| from torch import Tensor, memory_format |
| from typing import Callable, Optional, List, overload, Tuple |
| from torch.types import _bool, _dtype, _device |
| |
| # Defined in tools/autograd/templates/python_nn_functions.cpp |
| |
| ${dispatched_hints} |
| |
| # Defined in aten/src/ATen/native/mkldnn/Linear.cpp |
| def mkldnn_linear(input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ... |
| |
| # Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp |
| def mkldnn_reorder_conv2d_weight(self: Tensor, padding: List, stride: List, dilatation: List, groups: int) -> Tensor: ... |
| def mkldnn_reorder_conv3d_weight(self: Tensor, padding: List, stride: List, dilatation: List, groups: int) -> Tensor: ... |
| |
| # Defined in aten/src/ATen/native/mkldnn/Prelu.cpp |
| def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ... |
| |
| # Defined at tools/autograd/templates/python_nn_functions.cpp |
| @overload |
| def _parse_to(device: _device, dtype: _dtype, non_blocking: _bool, copy: _bool, *, |
| memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ... |
| @overload |
| def _parse_to(dtype: _dtype, non_blocking: _bool, copy: _bool, *, |
| memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ... |
| @overload |
| def _parse_to(tensor: Tensor, non_blocking: _bool, copy: _bool, *, |
| memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ... |
| |
| # Defined in aten/src/ATen/naitve/PadSequence.cpp |
| def pad_sequence(sequences: List[Tensor], batch_first: bool = False, |
| padding_value: float = ...) -> Tensor: ... |
| |
| def flatten_dense_tensors(tensors: List[Tensor]) -> Tensor: ... |
| |
| def unflatten_dense_tensors(flat: Tensor, tensors: List[Tensor]) -> List[Tensor]: ... |