blob: 9380aa96aa436a32e584f9a1f9452a398979a48c [file] [log] [blame]
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/AdaptivePooling.h>
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/native/Pool.h>
#include <ATen/native/cpu/utils.h>
#include <c10/util/irange.h>
#include <type_traits>
#include <ATen/OpMathType.h>
namespace at::native {
namespace {
template <typename scalar_t>
bool is_nan(scalar_t v) {
if (std::is_integral<scalar_t>::value || std::is_same<scalar_t, unsigned char>::value) {
return false;
}
return std::isnan(v);
}
template <typename scalar_t>
vec::Vectorized<scalar_t> is_nan_vec(vec::Vectorized<scalar_t> vec) {
return vec.isnan();
}
// TODO: use is_integeral/is_same to check the scalar_t and simplify the implementation
// currently it does not work
template <>
vec::Vectorized<unsigned char> is_nan_vec<unsigned char>(vec::Vectorized<unsigned char> vec) {
Vectorized<unsigned char> ret(false);
return ret;
}
template <>
vec::Vectorized<signed char> is_nan_vec<signed char>(vec::Vectorized<signed char> vec) {
Vectorized<signed char> ret(false);
return ret;
}
template <>
vec::Vectorized<short> is_nan_vec<short>(vec::Vectorized<short> vec) {
Vectorized<short> ret(false);
return ret;
}
template <>
vec::Vectorized<int> is_nan_vec<int>(vec::Vectorized<int> vec) {
Vectorized<int> ret(false);
return ret;
}
template <>
vec::Vectorized<int64_t> is_nan_vec<int64_t>(vec::Vectorized<int64_t> vec) {
Vectorized<int64_t> ret(false);
return ret;
}
template <typename scalar_t, typename opmath_t>
inline
typename std::enable_if<std::is_same<scalar_t, opmath_t>::value, void>::type
compute_internal(
scalar_t* input_data,
scalar_t* out_data,
opmath_t* max_ptr,
vec::int_same_size_t<opmath_t>* index_ptr,
int64_t* ind,
int64_t input_depth, int64_t input_height, int64_t input_width, int64_t channels,
int64_t n,
int64_t len,
int64_t size,
int64_t id0, int64_t id1,
int64_t ih0, int64_t ih1,
int64_t iw0, int64_t iw1,
int64_t dilationD,
int64_t dilationH,
int64_t dilationW) {
using Vec = vec::Vectorized<scalar_t>;
using integer_t = vec::int_same_size_t<opmath_t>;
using iVec = vec::Vectorized<integer_t>;
// Pass I: init out lane
iVec index0_vec = iVec(id0 * input_height * input_width + ih0 * input_width + iw0);
Vec out_vec = Vec(-std::numeric_limits<scalar_t>::infinity());
int64_t d1 = 0;
for (; d1 < len; d1 += Vec::size()) {
index0_vec.store(index_ptr + d1);
out_vec.store(out_data + d1);
}
for (; d1 < size; d1++) {
ind[d1] = ih0 * input_width + iw0;
out_data[d1] = -std::numeric_limits<scalar_t>::infinity();
}
// Pass II: compute local max
for (int64_t id = id0; id < id1; id += dilationD) {
for (int64_t ih = ih0; ih < ih1; ih += dilationH) {
for (int64_t iw = iw0; iw < iw1; iw += dilationW) {
scalar_t* in = input_data + (n * input_depth * input_height * input_width +
id * input_height * input_width + ih * input_width + iw) * channels;
int64_t d2 = 0;
for (; d2 < len; d2 += Vec::size()) {
iVec index_vec = iVec(id * input_height * input_width + ih * input_width + iw);
Vec val_vec = Vec::loadu(in + d2);
iVec maxindex_vec = iVec::loadu(index_ptr + d2);
Vec maxval_vec = Vec::loadu(out_data + d2);
// true = all ones, false = all zeros
Vec mask = (val_vec > maxval_vec) | is_nan_vec(val_vec);
iVec imask = vec::cast<integer_t>(mask);
Vec out_vec = Vec::blendv(maxval_vec, val_vec, mask);
iVec ind_vec = iVec::blendv(maxindex_vec, index_vec, imask);
out_vec.store(out_data + d2);
ind_vec.store(index_ptr + d2);
}
for (; d2 < size; d2++) {
int64_t index = id * input_height * input_width + ih * input_width + iw;
scalar_t val = in[d2];
int64_t maxindex = ind[d2];
scalar_t maxval = out_data[d2];
bool mask = (val > maxval) || is_nan(static_cast<double>(val));
out_data[d2] = mask ? val : maxval;
ind[d2] = mask ? index : maxindex;
}
}
}
}
}
// std::is_same<scalar_t, at::BFloat16> || std::is_same<scalar_t, at::Half>
template <typename scalar_t, typename opmath_t>
inline
typename std::enable_if<!std::is_same<scalar_t, opmath_t>::value, void>::type
compute_internal(
scalar_t* input_data,
scalar_t* out_data,
opmath_t* max_ptr,
vec::int_same_size_t<opmath_t>* index_ptr,
int64_t* ind,
int64_t input_depth, int64_t input_height, int64_t input_width, int64_t channels,
int64_t n,
int64_t len,
int64_t size,
int64_t id0, int64_t id1,
int64_t ih0, int64_t ih1,
int64_t iw0, int64_t iw1,
int64_t dilationD,
int64_t dilationH,
int64_t dilationW) {
using Vec = vec::Vectorized<scalar_t>;
using fVec = vec::Vectorized<opmath_t>;
using iVec = vec::Vectorized<int32_t>;
// Pass I: init out lane
iVec index0_vec = iVec(id0 * input_height * input_width + ih0 * input_width + iw0);
fVec out_vec = fVec(-std::numeric_limits<opmath_t>::infinity());
int64_t d1 = 0;
for (; d1 < len; d1 += fVec::size()) {
index0_vec.store(index_ptr + d1);
out_vec.store(max_ptr + d1);
}
for (; d1 < size; d1++) {
ind[d1] = ih0 * input_width + iw0;
max_ptr[d1] = -std::numeric_limits<opmath_t>::infinity();
}
// Pass II: compute local max
for (int64_t id = id0; id < id1; id += dilationD) {
for (int64_t ih = ih0; ih < ih1; ih += dilationH) {
for (int64_t iw = iw0; iw < iw1; iw += dilationW) {
scalar_t* in = input_data + (n * input_depth * input_height * input_width +
id * input_height * input_width + ih * input_width + iw) * channels;
int64_t d2 = 0;
for (; d2 < len; d2 += Vec::size()) {
iVec index_ivec = iVec(id * input_height * input_width + ih * input_width + iw);
Vec val_bvec = Vec::loadu(in + d2);
fVec val_fvec0, val_fvec1;
std::tie(val_fvec0, val_fvec1) = convert_to_float<scalar_t>(val_bvec);
iVec maxindex_ivec0 = iVec::loadu(index_ptr + d2);
iVec maxindex_ivec1 = iVec::loadu(index_ptr + d2 + iVec::size());
fVec maxval_fvec0 = fVec::loadu(max_ptr + d2);
fVec maxval_fvec1 = fVec::loadu(max_ptr + d2 + fVec::size());
// true = all ones, false = all zeros
fVec mask0 = (val_fvec0 > maxval_fvec0) | is_nan_vec(val_fvec0);
fVec mask1 = (val_fvec1 > maxval_fvec1) | is_nan_vec(val_fvec1);
iVec imask0 = vec::cast<int32_t>(mask0);
iVec imask1 = vec::cast<int32_t>(mask1);
fVec max_fvec0 = fVec::blendv(maxval_fvec0, val_fvec0, mask0);
fVec max_fvec1 = fVec::blendv(maxval_fvec1, val_fvec1, mask1);
iVec ind_vec0 = iVec::blendv(maxindex_ivec0, index_ivec, imask0);
iVec ind_vec1 = iVec::blendv(maxindex_ivec1, index_ivec, imask1);
max_fvec0.store(max_ptr + d2);
max_fvec1.store(max_ptr + d2 + fVec::size());
// out_vec.store(out + d2);
ind_vec0.store(index_ptr + d2);
ind_vec1.store(index_ptr + d2 + iVec::size());
}
for (; d2 < size; d2++) {
int64_t index = id * input_height * input_width + ih * input_width + iw;
opmath_t val = opmath_t(in[d2]);
int64_t maxindex = ind[d2];
opmath_t maxval = max_ptr[d2];
bool mask = (val > maxval) || std::isnan(val);
max_ptr[d2] = mask ? val : maxval;
ind[d2] = mask ? index : maxindex;
}
}
}
}
// Convert max values from float to bfloat16/half
int64_t d3 = 0;
for (; d3 < len; d3 += Vec::size()) {
fVec max_fvec0 = fVec::loadu(max_ptr + d3);
fVec max_fvec1 = fVec::loadu(max_ptr + d3 + fVec::size());
Vec max_bvec = convert_from_float<scalar_t>(max_fvec0, max_fvec1);
max_bvec.store(out_data + d3);
}
for (; d3 < size; d3++) {
out_data[d3] = scalar_t(max_ptr[d3]);
}
}
template <typename scalar_t, bool is_3d>
void cpu_max_pool(
const Tensor& output_,
const Tensor& indices_,
const Tensor& input_,
IntArrayRef kWHD,
IntArrayRef dWHD,
IntArrayRef padWHD,
IntArrayRef dilWHD) {
size_t dims = is_3d ? 3 : 2;
TORCH_CHECK(kWHD.size() == dims && dWHD.size() == dims && padWHD.size() == dims && dilWHD.size() == dims,
"max pooling 2d/3d are not matched");
int kW = kWHD[0];
int kH = kWHD[1];
int dW = dWHD[0];
int dH = dWHD[1];
int padW = padWHD[0];
int padH = padWHD[1];
int dilationW = dilWHD[0];
int dilationH = dilWHD[1];
int kD = is_3d ? kWHD[dims - 1] : 1;
int dD = is_3d ? dWHD[dims - 1] : 1;
int padD = is_3d ? padWHD[dims - 1] : 0;
int dilationD = is_3d ? dilWHD[dims - 1] : 1;
auto input = input_.contiguous();
auto output = output_.contiguous();
auto indices = indices_.contiguous();
auto input_data = input.data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
int64_t ndim = input.ndimension();
// treat batch size and channels as one dimension
//
// MaxPool2d:
// ndim == 3: CHW
// ndim == 4: NCHW
//
// MaxPool3d:
// ndim == 4: CDHW
// ndim == 5: NCDHW
int64_t channels;
if (is_3d) {
channels = ndim == 4 ? input.size(0) : input.size(0) * input.size(1);
} else {
channels = ndim == 3 ? input.size(0) : input.size(0) * input.size(1);
}
int64_t input_depth = is_3d ? input.size(-3) : 1;
int64_t input_height = input.size(-2);
int64_t input_width = input.size(-1);
int64_t output_depth = is_3d ? output.size(-3) : 1;
int64_t output_height = output.size(-2);
int64_t output_width = output.size(-1);
using opmath_t = at::opmath_type<scalar_t>;
// parallel on dim N, C
at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
for (int64_t c = begin; c < end; c++) {
scalar_t* input_ptr = input_data + c * input_depth * input_height * input_width;
scalar_t* output_ptr = output_data + c * output_depth * output_height * output_width;
int64_t* indices_ptr = indices_data + c * output_depth * output_height * output_width;
for (int64_t od = 0; od < output_depth; od++) {
int64_t id0 = od * dD - padD;
int64_t id1 = std::min(id0 + (kD - 1) * dilationD + 1, input_depth);
while(id0 < 0) { id0 += dilationD; }
for (int64_t oh = 0; oh < output_height; oh++) {
int64_t ih0 = oh * dH - padH;
int64_t ih1 = std::min(ih0 + (kH - 1) * dilationH + 1, input_height);
while(ih0 < 0) { ih0 += dilationH; }
for (int64_t ow = 0; ow < output_width; ow++) {
int64_t iw0 = ow * dW - padW;
int64_t iw1 = std::min(iw0 + (kW - 1) * dilationW + 1, input_width);
while(iw0 < 0) { iw0 += dilationW; }
// compute local max
int64_t maxindex = id0 * input_height * input_width + ih0 * input_width + iw0;
opmath_t maxval;
if (std::numeric_limits<opmath_t>::has_infinity) {
maxval = -std::numeric_limits<opmath_t>::infinity();
} else {
maxval = std::numeric_limits<opmath_t>::min();
}
for (int64_t id = id0; id < id1; id += dilationD) {
for (int64_t ih = ih0; ih < ih1; ih += dilationH) {
for (int64_t iw = iw0; iw < iw1; iw += dilationW) {
int64_t index = id * input_height * input_width + ih * input_width + iw;
opmath_t val = input_ptr[index];
if ((val > maxval) || is_nan(static_cast<double>(val))) {
maxval = val;
maxindex = index;
}
}
}
}
// set output to local max and store location of max
int64_t i = od * output_height * output_width + oh * output_width + ow;
output_ptr[i] = scalar_t(maxval);
indices_ptr[i] = maxindex;
}
}
}
}
});
if (!output_.is_contiguous()) {
output_.copy_(output);
}
if (!indices_.is_contiguous()) {
indices_.copy_(indices);
}
}
template <typename scalar_t, bool is_3d>
void cpu_max_pool_channels_last(
const Tensor& output_,
const Tensor& indices_,
const Tensor& input_,
IntArrayRef kWHD,
IntArrayRef dWHD,
IntArrayRef padWHD,
IntArrayRef dilWHD) {
size_t dims = is_3d ? 3 : 2;
TORCH_CHECK(kWHD.size() == dims && dWHD.size() == dims && padWHD.size() == dims && dilWHD.size() == dims,
"max pooling 2d/3d are not matched");
int64_t ndim = input_.ndimension();
// MaxPool2d: NHWC
// MaxPool3d: NDHWC
if (is_3d) {
TORCH_CHECK(ndim == 5, "max pooling 3d with channels last format supports tensors with 5 dims");
} else {
TORCH_CHECK(ndim == 4, "max pooling 2d with channels last format supports tensors with 4 dims");
}
int kW = kWHD[0];
int kH = kWHD[1];
int dW = dWHD[0];
int dH = dWHD[1];
int padW = padWHD[0];
int padH = padWHD[1];
int dilationW = dilWHD[0];
int dilationH = dilWHD[1];
int kD = is_3d ? kWHD[dims - 1] : 1;
int dD = is_3d ? dWHD[dims - 1] : 1;
int padD = is_3d ? padWHD[dims - 1] : 0;
int dilationD = is_3d ? dilWHD[dims - 1] : 1;
auto memory_format = is_3d ? at::MemoryFormat::ChannelsLast3d : at::MemoryFormat::ChannelsLast;
auto input = input_.contiguous(memory_format);
auto output = output_.contiguous(memory_format);
auto indices = indices_.contiguous(memory_format);
auto input_data = input.data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t input_depth = is_3d ? input.size(-3) : 1;
int64_t input_height = input.size(-2);
int64_t input_width = input.size(-1);
int64_t output_depth = is_3d ? output.size(-3) : 1;
int64_t output_height = output.size(-2);
int64_t output_width = output.size(-1);
using opmath_t = at::opmath_type<scalar_t>;
using Vec = vec::Vectorized<scalar_t>;
using integer_t = vec::int_same_size_t<opmath_t>;
// for the convience of vectorization, use integer of the same size of scalar_t,
// e.g. int32_t for float, int64_t for double
// need to make sure doesn't overflow
TORCH_CHECK(input_depth * input_height * input_width <= std::numeric_limits<integer_t>::max());
// parallel on dim N, {D}, H, W
at::parallel_for(0, nbatch * output_depth * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
int64_t n = 0;
int64_t od = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, n, nbatch, od, output_depth, oh, output_height, ow, output_width);
int64_t size = channels;
int64_t len = size - (size % Vec::size());
// temp buffer holding index with integer_t
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
std::unique_ptr<integer_t []> index_buffer(new integer_t[len]);
integer_t * index_ptr = index_buffer.get();
// temp buffer holding max value with opmath_t
std::unique_ptr<opmath_t []> max_arr;
opmath_t* max_ptr = nullptr;
if (!std::is_same<scalar_t, opmath_t>::value) {
max_arr = std::make_unique<opmath_t[]>(size);
max_ptr = max_arr.get();
}
for (int64_t i = begin; i < end; i++) {
int64_t id0 = od * dD - padD;
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t id1 = std::min(id0 + (kD - 1) * dilationD + 1, input_depth);
int64_t ih1 = std::min(ih0 + (kH - 1) * dilationH + 1, input_height);
int64_t iw1 = std::min(iw0 + (kW - 1) * dilationW + 1, input_width);
while(id0 < 0) { id0 += dilationD; }
while(ih0 < 0) { ih0 += dilationH; }
while(iw0 < 0) { iw0 += dilationW; }
scalar_t* out = output_data + i * channels;
int64_t* ind = indices_data + i * channels;
compute_internal(input_data, out, max_ptr, index_ptr, ind, input_depth, input_height, input_width, channels,
n, len, size, id0, id1, ih0, ih1, iw0, iw1,
dilationD, dilationH, dilationW);
// convert indice data type
vec::convert<integer_t, int64_t>(index_buffer.get(), ind, len);
// move on to next output index
data_index_step(n, nbatch, od, output_depth, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous(memory_format)) {
output_.copy_(output);
}
if (!indices_.is_contiguous(memory_format)) {
indices_.copy_(indices);
}
}
template <typename scalar_t, bool is_3d>
void cpu_max_pool_backward(
const Tensor& grad_input_,
const Tensor& grad_output_,
const Tensor& indices_) {
auto grad_output = grad_output_.contiguous();
auto indices = indices_.contiguous();
auto grad_input = grad_input_.contiguous();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
// treat batch size and channels as one dimension
//
// MaxPool2d:
// ndim == 3: CHW
// ndim == 4: NCHW
//
// MaxPool3d:
// ndim == 4: CDHW
// ndim == 5: NCDHW
int64_t ndim = grad_output.ndimension();
int64_t channels;
if (is_3d) {
channels = ndim == 4 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
} else {
channels = ndim == 3 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
}
int64_t input_depth = is_3d ? grad_input.size(-3) : 1;
int64_t input_height = grad_input.size(-2);
int64_t input_width = grad_input.size(-1);
int64_t output_depth = is_3d ? grad_output.size(-3) : 1;
int64_t output_height = grad_output.size(-2);
int64_t output_width = grad_output.size(-1);
// parallel on dim of N, C
at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
for (const auto c : c10::irange(begin, end)) {
scalar_t* grad_input_ptr = grad_input_data + c * input_depth * input_height * input_width;
scalar_t* grad_output_ptr = grad_output_data + c * output_depth * output_height * output_width;
int64_t * indices_ptr = indices_data + c * output_depth * output_height * output_width;
for (int64_t od = 0; od < output_depth; od++) {
for (int64_t oh = 0; oh < output_height; oh++) {
for (int64_t ow = 0; ow < output_width; ow++) {
// retrieve position of max
int64_t index = od * output_height * output_width + oh * output_width + ow;
int64_t maxindex = indices_ptr[index];
if (maxindex != -1) {
// update gradient
grad_input_ptr[maxindex] += grad_output_ptr[index];
}
}
}
}
}
});
if (!grad_input_.is_contiguous()) {
grad_input_.copy_(grad_input);
}
}
template <typename scalar_t, bool is_3d>
void cpu_max_pool_backward_channels_last(
const Tensor& grad_input_,
const Tensor& grad_output_,
const Tensor& indices_) {
int64_t ndim = grad_output_.ndimension();
if (is_3d) {
TORCH_CHECK(ndim == 5, "MaxPool3d backward with channels last format supports tensors with 5 dims.");
} else {
TORCH_CHECK(ndim == 4, "MaxPool2d backward with channels last format supports tensors with 4 dims.");
}
auto memory_format = is_3d ? at::MemoryFormat::ChannelsLast3d
: at::MemoryFormat::ChannelsLast;
auto grad_input = grad_input_.contiguous(memory_format);
auto grad_output = grad_output_.contiguous(memory_format);
auto indices = indices_.contiguous(memory_format);
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto indices_data = indices.data_ptr<int64_t>();
// MaxPool2d: NHWC
// MaxPool3d: NDHWC
int64_t nbatch = grad_input.size(0);
int64_t channels = grad_input.size(1);
int64_t input_depth = is_3d ? grad_input.size(2) : 1;
int64_t input_height = grad_input.size(-2);
int64_t input_width = grad_input.size(-1);
int64_t output_depth = is_3d ? grad_output.size(2) : 1;
int64_t output_height = grad_output.size(-2);
int64_t output_width = grad_output.size(-1);
// parallel on dim N
at::parallel_for(0, nbatch, 0, [&](int64_t begin, int64_t end) {
for (const auto n : c10::irange(begin, end)) {
scalar_t* grad_input_ptr = grad_input_data + n * input_depth * input_height * input_width * channels;
scalar_t* grad_output_ptr = grad_output_data + n * output_depth * output_height * output_width * channels;
int64_t* indices_ptr = indices_data + n * output_depth * output_height * output_width * channels;
for (int64_t od = 0; od < output_depth; od++) {
for (int64_t oh = 0; oh < output_height; oh++) {
for (int64_t ow = 0; ow < output_width; ow++) {
scalar_t* gout = grad_output_ptr + (od * output_height * output_width + oh * output_width + ow) * channels;
int64_t* ind = indices_ptr + (od * output_height * output_width + oh * output_width + ow) * channels;
// TODO: gcc vectorization
for (int64_t c = 0; c < channels; c++) {
int64_t maxindex = ind[c];
if (maxindex != -1) {
grad_input_ptr[maxindex * channels + c] += gout[c];
}
}
}
}
}
}
});
if (!grad_input_.is_contiguous(memory_format)) {
grad_input_.copy_(grad_input);
}
}
void max_pool2d_kernel_impl(
const Tensor& output,
const Tensor& indices,
const Tensor& input,
int kW, int kH,
int dW, int dH,
int padW, int padH,
int dilationW, int dilationH) {
switch (input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_ALL_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "max_pool2d", [&] {
cpu_max_pool<scalar_t, /*is 3d*/false>(output, indices, input, {kW, kH}, {dW, dH}, {padW, padH}, {dilationW, dilationH});
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_ALL_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "max_pool2d_channels_last", [&] {
cpu_max_pool_channels_last<scalar_t, false>(output, indices, input, {kW, kH}, {dW, dH}, {padW, padH}, {dilationW, dilationH});
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
void max_pool3d_kernel_impl(
Tensor& output,
Tensor& indices,
const Tensor& input,
int kW, int kH, int kD,
int dW, int dH, int dD,
int padW, int padH, int padD,
int dilationW, int dilationH, int dilationD) {
if (input.ndimension() == 4) {
Tensor input_cl_check = input.unsqueeze(0);
// align with cuda:
// work around buggy behavior of suggest_memory_format here where
// suggested format of unsqueezed tensor is contiguous while it is
// really only contiguous in ChannelsLast3d
if ((!input_cl_check.is_contiguous()) &&
input_cl_check.is_contiguous(at::MemoryFormat::ChannelsLast3d)) {
TORCH_CHECK(output.ndimension() == 4 && indices.ndimension() == 4);
DimVector out_sizes(output.sizes().begin(), output.sizes().end());
out_sizes.insert(out_sizes.begin(), 1);
output.resize_(out_sizes, at::MemoryFormat::ChannelsLast3d);
DimVector indices_sizes(indices.sizes().begin(), indices.sizes().end());
indices_sizes.insert(indices_sizes.begin(), 1);
indices.resize_(indices_sizes, at::MemoryFormat::ChannelsLast3d);
AT_DISPATCH_ALL_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "max_pool3d_channels_last", [&] {
cpu_max_pool_channels_last<scalar_t, /*is 3d*/true>(output, indices, input_cl_check,
{kW, kH, kD}, {dW, dH, dD}, {padW, padH, padD}, {dilationW, dilationH, dilationD});
});
output.squeeze_(0);
indices.squeeze_(0);
return;
}
}
switch (input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_ALL_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "max_pool3d", [&] {
cpu_max_pool<scalar_t, /*is 3d*/true>(output, indices, input,
{kW, kH, kD}, {dW, dH, dD}, {padW, padH, padD}, {dilationW, dilationH, dilationD});
});
break;
}
case at::MemoryFormat::ChannelsLast3d: {
AT_DISPATCH_ALL_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "max_pool3d_channels_last", [&] {
cpu_max_pool_channels_last<scalar_t, true>(output, indices, input,
{kW, kH, kD}, {dW, dH, dD}, {padW, padH, padD}, {dilationW, dilationH, dilationD});
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast3d, Contiguous");
}
}
void max_pool2d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
const Tensor& indices) {
switch (grad_output.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "max_pool2d_backward", [&] {
cpu_max_pool_backward<scalar_t, /*is 3d*/ false>(grad_input, grad_output, indices);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "max_pool2d_backward_channels_last", [&] {
cpu_max_pool_backward_channels_last<scalar_t, /*is 3d*/ false>(grad_input, grad_output, indices);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
void max_pool3d_backward_kernel_impl(
Tensor& grad_input,
const Tensor& grad_output,
const Tensor& indices) {
if (grad_output.ndimension() == 4) {
Tensor grad_output_cl_check = grad_output.unsqueeze(0);
// align with cuda:
// work around buggy behavior of suggest_memory_format here where
// suggested format of unsqueezed tensor is contiguous while it is
// really only contiguous in ChannelsLast3d
if ((!grad_output_cl_check.is_contiguous()) &&
grad_output_cl_check.is_contiguous(at::MemoryFormat::ChannelsLast3d)) {
TORCH_CHECK(grad_input.ndimension() == 4 && indices.ndimension() == 4);
DimVector sizes(grad_input.sizes().begin(), grad_input.sizes().end());
sizes.insert(sizes.begin(), 1);
grad_input.resize_(sizes, at::MemoryFormat::ChannelsLast3d);
auto _indices = indices.unsqueeze(0).contiguous(at::MemoryFormat::ChannelsLast3d);
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "max_pool3d_backward_channels_last", [&] {
cpu_max_pool_backward_channels_last<scalar_t, /*is_3d*/ true>(grad_input, grad_output_cl_check, _indices);
});
grad_input.squeeze_(0);
return;
}
}
switch (grad_output.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "max_pool3d_backward", [&] {
cpu_max_pool_backward<scalar_t, /*is_3d*/ true>(grad_input, grad_output, indices);
});
break;
}
case at::MemoryFormat::ChannelsLast3d: {
AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "max_pool3d_backward_channels_last", [&] {
cpu_max_pool_backward_channels_last<scalar_t, /*is_3d*/ true>(grad_input, grad_output, indices);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast3d, Contiguous");
}
}
} // anonymous namespace
REGISTER_DISPATCH(max_pool2d_kernel, &max_pool2d_kernel_impl);
REGISTER_DISPATCH(max_pool2d_backward_kernel, &max_pool2d_backward_kernel_impl);
REGISTER_DISPATCH(max_pool3d_kernel, &max_pool3d_kernel_impl);
REGISTER_DISPATCH(max_pool3d_backward_kernel, &max_pool3d_backward_kernel_impl);
} // at::native