| import math |
| |
| import torch |
| from torch import inf, nan |
| from torch.distributions import Chi2, constraints |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.utils import _standard_normal, broadcast_all |
| |
| __all__ = ["StudentT"] |
| |
| |
| class StudentT(Distribution): |
| r""" |
| Creates a Student's t-distribution parameterized by degree of |
| freedom :attr:`df`, mean :attr:`loc` and scale :attr:`scale`. |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterministic") |
| >>> m = StudentT(torch.tensor([2.0])) |
| >>> m.sample() # Student's t-distributed with degrees of freedom=2 |
| tensor([ 0.1046]) |
| |
| Args: |
| df (float or Tensor): degrees of freedom |
| loc (float or Tensor): mean of the distribution |
| scale (float or Tensor): scale of the distribution |
| """ |
| arg_constraints = { |
| "df": constraints.positive, |
| "loc": constraints.real, |
| "scale": constraints.positive, |
| } |
| support = constraints.real |
| has_rsample = True |
| |
| @property |
| def mean(self): |
| m = self.loc.clone(memory_format=torch.contiguous_format) |
| m[self.df <= 1] = nan |
| return m |
| |
| @property |
| def mode(self): |
| return self.loc |
| |
| @property |
| def variance(self): |
| m = self.df.clone(memory_format=torch.contiguous_format) |
| m[self.df > 2] = ( |
| self.scale[self.df > 2].pow(2) |
| * self.df[self.df > 2] |
| / (self.df[self.df > 2] - 2) |
| ) |
| m[(self.df <= 2) & (self.df > 1)] = inf |
| m[self.df <= 1] = nan |
| return m |
| |
| def __init__(self, df, loc=0.0, scale=1.0, validate_args=None): |
| self.df, self.loc, self.scale = broadcast_all(df, loc, scale) |
| self._chi2 = Chi2(self.df) |
| batch_shape = self.df.size() |
| super().__init__(batch_shape, validate_args=validate_args) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(StudentT, _instance) |
| batch_shape = torch.Size(batch_shape) |
| new.df = self.df.expand(batch_shape) |
| new.loc = self.loc.expand(batch_shape) |
| new.scale = self.scale.expand(batch_shape) |
| new._chi2 = self._chi2.expand(batch_shape) |
| super(StudentT, new).__init__(batch_shape, validate_args=False) |
| new._validate_args = self._validate_args |
| return new |
| |
| def rsample(self, sample_shape=torch.Size()): |
| # NOTE: This does not agree with scipy implementation as much as other distributions. |
| # (see https://github.com/fritzo/notebooks/blob/master/debug-student-t.ipynb). Using DoubleTensor |
| # parameters seems to help. |
| |
| # X ~ Normal(0, 1) |
| # Z ~ Chi2(df) |
| # Y = X / sqrt(Z / df) ~ StudentT(df) |
| shape = self._extended_shape(sample_shape) |
| X = _standard_normal(shape, dtype=self.df.dtype, device=self.df.device) |
| Z = self._chi2.rsample(sample_shape) |
| Y = X * torch.rsqrt(Z / self.df) |
| return self.loc + self.scale * Y |
| |
| def log_prob(self, value): |
| if self._validate_args: |
| self._validate_sample(value) |
| y = (value - self.loc) / self.scale |
| Z = ( |
| self.scale.log() |
| + 0.5 * self.df.log() |
| + 0.5 * math.log(math.pi) |
| + torch.lgamma(0.5 * self.df) |
| - torch.lgamma(0.5 * (self.df + 1.0)) |
| ) |
| return -0.5 * (self.df + 1.0) * torch.log1p(y**2.0 / self.df) - Z |
| |
| def entropy(self): |
| lbeta = ( |
| torch.lgamma(0.5 * self.df) |
| + math.lgamma(0.5) |
| - torch.lgamma(0.5 * (self.df + 1)) |
| ) |
| return ( |
| self.scale.log() |
| + 0.5 |
| * (self.df + 1) |
| * (torch.digamma(0.5 * (self.df + 1)) - torch.digamma(0.5 * self.df)) |
| + 0.5 * self.df.log() |
| + lbeta |
| ) |