blob: 7e616b39b9d84fe0a52ab2631f4b763282aa4f8d [file] [log] [blame]
# Owner(s): ["module: intel"]
import sys
import unittest
import torch
import torch.xpu._gpu_trace as gpu_trace
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
onlyXPU,
OpDTypes,
ops,
)
from torch.testing._internal.common_methods_invocations import ops_and_refs
from torch.testing._internal.common_utils import (
NoTest,
run_tests,
suppress_warnings,
TEST_WITH_UBSAN,
TEST_XPU,
TestCase,
)
if not TEST_XPU:
print("XPU not available, skipping tests", file=sys.stderr)
TestCase = NoTest # noqa: F811
TEST_MULTIXPU = torch.xpu.device_count() > 1
cpu_device = torch.device("cpu")
xpu_device = torch.device("xpu")
any_common_cpu_xpu_one = OpDTypes.any_common_cpu_cuda_one
_xpu_computation_op_list = [
"fill",
"zeros",
"zeros_like",
"clone",
"view_as_real",
"view_as_complex",
"view",
"resize_",
"resize_as_",
"add",
"sub",
"mul",
"div",
"abs",
]
_xpu_tensor_factory_op_list = [
"as_strided",
"empty",
"empty_strided",
]
_xpu_not_test_dtype_op_list = [
"resize_", # Skipped by CPU
"resize_as_", # Skipped by CPU
"abs", # Not aligned dtype
]
_xpu_all_op_list = _xpu_computation_op_list + _xpu_tensor_factory_op_list
_xpu_all_ops = [op for op in ops_and_refs if op.name in _xpu_all_op_list]
_xpu_computation_ops = [
op for op in ops_and_refs if op.name in _xpu_computation_op_list
]
class TestXpu(TestCase):
def test_device_behavior(self):
current_device = torch.xpu.current_device()
torch.xpu.set_device(current_device)
self.assertEqual(current_device, torch.xpu.current_device())
@unittest.skipIf(not TEST_MULTIXPU, "only one GPU detected")
def test_multi_device_behavior(self):
current_device = torch.xpu.current_device()
target_device = (current_device + 1) % torch.xpu.device_count()
with torch.xpu.device(target_device):
self.assertEqual(target_device, torch.xpu.current_device())
self.assertEqual(current_device, torch.xpu.current_device())
with torch.xpu._DeviceGuard(target_device):
self.assertEqual(target_device, torch.xpu.current_device())
self.assertEqual(current_device, torch.xpu.current_device())
def test_get_device_properties(self):
current_device = torch.xpu.current_device()
device_properties = torch.xpu.get_device_properties(current_device)
self.assertEqual(device_properties, torch.xpu.get_device_properties(None))
self.assertEqual(device_properties, torch.xpu.get_device_properties())
device_name = torch.xpu.get_device_name(current_device)
self.assertEqual(device_name, torch.xpu.get_device_name(None))
self.assertEqual(device_name, torch.xpu.get_device_name())
device_capability = torch.xpu.get_device_capability(current_device)
self.assertTrue(device_capability["max_work_group_size"] > 0)
self.assertTrue(device_capability["max_num_sub_groups"] > 0)
self.assertEqual(
device_properties.driver_version, device_capability["driver_version"]
)
self.assertEqual(device_properties.has_fp16, device_capability["has_fp16"])
self.assertEqual(device_properties.has_fp64, device_capability["has_fp64"])
self.assertEqual(
device_properties.has_atomic64, device_capability["has_atomic64"]
)
def test_wrong_xpu_fork(self):
stderr = TestCase.runWithPytorchAPIUsageStderr(
"""\
import torch
from torch.multiprocessing import Process
def run(rank):
torch.xpu.set_device(rank)
if __name__ == "__main__":
size = 2
processes = []
for rank in range(size):
# it would work fine without the line below
torch.xpu.set_device(0)
p = Process(target=run, args=(rank,))
p.start()
processes.append(p)
for p in processes:
p.join()
"""
)
self.assertRegex(stderr, "Cannot re-initialize XPU in forked subprocess.")
def test_streams(self):
s0 = torch.xpu.Stream()
torch.xpu.set_stream(s0)
s1 = torch.xpu.current_stream()
self.assertEqual(s0, s1)
s2 = torch.xpu.Stream()
self.assertFalse(s0 == s2)
torch.xpu.set_stream(s2)
with torch.xpu.stream(s0):
self.assertEqual(s0, torch.xpu.current_stream())
self.assertEqual(s2, torch.xpu.current_stream())
def test_stream_priority(self):
low, high = torch.xpu.Stream.priority_range()
s0 = torch.xpu.Stream(device=0, priority=low)
self.assertEqual(low, s0.priority)
self.assertEqual(torch.device("xpu:0"), s0.device)
s1 = torch.xpu.Stream(device=0, priority=high)
self.assertEqual(high, s1.priority)
self.assertEqual(torch.device("xpu:0"), s1.device)
def test_stream_event_repr(self):
s = torch.xpu.current_stream()
self.assertTrue("torch.xpu.Stream" in str(s))
e = torch.xpu.Event()
self.assertTrue("torch.xpu.Event(uninitialized)" in str(e))
s.record_event(e)
self.assertTrue("torch.xpu.Event" in str(e))
def test_events(self):
stream = torch.xpu.current_stream()
event = torch.xpu.Event()
self.assertTrue(event.query())
stream.record_event(event)
event.synchronize()
self.assertTrue(event.query())
def test_generator(self):
torch.manual_seed(2024)
g_state0 = torch.xpu.get_rng_state()
torch.manual_seed(1234)
g_state1 = torch.xpu.get_rng_state()
self.assertNotEqual(g_state0, g_state1)
torch.xpu.manual_seed(2024)
g_state2 = torch.xpu.get_rng_state()
self.assertEqual(g_state0, g_state2)
torch.xpu.set_rng_state(g_state1)
self.assertEqual(g_state1, torch.xpu.get_rng_state())
torch.manual_seed(1234)
torch.xpu.set_rng_state(g_state0)
self.assertEqual(2024, torch.xpu.initial_seed())
@onlyXPU
@suppress_warnings
@ops(_xpu_computation_ops, dtypes=any_common_cpu_xpu_one)
def test_compare_cpu(self, device, dtype, op):
def to_cpu(arg):
if isinstance(arg, torch.Tensor):
return arg.to(device="cpu")
return arg
samples = op.reference_inputs(device, dtype)
for sample in samples:
cpu_sample = sample.transform(to_cpu)
xpu_results = op(sample.input, *sample.args, **sample.kwargs)
cpu_results = op(cpu_sample.input, *cpu_sample.args, **cpu_sample.kwargs)
xpu_results = sample.output_process_fn_grad(xpu_results)
cpu_results = cpu_sample.output_process_fn_grad(cpu_results)
# Lower tolerance because we are running this as a `@slowTest`
# Don't want the periodic tests to fail frequently
self.assertEqual(xpu_results, cpu_results, atol=1e-4, rtol=1e-4)
@onlyXPU
@ops(_xpu_computation_ops, allowed_dtypes=(torch.bool,))
@unittest.skipIf(TEST_WITH_UBSAN, "Test uses undefined behavior")
def test_non_standard_bool_values(self, device, dtype, op):
# Test boolean values other than 0x00 and 0x01 (gh-54789)
def convert_boolean_tensors(x):
if not isinstance(x, torch.Tensor) or x.dtype != torch.bool:
return x
# Map False -> 0 and True -> Random value in [2, 255]
true_vals = torch.randint(
2, 255, x.shape, dtype=torch.uint8, device=x.device
)
false_vals = torch.zeros((), dtype=torch.uint8, device=x.device)
x_int = torch.where(x, true_vals, false_vals)
ret = x_int.view(torch.bool)
self.assertEqual(ret, x)
return ret
for sample in op.sample_inputs(device, dtype):
expect = op(sample.input, *sample.args, **sample.kwargs)
transformed = sample.transform(convert_boolean_tensors)
actual = op(transformed.input, *transformed.args, **transformed.kwargs)
self.assertEqual(expect, actual)
instantiate_device_type_tests(TestXpu, globals(), only_for="xpu")
class TestXpuTrace(TestCase):
def setUp(self):
torch._C._activate_gpu_trace()
self.mock = unittest.mock.MagicMock()
def test_event_creation_callback(self):
gpu_trace.register_callback_for_event_creation(self.mock)
event = torch.xpu.Event()
event.record()
self.mock.assert_called_once_with(event._as_parameter_.value)
def test_event_deletion_callback(self):
gpu_trace.register_callback_for_event_deletion(self.mock)
event = torch.xpu.Event()
event.record()
event_id = event._as_parameter_.value
del event
self.mock.assert_called_once_with(event_id)
def test_event_record_callback(self):
gpu_trace.register_callback_for_event_record(self.mock)
event = torch.xpu.Event()
event.record()
self.mock.assert_called_once_with(
event._as_parameter_.value, torch.xpu.current_stream().sycl_queue
)
def test_event_wait_callback(self):
gpu_trace.register_callback_for_event_wait(self.mock)
event = torch.xpu.Event()
event.record()
event.wait()
self.mock.assert_called_once_with(
event._as_parameter_.value, torch.xpu.current_stream().sycl_queue
)
def test_device_synchronization_callback(self):
gpu_trace.register_callback_for_device_synchronization(self.mock)
torch.xpu.synchronize()
self.mock.assert_called()
def test_stream_synchronization_callback(self):
gpu_trace.register_callback_for_stream_synchronization(self.mock)
stream = torch.xpu.Stream()
stream.synchronize()
self.mock.assert_called_once_with(stream.sycl_queue)
def test_event_synchronization_callback(self):
gpu_trace.register_callback_for_event_synchronization(self.mock)
event = torch.xpu.Event()
event.record()
event.synchronize()
self.mock.assert_called_once_with(event._as_parameter_.value)
if __name__ == "__main__":
run_tests()