| # mypy: allow-untyped-defs |
| import contextlib |
| from collections import defaultdict |
| from typing import Any, Dict, Iterator, Optional, Set, Tuple, Union |
| from typing_extensions import deprecated |
| |
| import torch |
| from torch import Tensor |
| from torch.nn.utils._named_member_accessor import NamedMemberAccessor |
| |
| |
| __all__ = ["functional_call"] |
| |
| |
| def _untie_named_tensors_map( |
| module: "torch.nn.Module", |
| parameters_and_buffers: Dict[str, Tensor], |
| ) -> Dict[str, Tensor]: |
| """ |
| Unties all tied tensors in the module to parameters_and_buffers. |
| |
| This function returns a new untied_parameters_and_buffers dictionary and leave the original |
| untied_parameters_and_buffers dictionary unchanged. It adds new (missing) keys for tied tensors |
| in the module to untied_parameters_and_buffers. The value of the new key is the user-given value |
| in the original parameters_and_buffers dictionary. |
| |
| If there are more than one user-given values for the same tied tensor, it will raise an error. |
| |
| For example, if the module has two tied weights self.foo and self.tied_foo and the user passes |
| {'foo': foo_value, ...}, this will return {'foo': foo_value, 'tied_foo': foo_value, ...}. If the |
| user passes {'foo': foo_value, 'tied_foo': tied_foo_value, ...}, it will raise an error. If the |
| user passes {'foo': foo_value, 'tied_foo': foo_value, ...}, it will not raise an error. |
| |
| Args: |
| module (torch.nn.Module): the module to determine which tensors are tied. |
| parameters_and_buffers (Dict[str, Tensor]): a map of {name: tensor} for reparamaterizing the module. |
| |
| Returns: |
| A new untied version of the parameters_and_buffers dictionary. |
| |
| Raises: |
| ValueError: if there are more than one user-given values for the same tied tensor. |
| """ |
| # A map of {name: tensor} for all tensors (including tied ones) in the module. |
| all_named_tensors: Dict[str, Tensor] = {} |
| all_named_tensors.update(module.named_parameters(remove_duplicate=False)) |
| all_named_tensors.update(module.named_buffers(remove_duplicate=False)) |
| |
| # A map of {tensor: set(all_tied_names)} for all tensor names in the module. |
| tensor_to_tied_names_map: Dict[Tensor, Set[str]] = defaultdict(set) |
| for name, tensor in all_named_tensors.items(): |
| tensor_to_tied_names_map[tensor].add(name) |
| |
| # A map of {tied_name: set(all_tied_names)} for all tensor names in the module. |
| # If a name is not tied, it will not be in this map. |
| tied_names_map: Dict[str, Set[str]] = {} |
| for tied_names in tensor_to_tied_names_map.values(): |
| if len(tied_names) > 1: |
| for tied_name in tied_names: |
| tied_names_map[tied_name] = tied_names |
| |
| # Make sure the user didn't pass multiple values for the same tied tensor. |
| given_names = set(parameters_and_buffers.keys()) |
| given_names_for_tied_tensors = given_names.intersection(tied_names_map.keys()) |
| for given_name in given_names_for_tied_tensors: |
| tied_names = tied_names_map[given_name] |
| if ( |
| # Detect if there are multiple keys present for the same tied tensor. |
| len(tied_names.intersection(given_names_for_tied_tensors)) > 1 |
| # Only raise an error if the user passed multiple values for the same tied tensor. |
| # If all given values are the same, don't raise. |
| and len({parameters_and_buffers[tied_name] for tied_name in tied_names}) |
| != 1 |
| ): |
| raise ValueError( |
| f"functional_call got multiple values for keys {sorted(tied_names)}, " |
| f"which are tied. Consider using tie_weights=False" |
| ) |
| |
| # Untie the given named tensor map |
| # Make a copy for not modifying the original dict |
| untied_parameters_and_buffers = parameters_and_buffers.copy() |
| for given_name in given_names_for_tied_tensors: |
| for tied_name in tied_names_map[given_name]: |
| untied_parameters_and_buffers[tied_name] = parameters_and_buffers[ |
| given_name |
| ] |
| return untied_parameters_and_buffers |
| |
| |
| @contextlib.contextmanager |
| def _reparametrize_module( |
| module: "torch.nn.Module", |
| parameters_and_buffers: Dict[str, Tensor], |
| *, |
| tie_weights: bool = False, |
| strict: bool = False, |
| stack_weights: bool = False, |
| ) -> Iterator[None]: |
| if tie_weights: |
| untied_parameters_and_buffers = _untie_named_tensors_map( |
| module, parameters_and_buffers |
| ) |
| else: |
| untied_parameters_and_buffers = parameters_and_buffers |
| |
| accessor = NamedMemberAccessor(module) |
| if strict: |
| missing_keys, unexpected_keys = accessor.check_keys( |
| untied_parameters_and_buffers |
| ) |
| error_msgs = [] |
| if len(unexpected_keys) > 0: |
| error_msgs.append( |
| f"Unexpected key(s): {', '.join(map(repr, unexpected_keys))}." |
| ) |
| if len(missing_keys) > 0: |
| error_msgs.append(f"Missing key(s): {', '.join(map(repr, missing_keys))}.") |
| if len(error_msgs) > 0: |
| raise RuntimeError( |
| "Error(s) in reparametrizing for {}:\n\t{}".format( |
| module._get_name(), "\n\t".join(error_msgs) |
| ) |
| ) |
| |
| orig_parameters_and_buffers: Dict[str, Tensor] = {} |
| try: |
| orig_parameters_and_buffers, _ = accessor.swap_tensors_dict( |
| untied_parameters_and_buffers, allow_missing=True |
| ) |
| yield |
| finally: |
| if stack_weights: |
| # When stacking is enabled, we will restore the weights in LIFO order. |
| orig_parameters_and_buffers = dict( |
| reversed(orig_parameters_and_buffers.items()) |
| ) |
| new_parameters_and_buffers, _ = accessor.swap_tensors_dict( |
| orig_parameters_and_buffers, allow_missing=True |
| ) |
| # Sometimes the module is not completely stateless and has some in-place modifications on |
| # the _parameters and _buffers dictionaries. |
| # Write the changed parameters and buffers back to the original dict. |
| parameters_and_buffers.update( |
| { |
| k: new_parameters_and_buffers[k] |
| for k in parameters_and_buffers |
| if k in new_parameters_and_buffers |
| } |
| ) |
| |
| |
| @deprecated( |
| "`torch.nn.utils.stateless.functional_call` is deprecated as of PyTorch 2.0 " |
| "and will be removed in a future version of PyTorch. " |
| "Please use `torch.func.functional_call` instead which is a drop-in replacement.", |
| category=FutureWarning, |
| ) |
| def functional_call( |
| module: "torch.nn.Module", |
| parameters_and_buffers: Dict[str, Tensor], |
| args: Union[Any, Tuple], |
| kwargs: Optional[Dict[str, Any]] = None, |
| *, |
| tie_weights: bool = True, |
| strict: bool = False, |
| ): |
| r"""Perform a functional call on the module by replacing the module parameters and buffers with the provided ones. |
| |
| .. warning:: |
| |
| This API is deprecated as of PyTorch 2.0 and will be removed in a future |
| version of PyTorch. Please use :func:`torch.func.functional_call` instead, |
| which is a drop-in replacement for this API. |
| |
| .. note:: If the module has active parametrizations, passing a value in the |
| :attr:`parameters_and_buffers` argument with the name set to the regular parameter |
| name will completely disable the parametrization. |
| If you want to apply the parametrization function to the value passed |
| please set the key as ``{submodule_name}.parametrizations.{parameter_name}.original``. |
| |
| .. note:: If the module performs in-place operations on parameters/buffers, these will be reflected |
| in the `parameters_and_buffers` input. |
| |
| Example:: |
| |
| >>> a = {'foo': torch.zeros(())} |
| >>> # xdoctest: +SKIP |
| >>> mod = Foo() # does self.foo = self.foo + 1 |
| >>> print(mod.foo) # tensor(0.) |
| >>> functional_call(mod, a, torch.ones(())) |
| >>> print(mod.foo) # tensor(0.) |
| >>> print(a['foo']) # tensor(1.) |
| |
| .. note:: If the module has tied weights, whether or not functional_call respects the tying is determined by the |
| tie_weights flag. |
| |
| Example:: |
| |
| >>> a = {'foo': torch.zeros(())} |
| >>> # xdoctest: +SKIP |
| >>> mod = Foo() # has both self.foo and self.foo_tied which are tied. Returns x + self.foo + self.foo_tied |
| >>> print(mod.foo) # tensor(1.) |
| >>> mod(torch.zeros(())) # tensor(2.) |
| >>> functional_call(mod, a, torch.zeros(())) # tensor(0.) since it will change self.foo_tied too |
| >>> functional_call(mod, a, torch.zeros(()), tie_weights=False) # tensor(1.)--self.foo_tied is not updated |
| >>> new_a = {'foo': torch.zeros(()), 'foo_tied': torch.zeros(())} |
| >>> functional_call(mod, new_a, torch.zeros()) # tensor(0.) |
| |
| Args: |
| module (torch.nn.Module): the module to call |
| parameters_and_buffers (dict of str and Tensor): the parameters that will be used in |
| the module call. |
| args (Any or tuple): arguments to be passed to the module call. If not a tuple, considered a single argument. |
| kwargs (dict): keyword arguments to be passed to the module call |
| tie_weights (bool, optional): If True, then parameters and buffers tied in the original model will be treated as |
| tied in the reparamaterized version. Therefore, if True and different values are passed for the tied |
| parameters and buffers, it will error. If False, it will not respect the originally tied parameters and |
| buffers unless the values passed for both weights are the same. Default: True. |
| strict (bool, optional): If True, then the parameters and buffers passed in must match the parameters and |
| buffers in the original module. Therefore, if True and there are any missing or unexpected keys, it will |
| error. Default: False. |
| |
| Returns: |
| Any: the result of calling ``module``. |
| """ |
| return _functional_call( |
| module, |
| parameters_and_buffers, |
| args, |
| kwargs, |
| tie_weights=tie_weights, |
| strict=strict, |
| ) |
| |
| |
| def _functional_call( |
| module: "torch.nn.Module", |
| parameters_and_buffers: Dict[str, Tensor], |
| args: Union[Any, Tuple], |
| kwargs: Optional[Dict[str, Any]] = None, |
| *, |
| tie_weights: bool = True, |
| strict: bool = False, |
| ): |
| # TODO allow kwargs such as unsafe and others for parametrization |
| if ( |
| torch.jit.is_tracing() |
| or torch.jit.is_scripting() |
| or isinstance( |
| module, |
| ( |
| torch.jit.RecursiveScriptModule, |
| torch.jit.ScriptModule, |
| torch.jit.ScriptFunction, |
| ), |
| ) |
| ): |
| raise RuntimeError("The stateless API can't be used with Jitted modules") |
| if isinstance(module, torch.nn.DataParallel): |
| raise RuntimeError( |
| "The stateless API can't be used with nn.DataParallel module" |
| ) |
| if kwargs is None: |
| kwargs = {} |
| if not isinstance(args, tuple): |
| args = (args,) |
| with _reparametrize_module( |
| module, parameters_and_buffers, tie_weights=tie_weights, strict=strict |
| ): |
| return module(*args, **kwargs) |