| import torch |
| from . import _functional as F |
| from .optimizer import _maximize_doc, Optimizer |
| |
| __all__ = ["SparseAdam"] |
| |
| |
| class SparseAdam(Optimizer): |
| def __init__( |
| self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, maximize: bool = False |
| ): |
| if not 0.0 < lr: |
| raise ValueError(f"Invalid learning rate: {lr}") |
| if not 0.0 < eps: |
| raise ValueError(f"Invalid epsilon value: {eps}") |
| if not 0.0 <= betas[0] < 1.0: |
| raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") |
| if not 0.0 <= betas[1] < 1.0: |
| raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") |
| |
| defaults = dict(lr=lr, betas=betas, eps=eps, maximize=maximize) |
| super().__init__(params, defaults) |
| |
| sparse_params = [] |
| complex_params = [] |
| for index, param_group in enumerate(self.param_groups): |
| assert isinstance( |
| param_group, dict |
| ), f"param_groups must be a list of dicts, but got {type(param_group)}" |
| # given param group, convert given params to a list first before iterating |
| for d_index, d_param in enumerate(param_group["params"]): |
| if d_param.is_sparse: |
| sparse_params.append([index, d_index]) |
| if d_param.is_complex(): |
| complex_params.append([index, d_index]) |
| if sparse_params: |
| raise ValueError( |
| f"Sparse params at indices {sparse_params}: SparseAdam requires dense parameter tensors" |
| ) |
| if complex_params: |
| raise ValueError( |
| f"Complex params at indices {complex_params}: SparseAdam does not support complex parameters" |
| ) |
| |
| @torch.no_grad() |
| def step(self, closure=None): |
| """Perform a single optimization step. |
| |
| Args: |
| closure (Callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad = [] |
| grads = [] |
| exp_avgs = [] |
| exp_avg_sqs = [] |
| state_steps = [] |
| eps = group["eps"] |
| lr = group["lr"] |
| beta1, beta2 = group["betas"] |
| maximize = group.get("maximize", False) |
| |
| for p in group["params"]: |
| if p.grad is not None: |
| params_with_grad.append(p) |
| if not p.grad.is_sparse: |
| raise RuntimeError( |
| "SparseAdam does not support dense gradients, please consider Adam instead" |
| ) |
| grads.append(p.grad) |
| |
| state = self.state[p] |
| |
| # State initialization |
| if len(state) == 0: |
| state["step"] = 0 |
| # Exponential moving average of gradient values |
| state["exp_avg"] = torch.zeros_like( |
| p, memory_format=torch.preserve_format |
| ) |
| # Exponential moving average of squared gradient values |
| state["exp_avg_sq"] = torch.zeros_like( |
| p, memory_format=torch.preserve_format |
| ) |
| |
| exp_avgs.append(state["exp_avg"]) |
| exp_avg_sqs.append(state["exp_avg_sq"]) |
| |
| # update the steps for each param group update |
| state["step"] += 1 |
| # record the step after step update |
| state_steps.append(state["step"]) |
| |
| F.sparse_adam( |
| params_with_grad, |
| grads, |
| exp_avgs, |
| exp_avg_sqs, |
| state_steps, |
| beta1=beta1, |
| beta2=beta2, |
| lr=group["lr"], |
| eps=group["eps"], |
| maximize=maximize, |
| ) |
| |
| return loss |
| |
| |
| SparseAdam.__doc__ = rf"""SparseAdam implements a masked version of the Adam algorithm |
| suitable for sparse gradients. Currently, due to implementation constraints (explained |
| below), SparseAdam is only intended for a narrow subset of use cases, specifically |
| parameters of a dense layout with gradients of a sparse layout. This occurs in a |
| special case where the module backwards produces grads already in a sparse layout. |
| One example NN module that behaves as such is ``nn.Embedding(sparse=True)``. |
| |
| SparseAdam approximates the Adam algorithm by masking out the parameter and moment |
| updates corresponding to the zero values in the gradients. Whereas the Adam algorithm |
| will update the first moment, the second moment, and the parameters based on all values |
| of the gradients, SparseAdam only updates the moments and parameters corresponding |
| to the non-zero values of the gradients. |
| |
| A simplified way of thinking about the `intended` implementation is as such: |
| |
| 1. Create a mask of the non-zero values in the sparse gradients. For example, |
| if your gradient looks like [0, 5, 0, 0, 9], the mask would be [0, 1, 0, 0, 1]. |
| 2. Apply this mask over the running moments and do computation on only the |
| non-zero values. |
| 3. Apply this mask over the parameters and only apply an update on non-zero values. |
| |
| In actuality, we use sparse layout Tensors to optimize this approximation, which means the |
| more gradients that are masked by not being materialized, the more performant the optimization. |
| Since we rely on using sparse layout tensors, we infer that any materialized value in the |
| sparse layout is non-zero and we do NOT actually verify that all values are not zero! |
| It is important to not conflate a semantically sparse tensor (a tensor where many |
| of its values are zeros) with a sparse layout tensor (a tensor where ``.is_sparse`` |
| returns ``True``). The SparseAdam approximation is intended for `semantically` sparse |
| tensors and the sparse layout is only a implementation detail. A clearer implementation |
| would be to use MaskedTensors, but those are experimental. |
| |
| |
| .. note:: |
| |
| If you suspect your gradients are semantically sparse (but do not have sparse |
| layout), this variant may not be the best for you. Ideally, you want to avoid |
| materializing anything that is suspected to be sparse in the first place, since |
| needing to convert all your grads from dense layout to sparse layout may outweigh |
| the performance gain. Here, using Adam may be the best alternative, unless you |
| can easily rig up your module to output sparse grads similar to |
| ``nn.Embedding(sparse=True)``. If you insist on converting your grads, you can do |
| so by manually overriding your parameters' ``.grad`` fields with their sparse |
| equivalents before calling ``.step()``. |
| |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-3) |
| betas (Tuple[float, float], optional): coefficients used for computing |
| running averages of gradient and its square (default: (0.9, 0.999)) |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-8) |
| {_maximize_doc} |
| |
| .. _Adam\: A Method for Stochastic Optimization: |
| https://arxiv.org/abs/1412.6980 |
| |
| """ |