| import math |
| from typing import TypeVar, Optional, Iterator |
| |
| import torch |
| from . import Sampler, Dataset |
| import torch.distributed as dist |
| |
| __all__ = ["DistributedSampler", ] |
| |
| T_co = TypeVar('T_co', covariant=True) |
| |
| |
| class DistributedSampler(Sampler[T_co]): |
| r"""Sampler that restricts data loading to a subset of the dataset. |
| |
| It is especially useful in conjunction with |
| :class:`torch.nn.parallel.DistributedDataParallel`. In such a case, each |
| process can pass a :class:`~torch.utils.data.DistributedSampler` instance as a |
| :class:`~torch.utils.data.DataLoader` sampler, and load a subset of the |
| original dataset that is exclusive to it. |
| |
| .. note:: |
| Dataset is assumed to be of constant size and that any instance of it always |
| returns the same elements in the same order. |
| |
| Args: |
| dataset: Dataset used for sampling. |
| num_replicas (int, optional): Number of processes participating in |
| distributed training. By default, :attr:`world_size` is retrieved from the |
| current distributed group. |
| rank (int, optional): Rank of the current process within :attr:`num_replicas`. |
| By default, :attr:`rank` is retrieved from the current distributed |
| group. |
| shuffle (bool, optional): If ``True`` (default), sampler will shuffle the |
| indices. |
| seed (int, optional): random seed used to shuffle the sampler if |
| :attr:`shuffle=True`. This number should be identical across all |
| processes in the distributed group. Default: ``0``. |
| drop_last (bool, optional): if ``True``, then the sampler will drop the |
| tail of the data to make it evenly divisible across the number of |
| replicas. If ``False``, the sampler will add extra indices to make |
| the data evenly divisible across the replicas. Default: ``False``. |
| |
| .. warning:: |
| In distributed mode, calling the :meth:`set_epoch` method at |
| the beginning of each epoch **before** creating the :class:`DataLoader` iterator |
| is necessary to make shuffling work properly across multiple epochs. Otherwise, |
| the same ordering will be always used. |
| |
| Example:: |
| |
| >>> # xdoctest: +SKIP |
| >>> sampler = DistributedSampler(dataset) if is_distributed else None |
| >>> loader = DataLoader(dataset, shuffle=(sampler is None), |
| ... sampler=sampler) |
| >>> for epoch in range(start_epoch, n_epochs): |
| ... if is_distributed: |
| ... sampler.set_epoch(epoch) |
| ... train(loader) |
| """ |
| |
| def __init__(self, dataset: Dataset, num_replicas: Optional[int] = None, |
| rank: Optional[int] = None, shuffle: bool = True, |
| seed: int = 0, drop_last: bool = False) -> None: |
| if num_replicas is None: |
| if not dist.is_available(): |
| raise RuntimeError("Requires distributed package to be available") |
| num_replicas = dist.get_world_size() |
| if rank is None: |
| if not dist.is_available(): |
| raise RuntimeError("Requires distributed package to be available") |
| rank = dist.get_rank() |
| if rank >= num_replicas or rank < 0: |
| raise ValueError( |
| f"Invalid rank {rank}, rank should be in the interval [0, {num_replicas - 1}]") |
| self.dataset = dataset |
| self.num_replicas = num_replicas |
| self.rank = rank |
| self.epoch = 0 |
| self.drop_last = drop_last |
| # If the dataset length is evenly divisible by # of replicas, then there |
| # is no need to drop any data, since the dataset will be split equally. |
| if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type] |
| # Split to nearest available length that is evenly divisible. |
| # This is to ensure each rank receives the same amount of data when |
| # using this Sampler. |
| self.num_samples = math.ceil( |
| (len(self.dataset) - self.num_replicas) / self.num_replicas # type: ignore[arg-type] |
| ) |
| else: |
| self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) # type: ignore[arg-type] |
| self.total_size = self.num_samples * self.num_replicas |
| self.shuffle = shuffle |
| self.seed = seed |
| |
| def __iter__(self) -> Iterator[T_co]: |
| if self.shuffle: |
| # deterministically shuffle based on epoch and seed |
| g = torch.Generator() |
| g.manual_seed(self.seed + self.epoch) |
| indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type] |
| else: |
| indices = list(range(len(self.dataset))) # type: ignore[arg-type] |
| |
| if not self.drop_last: |
| # add extra samples to make it evenly divisible |
| padding_size = self.total_size - len(indices) |
| if padding_size <= len(indices): |
| indices += indices[:padding_size] |
| else: |
| indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] |
| else: |
| # remove tail of data to make it evenly divisible. |
| indices = indices[:self.total_size] |
| assert len(indices) == self.total_size |
| |
| # subsample |
| indices = indices[self.rank:self.total_size:self.num_replicas] |
| assert len(indices) == self.num_samples |
| |
| return iter(indices) |
| |
| def __len__(self) -> int: |
| return self.num_samples |
| |
| def set_epoch(self, epoch: int) -> None: |
| r""" |
| Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas |
| use a different random ordering for each epoch. Otherwise, the next iteration of this |
| sampler will yield the same ordering. |
| |
| Args: |
| epoch (int): Epoch number. |
| """ |
| self.epoch = epoch |