| """ |
| Note [ONNX operators that are added/updated from opset 8 to opset 9] |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| New operators: |
| Compress |
| ConstantOfShape |
| EyeLike |
| MaxUnpool |
| OneHot |
| Sinh |
| Cosh |
| Asinh |
| Acosh |
| Atanh |
| Shrink |
| IsNaN |
| Sign |
| Erf |
| Scatter |
| Where |
| NonZero |
| TfIdfVectorizer |
| MeanVarianceNormalization |
| |
| Updated operators: |
| BatchNormalization: removed spatial attribute. |
| Greater, Less, Constant, MatMul, PRelu, Gemm, Flatten: more data types{integers} supported. |
| Cast: more data types{string} supported. |
| Upsample: moved scales from attribute to input. |
| Scan |
| """ |
| |
| import functools |
| import warnings |
| |
| import torch |
| from torch._C import _onnx as _C_onnx |
| from torch.onnx import _type_utils, errors, symbolic_helper, symbolic_opset9 as opset9 |
| from torch.onnx._internal import jit_utils, registration |
| |
| _onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=8) |
| |
| block_listed_operators = ( |
| "nonzero", |
| "where", |
| "scatter", |
| "scatter_add", |
| "erf", |
| "sign", |
| "isnan", |
| "gather", |
| "arange", |
| "masked_fill", |
| "index_fill", |
| "index_copy", |
| "repeat_interleave", |
| "any", |
| "all", |
| ) |
| |
| for block_listed_op in block_listed_operators: |
| _onnx_symbolic(f"aten::{block_listed_op}")( |
| symbolic_helper._block_list_in_opset(block_listed_op) |
| ) |
| |
| |
| def _apply_params(*args, **kwargs): |
| """Returns a decorator that calls the decorated (higher-order) function with the given parameters.""" |
| |
| def _apply(fn): |
| return fn(*args, **kwargs) |
| |
| return _apply |
| |
| |
| @_onnx_symbolic( |
| "aten::upsample_nearest1d", |
| decorate=[_apply_params("upsample_nearest1d", 3, "nearest")], |
| ) |
| @_onnx_symbolic( |
| "aten::upsample_nearest2d", |
| decorate=[_apply_params("upsample_nearest2d", 4, "nearest")], |
| ) |
| @_onnx_symbolic( |
| "aten::upsample_nearest3d", |
| decorate=[_apply_params("upsample_nearest3d", 5, "nearest")], |
| ) |
| @_onnx_symbolic( |
| "aten::upsample_linear1d", |
| decorate=[_apply_params("upsample_linear1d", 3, "linear")], |
| ) |
| @_onnx_symbolic( |
| "aten::upsample_bilinear2d", |
| decorate=[_apply_params("upsample_bilinear2d", 4, "linear")], |
| ) |
| @_onnx_symbolic( |
| "aten::upsample_trilinear3d", |
| decorate=[_apply_params("upsample_trilinear3d", 5, "linear")], |
| ) |
| def _interpolate(name, dim, interpolate_mode): |
| def symbolic_fn(g, input, output_size, *args): |
| scales, align_corners = symbolic_helper._get_interpolate_attributes( |
| g, interpolate_mode, args |
| ) |
| symbolic_helper._interpolate_warning(interpolate_mode) |
| align_corners = symbolic_helper._maybe_get_scalar(align_corners) |
| if align_corners: |
| return symbolic_helper._unimplemented(name, "align_corners == True", input) |
| output_size = symbolic_helper._maybe_get_const(output_size, "is") |
| if symbolic_helper._is_value(output_size): |
| return symbolic_helper._unimplemented( |
| name, "torch._C.Value (output_size) indexing" |
| ) |
| if scales is None: |
| scales = [ |
| 1.0 |
| if i < 2 |
| else float(output_size[-(dim - i)]) |
| / float(input.type().sizes()[-(dim - i)]) |
| for i in range(0, dim) |
| ] |
| return g.op("Upsample", input, mode_s=interpolate_mode, scales_f=scales) |
| |
| return symbolic_fn |
| |
| |
| @_onnx_symbolic("aten::__interpolate") |
| def __interpolate( |
| g: jit_utils.GraphContext, |
| input, |
| size, |
| scale_factor, |
| mode, |
| align_corners, |
| recompute_scale_factor, |
| antialias, |
| ): |
| align_corners = symbolic_helper._maybe_get_const(align_corners, "b") |
| if not symbolic_helper._is_none(align_corners) and align_corners: |
| return symbolic_helper._unimplemented("interpolate", "align_corners == True") |
| |
| if not symbolic_helper._is_none(scale_factor) and symbolic_helper._is_value( |
| scale_factor |
| ): |
| return symbolic_helper._unimplemented( |
| "interpolate", "dynamic scales in opset 8" |
| ) |
| |
| if not symbolic_helper._is_none(size) and symbolic_helper._is_value(size): |
| return symbolic_helper._unimplemented("interpolate", "dynamic size in opset 8") |
| |
| scales, mode = symbolic_helper._interpolate_get_scales_and_mode( |
| g, input, size, scale_factor, mode, align_corners |
| ) |
| return g.op("Upsample", input, mode_s=mode, scales_f=scales) |
| |
| |
| # NOTE: We should create a wrapper for this kind of operation, after resolving the shape/type propagation |
| # issue for "cast" operators. Some symbolic functions depend on shape information of input tensor, which |
| # is lost after casting. |
| def _try_cast_integer_to_float(g: jit_utils.GraphContext, *args): |
| floating_scalar_types = { |
| _type_utils.JitScalarType.HALF, |
| _type_utils.JitScalarType.FLOAT, |
| _type_utils.JitScalarType.DOUBLE, |
| } |
| old_type = None |
| # Cast the input tensor to Float if its scalarType is known and is not floating number. |
| # If casting is performed, return the old scalarType, otherwise return None. |
| arg0_type = _type_utils.JitScalarType.from_value( |
| args[0], _type_utils.JitScalarType.UNDEFINED |
| ) |
| if arg0_type != _type_utils.JitScalarType.UNDEFINED: |
| old_type = arg0_type |
| if old_type not in floating_scalar_types: |
| old_type = old_type.scalar_name() |
| args = tuple( |
| g.op("Cast", arg, to_i=_C_onnx.TensorProtoDataType.FLOAT) |
| for arg in args |
| ) |
| else: |
| return (None,) + args |
| else: |
| warnings.warn( |
| "Only floating datatype is supported for these operators: " |
| "{Greater, Less, MatMul, PRelu, Gemm, Flatten}. This might cause " |
| "the onnx model to be incorrect, if inputs have integer datatypes." |
| ) |
| return (old_type,) + args |
| |
| |
| def _cast_to_type(g: jit_utils.GraphContext, input, to_type): |
| if to_type is None: |
| return input |
| return getattr(opset9, f"_cast_{to_type}")(g, input, False) |
| |
| |
| def _comparison_operator(g: jit_utils.GraphContext, input, other, op_name): |
| other = symbolic_helper._maybe_get_scalar(other) |
| other = symbolic_helper._if_scalar_type_as(other, input) |
| _, input, other = _try_cast_integer_to_float(g, input, other) |
| return g.op(op_name, input, other) |
| |
| |
| # NOTE: For symbolics {gt, lt, bmm, matmul, prelu, mm, addmm, view, flatten}, |
| # integer input type not supported in opset8. Cast to float if possible. |
| @_onnx_symbolic("aten::gt") |
| def gt(g: jit_utils.GraphContext, input, other): |
| return _comparison_operator(g, input, other, "Greater") |
| |
| |
| @_onnx_symbolic("aten::lt") |
| def lt(g: jit_utils.GraphContext, input, other): |
| return _comparison_operator(g, input, other, "Less") |
| |
| |
| @_onnx_symbolic("aten::bmm") |
| def bmm(g: jit_utils.GraphContext, self, other): |
| if symbolic_helper._try_get_scalar_type(self): |
| old_type, self, other = _try_cast_integer_to_float(g, self, other) |
| return _cast_to_type(g, g.op("MatMul", self, other), old_type) |
| else: |
| return g.op("MatMul", self, other) |
| |
| |
| @_onnx_symbolic("aten::matmul") |
| def matmul(g: jit_utils.GraphContext, self, other): |
| return bmm(g, self, other) |
| |
| |
| @_onnx_symbolic("aten::prelu") |
| def prelu(g: jit_utils.GraphContext, self, weight): |
| self_rank = symbolic_helper._get_tensor_rank(self) |
| weight_sizes = symbolic_helper._get_tensor_sizes(weight) |
| if self_rank is not None and self_rank > 2: |
| weight = g.op("Unsqueeze", weight, axes_i=list(range(1, self_rank - 1))) |
| elif self_rank == 0 and weight_sizes == [1]: |
| # self and weight are both scalar but weight has rank == 1, squeeze weight. |
| weight = symbolic_helper._squeeze_helper(g, weight, [0]) |
| if symbolic_helper._try_get_scalar_type(self): |
| old_type, self, weight = _try_cast_integer_to_float(g, self, weight) |
| return _cast_to_type(g, g.op("PRelu", self, weight), old_type) |
| else: |
| return g.op("PRelu", self, weight) |
| |
| |
| @_onnx_symbolic("aten::mm") |
| def mm(g: jit_utils.GraphContext, self, other): |
| # Create a dummy C tensor. Only needed for API purposes, the value is |
| # since beta = 0 |
| scalar_type = symbolic_helper._try_get_scalar_type(self, other) |
| if scalar_type is None: |
| raise errors.SymbolicValueError( |
| "mm can only operate on tensors with known types", self |
| ) |
| zero_constant = g.op( |
| "Constant", |
| value_t=torch.tensor([0], dtype=scalar_type.dtype()), |
| ) |
| |
| if symbolic_helper._try_get_scalar_type(self): |
| old_type, self, other, zero_constant = _try_cast_integer_to_float( |
| g, self, other, zero_constant |
| ) |
| return _cast_to_type( |
| g, |
| g.op("Gemm", self, other, zero_constant, beta_f=0.0, alpha_f=1.0), |
| old_type, |
| ) |
| return g.op("Gemm", self, other, zero_constant, beta_f=0.0, alpha_f=1.0) |
| |
| |
| @_onnx_symbolic("aten::addmm") |
| @symbolic_helper.parse_args("v", "v", "v", "t", "t") |
| def addmm(g: jit_utils.GraphContext, self, mat1, mat2, beta, alpha): |
| if symbolic_helper._try_get_scalar_type(self): |
| old_type, self, mat1, mat2 = _try_cast_integer_to_float(g, self, mat1, mat2) |
| return _cast_to_type( |
| g, |
| g.op( |
| "Gemm", |
| mat1, |
| mat2, |
| self, |
| beta_f=symbolic_helper._scalar(beta), |
| alpha_f=symbolic_helper._scalar(alpha), |
| ), |
| old_type, |
| ) |
| else: |
| return g.op( |
| "Gemm", |
| mat1, |
| mat2, |
| self, |
| beta_f=symbolic_helper._scalar(beta), |
| alpha_f=symbolic_helper._scalar(alpha), |
| ) |
| |
| |
| @_onnx_symbolic("aten::flatten") |
| def flatten(g: jit_utils.GraphContext, input, start_dim, end_dim): |
| start_dim_i = symbolic_helper._get_const(start_dim, "i", "start_dim") |
| end_dim_i = symbolic_helper._get_const(end_dim, "i", "end_dim") |
| |
| dim = input.type().dim() |
| if end_dim_i < 0: |
| end_dim_i = dim + end_dim_i |
| # use ONNX's Flatten operator for cases where the output shape is 2D |
| if start_dim_i == 1 and end_dim_i == dim - 1: |
| if symbolic_helper._try_get_scalar_type(input): |
| old_type, input = _try_cast_integer_to_float(g, input) |
| return _cast_to_type( |
| g, g.op("Flatten", input, axis_i=start_dim_i), old_type |
| ) |
| else: |
| return g.op("Flatten", input, axis_i=start_dim_i) |
| if start_dim_i == 0 and end_dim_i == dim - 2: |
| if symbolic_helper._try_get_scalar_type(input): |
| old_type, input = _try_cast_integer_to_float(g, input) |
| return _cast_to_type( |
| g, g.op("Flatten", input, axis_i=end_dim_i + 1), old_type |
| ) |
| else: |
| return g.op("Flatten", input, axis_i=end_dim_i + 1) |
| |
| return opset9.flatten(g, input, start_dim, end_dim) |
| |
| |
| def _constant_fill(g: jit_utils.GraphContext, sizes, dtype: int, const_value): |
| if dtype is None: |
| scalar_type = _type_utils.JitScalarType.FLOAT |
| else: |
| scalar_type = _type_utils.JitScalarType(dtype) |
| if not scalar_type.dtype().is_floating_point: |
| result = g.op( |
| "ConstantFill", |
| sizes, |
| dtype_i=_type_utils.JitScalarType.FLOAT.onnx_type(), |
| input_as_shape_i=1, |
| value_f=const_value, |
| ) |
| return g.op("Cast", result, to_i=scalar_type.onnx_type()) |
| else: |
| return g.op( |
| "ConstantFill", |
| sizes, |
| dtype_i=scalar_type.onnx_type(), |
| input_as_shape_i=1, |
| value_f=const_value, |
| ) |
| |
| |
| @_onnx_symbolic("aten::empty") |
| @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v") |
| def empty( |
| g: jit_utils.GraphContext, |
| sizes, |
| dtype, |
| layout, |
| device, |
| pin_memory=False, |
| memory_format=None, |
| ): |
| return zeros(g, sizes, dtype, layout, device, pin_memory) |
| |
| |
| @_onnx_symbolic("aten::empty_like") |
| @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v") |
| def empty_like( |
| g: jit_utils.GraphContext, |
| input, |
| dtype, |
| layout, |
| device, |
| pin_memory=False, |
| memory_format=None, |
| ): |
| return zeros_like(g, input, dtype, layout, device, pin_memory) |
| |
| |
| @_onnx_symbolic("aten::zeros") |
| @symbolic_helper.parse_args("v", "i", "v", "v", "v") |
| def zeros(g: jit_utils.GraphContext, sizes, dtype, layout, device, pin_memory=False): |
| # NOTE: no way to set device and layout in ONNX, so we ignore it |
| return _constant_fill(g, sizes, dtype, 0) |
| |
| |
| @_onnx_symbolic("aten::zeros_like") |
| @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v") |
| def zeros_like( |
| g: jit_utils.GraphContext, |
| input, |
| dtype, |
| layout, |
| device, |
| pin_memory=False, |
| memory_format=None, |
| ): |
| shape = g.op("Shape", input) |
| return _constant_fill(g, shape, dtype, 0) |
| |
| |
| @_onnx_symbolic("aten::ones") |
| @symbolic_helper.parse_args("v", "i", "v", "v", "v") |
| def ones(g: jit_utils.GraphContext, sizes, dtype, layout, device, pin_memory=False): |
| return _constant_fill(g, sizes, dtype, 1) |
| |
| |
| @_onnx_symbolic("aten::ones_like") |
| @symbolic_helper.parse_args("v", "i", "v", "v", "v", "v") |
| def ones_like( |
| g: jit_utils.GraphContext, |
| input, |
| dtype, |
| layout, |
| device, |
| pin_memory=False, |
| memory_format=None, |
| ): |
| shape = g.op("Shape", input) |
| return _constant_fill(g, shape, dtype, 1) |
| |
| |
| @_onnx_symbolic("aten::full") |
| def full( |
| g: jit_utils.GraphContext, sizes, value, dtype, layout, device, pin_memory=False |
| ): |
| const_value = symbolic_helper._maybe_get_const(value, "t") |
| if symbolic_helper._is_value(const_value): |
| tmp = zeros(g, sizes, dtype, layout, device) |
| return opset9.add(g, tmp, value, g.op("Constant", value_t=torch.tensor(1))) |
| else: |
| dtype = symbolic_helper._get_const(dtype, "i", "dtype") |
| return _constant_fill(g, sizes, dtype, const_value) |
| |
| |
| @_onnx_symbolic("aten::full_like") |
| @symbolic_helper.parse_args("v", "f", "i", "v", "v", "v", "v") |
| def full_like( |
| g: jit_utils.GraphContext, |
| input, |
| fill_value, |
| dtype, |
| layout, |
| device, |
| pin_memory=False, |
| memory_format=None, |
| ): |
| shape = g.op("Shape", input) |
| return _constant_fill(g, shape, dtype, fill_value) |
| |
| |
| @_onnx_symbolic("aten::repeat") |
| def repeat(g: jit_utils.GraphContext, self, repeats): |
| if not symbolic_helper._is_value(repeats): |
| repeats = g.op("Constant", value_t=torch.LongTensor(repeats)) |
| if symbolic_helper._is_packed_list(repeats): |
| repeat_size_len = len(symbolic_helper._unpack_list(repeats)) |
| else: |
| const_repeats = symbolic_helper._maybe_get_const(repeats, "is") |
| repeat_size_len = len(const_repeats) |
| if self.isCompleteTensor(): |
| sizes = self.type().sizes() |
| diff_dims = repeat_size_len - len(sizes) |
| if diff_dims > 0: |
| self = opset9.view( |
| g, self, g.op("Constant", value_t=torch.tensor([1] * diff_dims + sizes)) |
| ) |
| return g.op("Tile", self, repeats) |