| ## @package caffe_translator |
| # Module caffe2.python.caffe_translator |
| |
| import argparse |
| import copy |
| import logging |
| import re |
| import numpy as np # noqa |
| |
| from caffe2.proto import caffe2_pb2, caffe2_legacy_pb2 |
| from caffe.proto import caffe_pb2 |
| from caffe2.python import core, utils, workspace |
| from google.protobuf import text_format |
| |
| logging.basicConfig() |
| log = logging.getLogger("caffe_translator") |
| log.setLevel(logging.INFO) |
| |
| |
| def _StateMeetsRule(state, rule): |
| """A function that reproduces Caffe's StateMeetsRule functionality.""" |
| if rule.HasField('phase') and rule.phase != state.phase: |
| return False |
| if rule.HasField('min_level') and state.level < rule.min_level: |
| return False |
| if rule.HasField('max_level') and state.level > rule.max_level: |
| return False |
| curr_stages = set(list(state.stage)) |
| # all stages in rule.stages should be in, otherwise it's not a match. |
| if len(rule.stage) and any([s not in curr_stages for s in rule.stage]): |
| return False |
| # none of the stage in rule.stages should be in, otherwise it's not a match. |
| if len(rule.not_stage) and any([s in curr_stages for s in rule.not_stage]): |
| return False |
| # If none of the nonmatch happens, return True. |
| return True |
| |
| |
| def _ShouldInclude(net_state, layer): |
| """A function that reproduces Caffe's inclusion and exclusion rule.""" |
| ret = (len(layer.include) == 0) |
| # check exclude rules: if any exclusion is met, we shouldn't include. |
| ret &= not any([_StateMeetsRule(net_state, rule) for rule in layer.exclude]) |
| if len(layer.include): |
| # check include rules: if any inclusion is met, we should include. |
| ret |= any([_StateMeetsRule(net_state, rule) for rule in layer.include]) |
| return ret |
| |
| |
| def _GetLegacyDims(net, net_params, dummy_input, legacy_pad_ops): |
| dim_map = {} |
| ws = workspace.C.Workspace() |
| for param in net_params.protos: |
| ws.create_blob(param.name) \ |
| .feed(utils.Caffe2TensorToNumpyArray(param)) |
| external_input = net.op[0].input[0] |
| ws.create_blob(external_input).feed(dummy_input) |
| # Get dimensions with legacy pad |
| for i in range(len(net.op)): |
| op_def = net.op[i] |
| ws._run_operator(op_def.SerializeToString()) |
| if i in legacy_pad_ops: |
| output = op_def.output[0] |
| blob_legacy = ws.fetch_blob(output) |
| dim_map[i] = blob_legacy.shape |
| return dim_map |
| |
| |
| def _GetLegacyPadArgs(op_def, arg_map): |
| pads = {} |
| keys = ['pad_l', 'pad_t', 'pad_r', 'pad_b'] |
| is_pad = 'pad' in arg_map |
| if is_pad: |
| for k in keys: |
| pads[k] = arg_map['pad'].i |
| else: |
| pads = {x: arg_map[x].i for x in keys} |
| return pads |
| |
| |
| def _AdjustDims(op_def, arg_map, pads, dim1, dim2): |
| n1, c1, h1, w1 = dim1 |
| n2, c2, h2, w2 = dim2 |
| assert(n1 == n2) |
| assert(c1 == c2) |
| is_pad = 'pad' in arg_map |
| if h1 != h2 or w1 != w2: |
| if h1 == h2 + 1: |
| pads['pad_b'] += 1 |
| elif h1 != h2: |
| raise Exception("Unexpected dimensions for height:", h1, h2) |
| if w1 == w2 + 1: |
| pads['pad_r'] += 1 |
| elif w1 != w2: |
| raise Exception("Unexpected dimensions for width:", w1, w2) |
| if is_pad: |
| op_def.arg.remove(arg_map['pad']) |
| args = [] |
| for name in pads.keys(): |
| arg = caffe2_pb2.Argument() |
| arg.name = name |
| arg.i = pads[name] |
| args.append(arg) |
| op_def.arg.extend(args) |
| else: |
| for name in pads.keys(): |
| arg_map[name].i = pads[name] |
| |
| |
| def _RemoveLegacyPad(net, net_params, input_dims): |
| legacy_pad_ops = [] |
| for i in range(len(net.op)): |
| op_def = net.op[i] |
| if re.match(r'^(Conv|ConvTranspose|MaxPool|AveragePool)(\dD)?$', |
| op_def.type): |
| for arg in op_def.arg: |
| if arg.name == 'legacy_pad': |
| legacy_pad_ops.append(i) |
| break |
| if legacy_pad_ops: |
| n, c, h, w = input_dims |
| dummy_input = np.random.randn(n, c, h, w).astype(np.float32) |
| dim_map = _GetLegacyDims(net, net_params, dummy_input, legacy_pad_ops) |
| |
| # Running with the legacy pad argument removed |
| # compare the dimensions and adjust pad argument when necessary |
| ws = workspace.C.Workspace() |
| |
| external_input = net.op[0].input[0] |
| ws.create_blob(external_input).feed_blob(dummy_input) |
| for param in net_params.protos: |
| ws.create_blob(param.name) \ |
| .feed_blob(utils.Caffe2TensorToNumpyArray(param)) |
| |
| for i in range(len(net.op)): |
| op_def = net.op[i] |
| if i in legacy_pad_ops: |
| arg_map = {} |
| for arg in op_def.arg: |
| arg_map[arg.name] = arg |
| pads = _GetLegacyPadArgs(op_def, arg_map) |
| # remove legacy pad arg |
| for j in range(len(op_def.arg)): |
| arg = op_def.arg[j] |
| if arg.name == 'legacy_pad': |
| del op_def.arg[j] |
| break |
| output = op_def.output[0] |
| # use a new name to avoid the interference with inplace |
| nonlegacy_output = output + '_nonlegacy' |
| op_def.output[0] = nonlegacy_output |
| ws._run_operator(op_def.SerializeToString()) |
| blob_nonlegacy = ws.fetch_blob(nonlegacy_output) |
| # reset output name |
| op_def.output[0] = output |
| |
| dim1 = dim_map[i] |
| dim2 = blob_nonlegacy.shape |
| _AdjustDims(op_def, arg_map, pads, dim1, dim2) |
| |
| ws._run_operator(op_def.SerializeToString()) |
| return net |
| |
| |
| def _GetBlobDimMap(net, net_params, dummy_input): |
| dim_map = {} |
| ws = workspace.C.Workspace() |
| for param in net_params.protos: |
| ws.create_blob(param.name) \ |
| .feed(utils.Caffe2TensorToNumpyArray(param)) |
| external_input = net.op[0].input[0] |
| ws.create_blob(external_input).feed(dummy_input) |
| # Get dimensions with legacy pad |
| for i in range(len(net.op)): |
| op_def = net.op[i] |
| ws._run_operator(op_def.SerializeToString()) |
| for output in op_def.output: |
| blob = ws.fetch_blob(output) |
| dim_map[output] = blob.shape |
| return dim_map |
| |
| |
| def _GetInputDims(caffe_net): |
| input_dims = [] |
| if caffe_net.input_dim: |
| input_dims = caffe_net.input_dim |
| elif caffe_net.input_shape: |
| input_dims = caffe_net.input_shape[0].dim |
| elif caffe_net.layer[0].input_param.shape: |
| # getting input dimension from first layer |
| input_dims = caffe_net.layer[0].input_param.shape[0].dim |
| return input_dims |
| |
| |
| class TranslatorRegistry: |
| registry_ = {} |
| |
| @classmethod |
| def Register(cls, op_name): |
| """A decorator for registering gradient mappings.""" |
| |
| def Wrapper(func): |
| cls.registry_[op_name] = func |
| return func |
| |
| return Wrapper |
| |
| @classmethod |
| def TranslateLayer(cls, layer, pretrained_blobs, is_test, **kwargs): |
| try: |
| caffe_ops, params = cls.registry_[layer.type]( |
| layer, pretrained_blobs, is_test, **kwargs) |
| except KeyError as e: |
| raise KeyError('No translator registered for layer: %s yet.' % |
| str(layer)) from e |
| if caffe_ops is None: |
| caffe_ops = [] |
| if type(caffe_ops) is not list: |
| caffe_ops = [caffe_ops] |
| return caffe_ops, params |
| |
| @classmethod |
| def TranslateModel( |
| cls, |
| caffe_net, |
| pretrained_net, |
| is_test=False, |
| net_state=None, |
| remove_legacy_pad=False, |
| input_dims=None |
| ): |
| net_state = caffe_pb2.NetState() if net_state is None else net_state |
| net = caffe2_pb2.NetDef() |
| net.name = caffe_net.name |
| net_params = caffe2_pb2.TensorProtos() |
| if len(caffe_net.layers) > 0: |
| raise ValueError( |
| 'I think something is wrong. This translation script ' |
| 'only accepts new style layers that are stored in the ' |
| 'layer field.' |
| ) |
| if not input_dims: |
| input_dims = _GetInputDims(caffe_net) |
| for layer in caffe_net.layer: |
| if not _ShouldInclude(net_state, layer): |
| log.info('Current net state does not need layer {}' |
| .format(layer.name)) |
| continue |
| log.info('Translate layer {}'.format(layer.name)) |
| # Get pretrained one |
| pretrained_layers = ( |
| [l for l in pretrained_net.layer |
| if l.name == layer.name] + [l |
| for l in pretrained_net.layers |
| if l.name == layer.name] |
| ) |
| if len(pretrained_layers) > 1: |
| raise ValueError( |
| 'huh? more than one pretrained layer of one name?') |
| elif len(pretrained_layers) == 1: |
| pretrained_blobs = [ |
| utils.CaffeBlobToNumpyArray(blob) |
| for blob in pretrained_layers[0].blobs |
| ] |
| else: |
| # No pretrained layer for the given layer name. We'll just pass |
| # no parameter blobs. |
| # print 'No pretrained layer for layer', layer.name |
| pretrained_blobs = [] |
| operators, params = cls.TranslateLayer( |
| layer, pretrained_blobs, is_test, net=net, |
| net_params=net_params, input_dims=input_dims) |
| net.op.extend(operators) |
| net_params.protos.extend(params) |
| if remove_legacy_pad: |
| assert input_dims, \ |
| 'Please specify input_dims to remove legacy_pad' |
| net = _RemoveLegacyPad(net, net_params, input_dims) |
| return net, net_params |
| |
| |
| def TranslateModel(*args, **kwargs): |
| return TranslatorRegistry.TranslateModel(*args, **kwargs) |
| |
| |
| def ConvertTensorProtosToInitNet(net_params, input_name): |
| """Takes the net_params returned from TranslateModel, and wrap it as an |
| init net that contain GivenTensorFill. |
| |
| This is a very simple feature that only works with float tensors, and is |
| only intended to be used in an environment where you want a single |
| initialization file - for more complex cases, use a db to store the |
| parameters. |
| """ |
| init_net = caffe2_pb2.NetDef() |
| for tensor in net_params.protos: |
| if len(tensor.float_data) == 0: |
| raise RuntimeError( |
| "Only float tensors are supported in this util.") |
| op = core.CreateOperator( |
| "GivenTensorFill", [], [tensor.name], |
| arg=[ |
| utils.MakeArgument("shape", list(tensor.dims)), |
| utils.MakeArgument("values", tensor.float_data)]) |
| init_net.op.extend([op]) |
| init_net.op.extend([core.CreateOperator("ConstantFill", [], [input_name], shape=[1])]) |
| return init_net |
| |
| |
| def BaseTranslate(layer, caffe2_type): |
| """A simple translate interface that maps the layer input and output.""" |
| caffe2_op = caffe2_pb2.OperatorDef() |
| caffe2_op.type = caffe2_type |
| caffe2_op.input.extend(layer.bottom) |
| caffe2_op.output.extend(layer.top) |
| return caffe2_op |
| |
| |
| def AddArgument(op, key, value): |
| """Makes an argument based on the value type.""" |
| op.arg.extend([utils.MakeArgument(key, value)]) |
| |
| ################################################################################ |
| # Common translators for layers. |
| ################################################################################ |
| |
| |
| @TranslatorRegistry.Register("Input") |
| def TranslateInput(layer, pretrained_blobs, is_test, **kwargs): |
| return [], [] |
| |
| |
| @TranslatorRegistry.Register("VideoData") |
| def TranslateVideoData(layer, pretrained_blobs, is_test, **kwargs): |
| return [], [] |
| |
| |
| @TranslatorRegistry.Register("Data") |
| def TranslateData(layer, pretrained_blobs, is_test, **kwargs): |
| return [], [] |
| |
| |
| # A function used in convolution, pooling and deconvolution to deal with |
| # conv pool specific parameters. |
| def _TranslateStridePadKernelHelper(param, caffe_op): |
| try: |
| if (len(param.stride) > 1 or len(param.kernel_size) > 1 or |
| len(param.pad) > 1): |
| raise NotImplementedError( |
| "Translator currently does not support non-conventional " |
| "pad/kernel/stride settings." |
| ) |
| stride = param.stride[0] if len(param.stride) else 1 |
| pad = param.pad[0] if len(param.pad) else 0 |
| kernel = param.kernel_size[0] if len(param.kernel_size) else 0 |
| except TypeError: |
| # This catches the case of a PoolingParameter, in which case we are |
| # having non-repeating pad, stride and kernel. |
| stride = param.stride |
| pad = param.pad |
| kernel = param.kernel_size |
| # Get stride |
| if param.HasField("stride_h") or param.HasField("stride_w"): |
| AddArgument(caffe_op, "stride_h", param.stride_h) |
| AddArgument(caffe_op, "stride_w", param.stride_w) |
| else: |
| AddArgument(caffe_op, "stride", stride) |
| # Get pad |
| if param.HasField("pad_h") or param.HasField("pad_w"): |
| if param.pad_h == param.pad_w: |
| AddArgument(caffe_op, "pad", param.pad_h) |
| else: |
| AddArgument(caffe_op, "pad_t", param.pad_h) |
| AddArgument(caffe_op, "pad_b", param.pad_h) |
| AddArgument(caffe_op, "pad_l", param.pad_w) |
| AddArgument(caffe_op, "pad_r", param.pad_w) |
| else: |
| AddArgument(caffe_op, "pad", pad) |
| # Get kernel |
| if param.HasField("kernel_h") or param.HasField("kernel_w"): |
| AddArgument(caffe_op, "kernel_h", param.kernel_h) |
| AddArgument(caffe_op, "kernel_w", param.kernel_w) |
| else: |
| AddArgument(caffe_op, "kernel", kernel) |
| |
| |
| @TranslatorRegistry.Register("Convolution3D") |
| def TranslateConvNd(layer, pretrained_blobs, is_test, **kwargs): |
| param = layer.convolution3d_param |
| caffe_op = BaseTranslate(layer, "Conv") |
| output = caffe_op.output[0] |
| caffe_op.input.append(output + '_w') |
| |
| AddArgument( |
| caffe_op, |
| "kernels", |
| [param.kernel_depth, param.kernel_size, param.kernel_size]) |
| AddArgument( |
| caffe_op, |
| "strides", |
| [param.temporal_stride, param.stride, param.stride]) |
| temporal_pad = 0 |
| spatial_pad = 0 |
| if hasattr(param, 'temporal_pad'): |
| temporal_pad = param.temporal_pad |
| if hasattr(param, 'pad'): |
| spatial_pad = param.pad |
| AddArgument(caffe_op, "pads", [temporal_pad, spatial_pad, spatial_pad] * 2) |
| |
| # weight |
| params = [ |
| utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w')] |
| # bias |
| if len(pretrained_blobs) == 2: |
| caffe_op.input.append(output + '_b') |
| params.append( |
| utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[1].flatten(), output + '_b')) |
| return caffe_op, params |
| |
| |
| @TranslatorRegistry.Register("Convolution") |
| def TranslateConv(layer, pretrained_blobs, is_test, **kwargs): |
| param = layer.convolution_param |
| caffe_op = BaseTranslate(layer, "Conv") |
| output = caffe_op.output[0] |
| caffe_op.input.append(output + '_w') |
| _TranslateStridePadKernelHelper(param, caffe_op) |
| # weight |
| params = [ |
| utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w')] |
| # bias |
| if len(pretrained_blobs) == 2: |
| caffe_op.input.append(output + '_b') |
| params.append( |
| utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[1].flatten(), output + '_b')) |
| # Group convolution option |
| if param.group != 1: |
| AddArgument(caffe_op, "group", param.group) |
| # Get dilation - not tested. If you have a model and this checks out, |
| # please provide a test and uncomment this. |
| if len(param.dilation) > 0: |
| if len(param.dilation) == 1: |
| AddArgument(caffe_op, "dilation", param.dilation[0]) |
| elif len(param.dilation) == 2: |
| AddArgument(caffe_op, "dilation_h", param.dilation[0]) |
| AddArgument(caffe_op, "dilation_w", param.dilation[1]) |
| return caffe_op, params |
| |
| |
| @TranslatorRegistry.Register("Deconvolution") |
| def TranslateDeconv(layer, pretrained_blobs, is_test, **kwargs): |
| param = layer.convolution_param |
| if param.group > 1: |
| raise NotImplementedError( |
| "Translator currently does not support group deconvolution." |
| ) |
| caffe_op = BaseTranslate(layer, "ConvTranspose") |
| output = caffe_op.output[0] |
| _TranslateStridePadKernelHelper(param, caffe_op) |
| caffe_op.input.extend([output + '_w']) |
| AddArgument(caffe_op, "order", "NCHW") |
| weight = utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w') |
| if param.bias_term: |
| bias = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[1].flatten(), output + '_b' |
| ) |
| caffe_op.input.extend([output + '_b']) |
| return caffe_op, [weight, bias] |
| else: |
| return caffe_op, [weight] |
| |
| |
| @TranslatorRegistry.Register("Crop") |
| def TranslateCrop(layer, pretrained_blobs, is_test, **kwargs): |
| net, net_params, input_dims = kwargs['net'], kwargs['net_params'], kwargs['input_dims'] |
| n, c, h, w = input_dims |
| dummy_input = np.random.randn(n, c, h, w).astype(np.float32) |
| dim_map = _GetBlobDimMap(net, net_params, dummy_input) |
| param = layer.crop_param |
| axis, offsets = param.axis, param.offset |
| caffe_op = BaseTranslate(layer, "Slice") |
| input_1 = caffe_op.input[1] |
| input_1_dim = dim_map[input_1] |
| starts, ends = [], [] |
| dims = len(dim_map[input_1]) |
| assert len(offsets) == 1, 'Caffe Translator for Crop only works for offset \ |
| of 1 for now' |
| for _ in range(axis): |
| starts.append(0) |
| ends.append(-1) |
| end_offset = [int(offsets[0] + input_1_dim[i]) for i in range(axis, dims)] |
| ends.extend(end_offset) |
| starts.extend([offsets[0]] * len(end_offset)) |
| op = caffe2_pb2.OperatorDef() |
| op.input.extend([caffe_op.input[0]]) |
| op.output.extend(caffe_op.output) |
| op.arg.extend(caffe_op.arg) |
| op.type = caffe_op.type |
| AddArgument(op, "starts", starts) |
| AddArgument(op, "ends", ends) |
| return op, [] |
| |
| @TranslatorRegistry.Register("ReLU") |
| def TranslateRelu(layer, pretrained_blobs, is_test, **kwargs): |
| return BaseTranslate(layer, "Relu"), [] |
| |
| |
| @TranslatorRegistry.Register("Pooling") |
| def TranslatePool(layer, pretrained_blobs, is_test, **kwargs): |
| param = layer.pooling_param |
| if param.pool == caffe_pb2.PoolingParameter.MAX: |
| caffe_op = BaseTranslate(layer, "MaxPool") |
| elif param.pool == caffe_pb2.PoolingParameter.AVE: |
| caffe_op = BaseTranslate(layer, "AveragePool") |
| _TranslateStridePadKernelHelper(param, caffe_op) |
| AddArgument(caffe_op, "order", "NCHW") |
| try: |
| # In the Facebook port of Caffe, a torch_pooling field was added to |
| # map the pooling computation of Torch. Essentially, it uses |
| # floor((height + 2 * padding - kernel) / stride) + 1 |
| # instead of |
| # ceil((height + 2 * padding - kernel) / stride) + 1 |
| # which is Caffe's version. |
| # Torch pooling is actually the same as Caffe2 pooling, so we don't |
| # need to do anything. |
| is_torch_pooling = param.torch_pooling |
| except AttributeError: |
| is_torch_pooling = False |
| if not is_torch_pooling: |
| AddArgument(caffe_op, "legacy_pad", |
| caffe2_legacy_pb2.CAFFE_LEGACY_POOLING) |
| if param.global_pooling: |
| AddArgument(caffe_op, "global_pooling", 1) |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("Pooling3D") |
| def TranslatePool3D(layer, pretrained_blobs, is_test, **kwargs): |
| param = layer.pooling3d_param |
| if param.pool == caffe_pb2.Pooling3DParameter.MAX: |
| caffe_op = BaseTranslate(layer, "MaxPool") |
| |
| elif param.pool == caffe_pb2.Pooling3DParameter.AVE: |
| caffe_op = BaseTranslate(layer, "AveragePool") |
| AddArgument(caffe_op, "order", "NCHW") |
| AddArgument( |
| caffe_op, |
| "kernels", |
| [param.kernel_depth, param.kernel_size, param.kernel_size]) |
| |
| AddArgument( |
| caffe_op, |
| "strides", |
| [param.temporal_stride, param.stride, param.stride]) |
| temporal_pad = 0 |
| spatial_pad = 0 |
| if hasattr(param, 'temporal_pad'): |
| temporal_pad = param.temporal_pad |
| if hasattr(param, 'pad'): |
| spatial_pad = param.pad |
| AddArgument(caffe_op, "pads", [temporal_pad, spatial_pad, spatial_pad] * 2) |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("LRN") |
| def TranslateLRN(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "LRN") |
| caffe_op.output.extend(['_' + caffe_op.output[0] + '_scale']) |
| param = layer.lrn_param |
| if param.norm_region != caffe_pb2.LRNParameter.ACROSS_CHANNELS: |
| raise ValueError( |
| "Does not support norm region other than across channels.") |
| AddArgument(caffe_op, "size", int(param.local_size)) |
| AddArgument(caffe_op, "alpha", float(param.alpha)) |
| AddArgument(caffe_op, "beta", float(param.beta)) |
| AddArgument(caffe_op, "bias", float(param.k)) |
| AddArgument(caffe_op, "order", "NCHW") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("InnerProduct") |
| def TranslateInnerProduct(layer, pretrained_blobs, is_test, **kwargs): |
| param = layer.inner_product_param |
| try: |
| if param.axis != 1 or param.transpose: |
| raise ValueError( |
| "We don't have testing case for non-default axis and transpose " |
| "cases yet so we are disabling it for now. If you have a model " |
| "with this, please do send us your model for us to update this " |
| "support, and you are more than welcome to send a PR for this.") |
| except AttributeError: |
| # We might be using an historic Caffe protobuf that does not have axis |
| # and transpose arguments, so we will silently pass. |
| pass |
| caffe_op = BaseTranslate(layer, "FC") |
| output = caffe_op.output[0] |
| caffe_op.input.extend([output + '_w', output + '_b']) |
| # To provide the old-style 4-dimensional blob (1, 1, dim_output, dim_input) |
| # case, we always explicitly reshape the pretrained blob. |
| if pretrained_blobs[0].ndim not in [2, 4]: |
| raise ValueError("Unexpected weight ndim.") |
| if (pretrained_blobs[0].ndim == 4 and |
| list(pretrained_blobs[0].shape[:2]) != [1, 1]): |
| raise ValueError( |
| "If pretrained blob has 4 dims (old-style Caffe), the first two " |
| "should be of value 1, but I got " + str(pretrained_blobs[0].shape)) |
| weight = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[0].reshape(-1, pretrained_blobs[0].shape[-1]), |
| output + '_w' |
| ) |
| bias = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[1].flatten(), output + '_b' |
| ) |
| return caffe_op, [weight, bias] |
| |
| |
| @TranslatorRegistry.Register("Dropout") |
| def TranslateDropout(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "Dropout") |
| caffe_op.output.extend(['_' + caffe_op.output[0] + '_mask']) |
| param = layer.dropout_param |
| AddArgument(caffe_op, "ratio", param.dropout_ratio) |
| if (is_test): |
| AddArgument(caffe_op, "is_test", 1) |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("Softmax") |
| def TranslateSoftmax(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "Softmax") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("SoftmaxWithLoss") |
| def TranslateSoftmaxWithLoss(layer, pretrained_blobs, is_test, **kwargs): |
| softmax_op = core.CreateOperator( |
| "Softmax", [layer.bottom[0]], |
| layer.bottom[0] + "_translator_autogen_softmax") |
| xent_op = core.CreateOperator( |
| "LabelCrossEntropy", |
| [softmax_op.output[0], layer.bottom[1]], |
| layer.bottom[0] + "_translator_autogen_xent") |
| loss_op = core.CreateOperator( |
| "AveragedLoss", |
| xent_op.output[0], |
| layer.top[0]) |
| return [softmax_op, xent_op, loss_op], [] |
| |
| |
| @TranslatorRegistry.Register("Accuracy") |
| def TranslateAccuracy(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "Accuracy") |
| if layer.accuracy_param.top_k != 1: |
| AddArgument(caffe_op, "top_k", layer.accuracy_param.top_k) |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("Concat") |
| def TranslateConcat(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "Concat") |
| caffe_op.output.extend(['_' + caffe_op.output[0] + '_dims']) |
| AddArgument(caffe_op, "order", "NCHW") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("TanH") |
| def TranslateTanH(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "Tanh") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("InstanceNorm") |
| def TranslateInstanceNorm(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "InstanceNorm") |
| output = caffe_op.output[0] |
| weight = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[0].flatten(), output + '_w') |
| bias = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[1].flatten(), output + '_b') |
| caffe_op.input.extend([output + '_w', output + '_b']) |
| AddArgument(caffe_op, "order", "NCHW") |
| return caffe_op, [weight, bias] |
| |
| |
| @TranslatorRegistry.Register("BatchNorm") |
| def TranslateBatchNorm(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "SpatialBN") |
| output = caffe_op.output[0] |
| param = layer.batch_norm_param |
| AddArgument(caffe_op, "is_test", is_test) |
| AddArgument(caffe_op, "epsilon", param.eps) |
| AddArgument(caffe_op, "order", "NCHW") |
| |
| caffe_op.input.extend( |
| [output + "_scale", |
| output + "_bias", |
| output + "_mean", |
| output + "_var"]) |
| if not is_test: |
| caffe_op.output.extend( |
| [output + "_mean", |
| output + "_var", |
| output + "_saved_mean", |
| output + "_saved_var"]) |
| |
| n_channels = pretrained_blobs[0].shape[0] |
| if pretrained_blobs[2][0] != 0: |
| mean = utils.NumpyArrayToCaffe2Tensor( |
| (1. / pretrained_blobs[2][0]) * pretrained_blobs[0], |
| output + '_mean') |
| var = utils.NumpyArrayToCaffe2Tensor( |
| (1. / pretrained_blobs[2][0]) * pretrained_blobs[1], |
| output + '_var') |
| else: |
| raise RuntimeError("scalar is zero.") |
| if len(pretrained_blobs) > 3: |
| # IntelCaffe and NVCaffe uses fused BN+Scale, |
| # three blobs for BN and two blobs for Scale, |
| # so that the total number of blobs becomes five (including scale and bias). |
| scale = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[3].flatten(), |
| output + '_scale') |
| bias = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[4].flatten(), |
| output + '_bias') |
| else: |
| pretrained_blobs[2][0] = 1 |
| pretrained_blobs[2] = np.tile(pretrained_blobs[2], (n_channels, )) |
| scale = utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[2], |
| output + '_scale') |
| bias = utils.NumpyArrayToCaffe2Tensor( |
| np.zeros_like(pretrained_blobs[2]), |
| output + '_bias') |
| |
| return caffe_op, [scale, bias, mean, var] |
| |
| |
| @TranslatorRegistry.Register("Eltwise") |
| def TranslateElementWise(layer, pretrained_blobs, is_test, **kwargs): |
| param = layer.eltwise_param |
| # TODO(jiayq): if we have a protobuf that uses this, lift this constraint |
| # and verify that we can correctly translate. |
| if len(param.coeff) or param.operation != 1: |
| raise RuntimeError("This eltwise layer is not yet supported.") |
| caffe_op = BaseTranslate(layer, "Sum") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("Scale") |
| def TranslateScale(layer, pretrained_blobs, is_test, **kwargs): |
| mul_op = BaseTranslate(layer, "Mul") |
| scale_param = layer.scale_param |
| AddArgument(mul_op, "axis", scale_param.axis) |
| AddArgument(mul_op, "broadcast", True) |
| if len(mul_op.input) == 1: |
| # the scale parameter is in pretrained blobs |
| if scale_param.num_axes != 1: |
| raise RuntimeError("This path has not been verified yet.") |
| |
| output = mul_op.output[0] |
| mul_op_param = output + 'scale_w' |
| mul_op.input.append(mul_op_param) |
| weights = [] |
| weights.append(utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[0].flatten(), mul_op_param)) |
| |
| add_op = None |
| if len(pretrained_blobs) == 1: |
| # No bias-term in Scale layer |
| pass |
| elif len(pretrained_blobs) == 2: |
| # Caffe Scale layer supports a bias term such that it computes |
| # (scale_param * X + bias), whereas Caffe2 Mul op doesn't. |
| # Include a separate Add op for the bias followed by Mul. |
| add_op = copy.deepcopy(mul_op) |
| add_op.type = "Add" |
| add_op_param = output + 'scale_b' |
| internal_blob = output + "_internal" |
| del mul_op.output[:] |
| mul_op.output.append(internal_blob) |
| del add_op.input[:] |
| add_op.input.append(internal_blob) |
| add_op.input.append(add_op_param) |
| weights.append(utils.NumpyArrayToCaffe2Tensor( |
| pretrained_blobs[1].flatten(), add_op_param)) |
| else: |
| raise RuntimeError("Unexpected number of pretrained blobs in Scale") |
| |
| caffe_ops = [mul_op] |
| if add_op: |
| caffe_ops.append(add_op) |
| assert len(caffe_ops) == len(weights) |
| return caffe_ops, weights |
| elif len(mul_op.input) == 2: |
| # TODO(jiayq): find a protobuf that uses this and verify. |
| raise RuntimeError("This path has not been verified yet.") |
| else: |
| raise RuntimeError("Unexpected number of inputs.") |
| |
| |
| @TranslatorRegistry.Register("Reshape") |
| def TranslateReshape(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "Reshape") |
| caffe_op.output.append("_" + caffe_op.input[0] + "_dims") |
| reshape_param = layer.reshape_param |
| AddArgument(caffe_op, 'shape', reshape_param.shape.dim) |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("Flatten") |
| def TranslateFlatten(layer, pretrained_blobs, is_test, **kwargs): |
| param = layer.flatten_param |
| if param.end_axis != -1: |
| raise NotImplementedError("flatten_param.end_axis not supported yet.") |
| |
| if param.axis == 0: |
| caffe_op = BaseTranslate(layer, "FlattenToVec") |
| elif param.axis == 1: |
| caffe_op = BaseTranslate(layer, "Flatten") |
| else: |
| # This could be a Reshape op, but dim size is not known here. |
| raise NotImplementedError( |
| "Not supported yet for flatten_param.axis {}.".format(param.axis)) |
| |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("Sigmoid") |
| def TranslateSigmoid(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "Sigmoid") |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("ROIPooling") |
| def TranslateROIPooling(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "RoIPool") |
| AddArgument(caffe_op, "order", "NCHW") |
| |
| if is_test: |
| AddArgument(caffe_op, "is_test", is_test) |
| else: |
| # Only used for gradient computation |
| caffe_op.output.append(caffe_op.output[0] + '_argmaxes') |
| |
| param = layer.roi_pooling_param |
| if param.HasField('pooled_h'): |
| AddArgument(caffe_op, 'pooled_h', param.pooled_h) |
| if param.HasField('pooled_w'): |
| AddArgument(caffe_op, 'pooled_w', param.pooled_w) |
| if param.HasField('spatial_scale'): |
| AddArgument(caffe_op, 'spatial_scale', param.spatial_scale) |
| |
| return caffe_op, [] |
| |
| |
| @TranslatorRegistry.Register("PReLU") |
| def TranslatePRelu(layer, pretrained_blobs, is_test, **kwargs): |
| caffe_op = BaseTranslate(layer, "PRelu") |
| output = caffe_op.output[0] |
| caffe_op.input.extend([output + '_Slope']) |
| slope = utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_Slope') |
| |
| return caffe_op, [slope] |
| |
| |
| @TranslatorRegistry.Register("Reduction") |
| def TranslateReduction(layer, pretrained_blobs, is_test, **kwargs): |
| param = layer.reduction_param |
| if param.operation == caffe_pb2.ReductionParameter.SUM: |
| caffe_op = BaseTranslate(layer, "ReduceBackSum") |
| elif param.operation == caffe_pb2.ReductionParameter.MEAN: |
| caffe_op = BaseTranslate(layer, "ReduceBackMean") |
| else: |
| raise NotImplementedError("Not yet supported") |
| |
| if param.axis > 0: |
| # We can't figure out the number of dims to reduce from positive axis |
| # for back reduction since the shape info is not known here. |
| raise NotImplementedError("Not yet supported") |
| num_reduce_dim = -param.axis |
| AddArgument(caffe_op, "num_reduce_dim", num_reduce_dim) |
| |
| return caffe_op, [] |
| |
| |
| if __name__ == '__main__': |
| parser = argparse.ArgumentParser( |
| description="Utilitity to convert pretrained caffe models to Caffe2 models.") |
| parser.add_argument("prototext", help="Caffe prototext.") |
| parser.add_argument("caffemodel", help="Caffe trained model.") |
| parser.add_argument("--init_net", help="Caffe2 initialization net.", |
| default="init_net.pb") |
| parser.add_argument("--predict_net", help="Caffe2 prediction net.", |
| default="predict_net.pb") |
| parser.add_argument("--remove_legacy_pad", help="Remove legacy pad \ |
| (Only works for nets with one input blob)", |
| action="store_true", |
| default=False) |
| parser.add_argument("--input_dims", help="Dimension of input blob", nargs='+', |
| type=int, default=[]) |
| args = parser.parse_args() |
| |
| caffenet = caffe_pb2.NetParameter() |
| caffenet_pretrained = caffe_pb2.NetParameter() |
| input_proto = args.prototext |
| input_caffemodel = args.caffemodel |
| output_init_net = args.init_net |
| output_predict_net = args.predict_net |
| |
| with open(input_proto) as f: |
| text_format.Merge(f.read(), caffenet) |
| with open(input_caffemodel, 'rb') as f: |
| caffenet_pretrained.ParseFromString(f.read()) |
| net, pretrained_params = TranslateModel( |
| caffenet, caffenet_pretrained, is_test=True, |
| remove_legacy_pad=args.remove_legacy_pad, |
| input_dims=args.input_dims |
| ) |
| |
| # Assume there is one input and one output |
| external_input = net.op[0].input[0] |
| external_output = net.op[-1].output[0] |
| |
| net.external_input.extend([external_input]) |
| net.external_input.extend([param.name for param in pretrained_params.protos]) |
| net.external_output.extend([external_output]) |
| init_net = ConvertTensorProtosToInitNet(pretrained_params, external_input) |
| |
| with open(output_predict_net, 'wb') as f: |
| f.write(net.SerializeToString()) |
| with open(output_predict_net + 'txt', 'w') as f: |
| f.write(str(net)) |
| with open(output_init_net, 'wb') as f: |
| f.write(init_net.SerializeToString()) |