| |
| |
| |
| |
| |
| from caffe2.python import core, scope |
| from caffe2.python.modeling.parameter_sharing import ( |
| ParameterSharing, |
| ) |
| from caffe2.python.optimizer import AdagradOptimizer, AdamOptimizer |
| from caffe2.python.layer_test_util import LayersTestCase |
| |
| |
| class ParameterSharingTest(LayersTestCase): |
| |
| def test_layer_parameter_name(self): |
| output_dims = 2 |
| with scope.NameScope('global_scope'): |
| fc1_output = self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims |
| ) |
| self.assertEqual(self.model.layers[-1].w, 'global_scope/fc/w') |
| self.assertEqual(fc1_output(), 'global_scope/fc/output') |
| |
| with scope.NameScope('nested_scope'): |
| fc2_output = self.model.FC( |
| fc1_output, |
| output_dims |
| ) |
| self.assertEqual(self.model.layers[-1].w, |
| 'global_scope/nested_scope/fc/w') |
| self.assertEqual(fc2_output(), |
| 'global_scope/nested_scope/fc/output') |
| |
| fc3_output = self.model.FC( |
| fc1_output, |
| output_dims |
| ) |
| self.assertEqual(self.model.layers[-1].w, |
| 'global_scope/nested_scope/fc_auto_0/w') |
| self.assertEqual(fc3_output(), |
| 'global_scope/nested_scope/fc_auto_0/output') |
| |
| def test_layer_shared_parameter_name_different_namescopes(self): |
| output_dims = 2 |
| with scope.NameScope('global_scope'): |
| with ParameterSharing({'scope_1': 'scope_0'}): |
| with scope.NameScope('scope_0'): |
| fc1_output = self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims |
| ) |
| self.assertEqual(self.model.layers[-1].w, |
| 'global_scope/scope_0/fc/w') |
| self.assertEqual(fc1_output(), |
| 'global_scope/scope_0/fc/output') |
| |
| with scope.NameScope('scope_1'): |
| fc2_output = self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims |
| ) |
| self.assertEqual(self.model.layers[-1].w, |
| 'global_scope/scope_0/fc/w') |
| self.assertEqual(fc2_output(), |
| 'global_scope/scope_1/fc/output') |
| |
| def test_layer_shared_parameter_name_within_same_namescope(self): |
| output_dims = 2 |
| with scope.NameScope('global_scope'): |
| with ParameterSharing({'fc_auto_0': 'fc'}): |
| self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims |
| ) |
| self.assertEqual(self.model.layers[-1].w, |
| 'global_scope/fc/w') |
| |
| self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims |
| ) |
| self.assertEqual(self.model.layers[-1].w, |
| 'global_scope/fc/w') |
| |
| def test_layer_shared_parameter_name_within_same_namescope_customized_name(self): |
| output_dims = 2 |
| with scope.NameScope('global_scope'): |
| with ParameterSharing({'new_fc': 'shared_fc'}): |
| self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims, |
| name='shared_fc' |
| ) |
| self.assertEqual(self.model.layers[-1].w, |
| 'global_scope/shared_fc/w') |
| |
| self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims, |
| name='new_fc' |
| ) |
| self.assertEqual(self.model.layers[-1].w, |
| 'global_scope/shared_fc/w') |
| |
| def test_layer_shared_parameter_name_different_shapes(self): |
| output_dims = 2 |
| with scope.NameScope('global_scope'): |
| with ParameterSharing({'fc_auto_0': 'fc'}): |
| self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims |
| ) |
| self.assertEqual(self.model.layers[-1].w, |
| 'global_scope/fc/w') |
| |
| with self.assertRaisesRegex(ValueError, 'Got inconsistent shapes .*'): |
| self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims + 1 |
| ) |
| |
| def test_layer_duplicated_parameter_init(self): |
| output_dims = 2 |
| with scope.NameScope('global_scope'): |
| with ParameterSharing({'new_fc': 'shared_fc'}): |
| self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims, |
| name='shared_fc' |
| ) |
| self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims, |
| name='new_fc' |
| ) |
| |
| train_init_net = core.Net('train_init_net') |
| train_net = core.Net('train_net') |
| for layer in self.model.layers: |
| layer.add_operators(train_net, train_init_net) |
| op_outputs = [] |
| for op in train_init_net._net.op: |
| op_outputs.extend(op.output) |
| |
| # only fill these parameter blobs once |
| self.assertEqual( |
| sorted(op_outputs), |
| ['global_scope/shared_fc/b', 'global_scope/shared_fc/w'] |
| ) |
| |
| def test_layer_shared_parameter_optim_validator(self): |
| """ |
| This test is to cover the _validate_param_optim function in |
| layer_model_helper class. |
| """ |
| |
| output_dims = 2 |
| |
| adagrad_optim = AdagradOptimizer( |
| alpha=0.004, |
| epsilon=0.02, |
| ) |
| |
| self.model.default_optimizer = adagrad_optim |
| |
| # the following covers the branch -- optim is None |
| with scope.NameScope('global_scope_0'): |
| with ParameterSharing({'scope_1': 'scope_0'}): |
| with scope.NameScope('scope_0'): |
| fc1_output = self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims, |
| weight_optim=self.model.NoOptim, |
| ) |
| |
| with scope.NameScope('scope_1'), self.assertRaises(Exception): |
| fc2_output = self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims |
| ) |
| |
| # the following covers the branch -- optim is NoOptim |
| with scope.NameScope('global_scope_1'): |
| with ParameterSharing({'scope_1': 'scope_0'}): |
| with scope.NameScope('scope_0'): |
| fc1_output = self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims, |
| weight_optim=None, |
| ) |
| |
| with scope.NameScope('scope_1'), self.assertRaises(Exception): |
| fc2_output = self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims, |
| weight_optim=self.model.NoOptim, |
| ) |
| |
| # the following covers the branch -- optim is an instance of Optimizer |
| adagrad_optim_2 = AdagradOptimizer( |
| alpha=0.005, |
| epsilon=0.02, |
| ) |
| |
| adam_optim = AdamOptimizer() |
| |
| self.model.default_optimizer = adagrad_optim_2 |
| |
| with scope.NameScope('global_scope_2'): |
| with ParameterSharing({'scope_1': 'scope_0', 'scope_2': 'scope_0'}): |
| with scope.NameScope('scope_0'): |
| fc1_output = self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims, |
| weight_optim=None, # it will use adagrad_optim_2 |
| ) |
| |
| with scope.NameScope('scope_1'), self.assertRaises(Exception): |
| fc2_output = self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims, |
| weight_optim=adagrad_optim, |
| ) |
| |
| with scope.NameScope('scope_2'), self.assertRaises(Exception): |
| fc2_output = self.model.FC( |
| self.model.input_feature_schema.float_features, |
| output_dims, |
| weight_optim=adam_optim, |
| ) |