 5, 0}, {6, 0, 0}});
padded = rnn_utils::pad_sequence({a, b, c}, true);
ASSERT_TRUE(padded.allclose(expected));
// more dimensions
int64_t maxlen = 9;
for (int64_t num_dim : std::vector<int64_t>{0, 1, 2, 3}) {
std::vector<torch::Tensor> sequences;
std::vector<int64_t> trailing_dims(num_dim, 4);
for (int64_t i = 1; i < maxlen + 1; i++) {
int64_t seq_len = i * i;
std::vector<int64_t> tensor_sizes{seq_len, 5};
tensor_sizes.insert(
tensor_sizes.end(), trailing_dims.begin(), trailing_dims.end());
sequences.emplace_back(torch::rand(tensor_sizes));
}
std::shuffle(
std::begin(sequences),
std::end(sequences),
std::default_random_engine{});
std::vector<torch::Tensor> expected_tensors;
for (const torch::Tensor& seq : sequences) {
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
expected_tensors.emplace_back(pad(seq, maxlen * maxlen));
}
// batch first = true
auto expected = torch::stack(expected_tensors);
auto padded = rnn_utils::pad_sequence(sequences, true);
ASSERT_TRUE(padded.allclose(expected));
// batch first = false
padded = rnn_utils::pad_sequence(sequences);
ASSERT_TRUE(padded.allclose(expected.transpose(0, 1)));
}
}