blob: a93fe8197dea66e5e331133f94c0067ff8ecb90f [file] [log] [blame]
from concurrent.futures import Future
from typing import Any, Dict, List, Optional
import torch.distributed as dist
import torch.distributed.checkpoint.state_dict_loader as loader
import torch.distributed.checkpoint.state_dict_saver as saver
from torch.distributed.checkpoint.metadata import Metadata, STATE_DICT_TYPE
from torch.distributed.checkpoint.storage import (
LoadPlanner,
SavePlanner,
StorageReader,
StorageWriter,
)
__all__: List[str] = []
class _Checkpointer:
"""This base class specefies a high level API for saving and loading
distributed `state_dict` 's. It provides an abstraction over the low-level APIs
provided by :py:mod:`torch.distributed.checkpoint.storage`, essentially calling
:py:meth: `torch.distributed.state_dict_saver.save` and
:py:meth: `torch.distributed.state_dict_loader.load` with the provided storage
readers and writers.
.. warning::
This feature is experimental and subject to removal/change.
"""
def __init__(
self,
storage_writer: StorageWriter,
storage_reader: StorageReader,
*,
process_group: Optional[dist.ProcessGroup] = None,
coordinator_rank: int = 0,
no_dist: bool = False,
load_planner: Optional[LoadPlanner] = None,
save_planner: Optional[SavePlanner] = None,
):
"""Initializes the Checkpointer instance.
Args:
storage_writer: Instance of StorageWrite use to perform writes.
storage_reader: StorageReader used to load data from.
process_group: ProcessGroup to be used for cross-rank synchronization.
coordinator_rank: Rank to use to coordinate the checkpoint. rank0 is used by default.
no_dist: If ``True``, distributed checkpoint will not load in SPMD style. (Default: ``False``)
loader_planner: Instance of LoadPlanner to use when loading.
save_planner: Instance of SavePlanner to use when saving.
"""
self.storage_writer = storage_writer
self.storage_reader = storage_reader
self.process_group = process_group
self.coordinator_rank = coordinator_rank
self.no_dist = no_dist
self.load_planner = load_planner
self.save_planner = save_planner
def save(
self,
state_dict: STATE_DICT_TYPE,
) -> Metadata:
"""Calls :py:meth: `torch.distributed.state_dict_saver.save`. Utilizing values passed during initialization."""
return saver.save(
state_dict,
self.storage_writer,
process_group=self.process_group,
coordinator_rank=self.coordinator_rank,
no_dist=self.no_dist,
planner=self.save_planner,
)
def async_save(
self,
state_dict: STATE_DICT_TYPE,
) -> Future:
"""
Calls :py:meth: `torch.distributed.state_dict_saver._async_save`. Utilizing values passed during initialization.
Returns:
Future: A future holding the resultant Metadata object from `save`.
"""
return saver.async_save(
state_dict,
storage_writer=self.storage_writer,
process_group=self.process_group,
planner=self.save_planner,
)
def load(self, state_dict: Dict[str, Any]) -> None:
"""Calls :py:meth: `torch.distributed.state_dict_loader.load`. Utilizing values passed during initialization."""
loader.load(
state_dict,
storage_reader=self.storage_reader,
process_group=self.process_group,
planner=self.load_planner,
)