| import numpy as np |
| import unittest |
| |
| from caffe2.python import core, workspace, test_util |
| |
| |
| class TestToyRegression(test_util.TestCase): |
| def testToyRegression(self): |
| """Tests a toy regression end to end. |
| |
| The test code carries a simple toy regression in the form |
| y = 2.0 x1 + 1.5 x2 + 0.5 |
| by randomly generating gaussian inputs and calculating the ground |
| truth outputs in the net as well. It uses a standard SGD to then |
| train the parameters. |
| """ |
| workspace.ResetWorkspace() |
| init_net = core.Net("init") |
| W = init_net.UniformFill([], "W", shape=[1, 2], min=-1., max=1.) |
| B = init_net.ConstantFill([], "B", shape=[1], value=0.0) |
| W_gt = init_net.GivenTensorFill( |
| [], "W_gt", shape=[1, 2], values=[2.0, 1.5]) |
| B_gt = init_net.GivenTensorFill([], "B_gt", shape=[1], values=[0.5]) |
| LR = init_net.ConstantFill([], "LR", shape=[1], value=-0.1) |
| ONE = init_net.ConstantFill([], "ONE", shape=[1], value=1.) |
| ITER = init_net.ConstantFill([], "ITER", shape=[1], value=0, |
| dtype=core.DataType.INT64) |
| |
| train_net = core.Net("train") |
| X = train_net.GaussianFill([], "X", shape=[64, 2], mean=0.0, std=1.0) |
| Y_gt = X.FC([W_gt, B_gt], "Y_gt") |
| Y_pred = X.FC([W, B], "Y_pred") |
| dist = train_net.SquaredL2Distance([Y_gt, Y_pred], "dist") |
| loss = dist.AveragedLoss([], ["loss"]) |
| # Get gradients for all the computations above. Note that in fact we |
| # don't need to get the gradient the Y_gt computation, but we'll just |
| # leave it there. In many cases, I am expecting one to load X and Y |
| # from the disk, so there is really no operator that will calculate the |
| # Y_gt input. |
| input_to_grad = train_net.AddGradientOperators([loss], skip=2) |
| # updates |
| train_net.Iter(ITER, ITER) |
| train_net.LearningRate(ITER, "LR", base_lr=-0.1, |
| policy="step", stepsize=20, gamma=0.9) |
| train_net.WeightedSum([W, ONE, input_to_grad[str(W)], LR], W) |
| train_net.WeightedSum([B, ONE, input_to_grad[str(B)], LR], B) |
| for blob in [loss, W, B]: |
| train_net.Print(blob, []) |
| |
| # the CPU part. |
| plan = core.Plan("toy_regression") |
| plan.AddStep(core.ExecutionStep("init", init_net)) |
| plan.AddStep(core.ExecutionStep("train", train_net, 200)) |
| |
| workspace.RunPlan(plan) |
| W_result = workspace.FetchBlob("W") |
| B_result = workspace.FetchBlob("B") |
| np.testing.assert_array_almost_equal(W_result, [[2.0, 1.5]], decimal=2) |
| np.testing.assert_array_almost_equal(B_result, [0.5], decimal=2) |
| workspace.ResetWorkspace() |
| |
| |
| if __name__ == '__main__': |
| unittest.main() |