| # mypy: allow-untyped-defs |
| from typing import Dict, List, Optional, Tuple |
| |
| import torch |
| import torch.optim._functional as F |
| from torch import Tensor |
| |
| |
| __all__: List[str] = [] |
| |
| |
| # Define a TorchScript compatible Functional Rprop Optimizer |
| # where we use these optimizer in a functional way. |
| # Instead of using the `param.grad` when updating parameters, |
| # we explicitly allow the distributed optimizer pass gradients to |
| # the `step` function. In this way, we could separate the gradients |
| # and parameters and allow multithreaded trainer to update the |
| # parameters without data traces on accumulating to the same .grad. |
| # NOTE: This should be only used by distributed optimizer internals |
| # and not meant to expose to the user. |
| @torch.jit.script |
| class _FunctionalRprop: |
| def __init__( |
| self, |
| params: List[Tensor], |
| lr: float = 1e-2, |
| etas: Tuple[float, float] = (0.5, 1.2), |
| step_sizes: Tuple[float, float] = (1e-6, 50), |
| foreach: bool = False, |
| maximize: bool = False, |
| _allow_empty_param_list: bool = False, |
| ): |
| self.defaults = { |
| "lr": lr, |
| } |
| self.etas = etas |
| self.step_sizes = step_sizes |
| self.foreach = foreach |
| self.maximize = maximize |
| |
| if len(params) == 0 and not _allow_empty_param_list: |
| raise ValueError("optimizer got an empty parameter list") |
| |
| # NOTE: we only have one param_group and don't allow user to add additional |
| # param group as it's not a common use case. |
| self.param_group = {"params": params} |
| |
| self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {}) |
| |
| def step(self, gradients: List[Optional[Tensor]]): |
| params = self.param_group["params"] |
| params_with_grad = [] |
| grads = [] |
| prevs = [] |
| step_sizes = [] |
| state_steps = [] |
| lr = self.defaults["lr"] |
| etaminus, etaplus = self.etas |
| step_size_min, step_size_max = self.step_sizes |
| |
| if len(params) != len(gradients): |
| raise ValueError( |
| "the gradients passed in does not equal to the size of the parameters!" |
| + f"Params length: {len(params)}. " |
| + f"Gradients length: {len(gradients)}" |
| ) |
| |
| has_complex = False |
| for param, gradient in zip(params, gradients): |
| if gradient is not None: |
| has_complex |= torch.is_complex(param) |
| params_with_grad.append(param) |
| grads.append(gradient) |
| # Lazy state initialization |
| if param not in self.state: |
| self.state[param] = {} |
| state = self.state[param] |
| state["step"] = torch.tensor(0.0) |
| state["prev"] = torch.zeros_like( |
| param, memory_format=torch.preserve_format |
| ) |
| state["step_size"] = torch.full_like(gradient, lr) |
| |
| state = self.state[param] |
| prevs.append(state["prev"]) |
| step_sizes.append(state["step_size"]) |
| state_steps.append(state["step"]) |
| |
| with torch.no_grad(): |
| F.rprop( |
| params_with_grad, |
| grads, |
| prevs, |
| step_sizes, |
| state_steps, |
| step_size_min=step_size_min, |
| step_size_max=step_size_max, |
| etaminus=etaminus, |
| etaplus=etaplus, |
| foreach=self.foreach, |
| maximize=self.maximize, |
| has_complex=has_complex, |
| ) |