| from collections import defaultdict |
| from collections.abc import Iterable |
| from dataclasses import dataclass |
| from typing import Dict, List, Optional, Set, Tuple |
| |
| import yaml |
| |
| from torchgen.model import NativeFunction |
| from torchgen.selective_build.operator import ( |
| merge_debug_info, |
| merge_operator_dicts, |
| SelectiveBuildOperator, |
| strip_operator_overload_name, |
| ) |
| |
| |
| # A SelectiveBuilder holds information extracted from the selective build |
| # YAML specification. |
| # |
| # It includes information about the build's selectivity, the debug_info |
| # associated with this selective build (opaque string), and the set of |
| # operators that should be included in the build. |
| # |
| @dataclass(frozen=True) |
| class SelectiveBuilder: |
| # If true, then the build is not selective, and includes all |
| # operators. |
| include_all_operators: bool |
| |
| # Debug Information at the selective/custom build level. |
| _debug_info: Optional[Tuple[str, ...]] |
| |
| # A dictionary of operator -> operator metadata. |
| operators: Dict[str, SelectiveBuildOperator] |
| |
| # A dictionary of selected kernel tags and dtypes. Typically a |
| # PyTorch Operator Kernel (function) may have many code paths |
| # that are specialized for many many Tensor dtypes, so it's not |
| # one per kernel function, but there could be many per kernel |
| # function. The tag isn't a kernel function name, but some fragment |
| # of the kernel function implementation itself. |
| kernel_metadata: Dict[str, List[str]] |
| |
| # ExecuTorch only. A dictionary of kernel tag -> list of (list of input |
| # dtypes for tensor-like input args). |
| # This is from selective.yaml |
| et_kernel_metadata: Dict[str, List[str]] |
| |
| # A set of all the custom torch bind classes used by the selected models |
| # Stored as a set internally to remove duplicates proactively, but written |
| # as a list to yamls |
| custom_classes: Set[str] |
| |
| # A set of all the build features used by the selected models |
| # Stored as a set internally to remove duplicates proactively, but written |
| # as a list to yamls |
| build_features: Set[str] |
| |
| # If true, then fragments for all dtypes for all kernel functions |
| # are included as well as all custom classes. This is typically set when any one of the |
| # operator lists is generated from a mechanism other than |
| # tracing based selective build. |
| include_all_non_op_selectives: bool |
| |
| @staticmethod |
| def get_nop_selector() -> "SelectiveBuilder": |
| return SelectiveBuilder.from_yaml_dict({"include_all_operators": True}) |
| |
| @staticmethod |
| def from_yaml_dict(data: Dict[str, object]) -> "SelectiveBuilder": |
| valid_top_level_keys = { |
| "include_all_non_op_selectives", |
| "include_all_operators", |
| "debug_info", |
| "operators", |
| "kernel_metadata", |
| "et_kernel_metadata", |
| "custom_classes", |
| "build_features", |
| } |
| top_level_keys = set(data.keys()) |
| if len(top_level_keys - valid_top_level_keys) > 0: |
| raise Exception( |
| "Got unexpected top level keys: {}".format( |
| ",".join(top_level_keys - valid_top_level_keys), |
| ) |
| ) |
| include_all_operators = data.get("include_all_operators", False) |
| assert isinstance(include_all_operators, bool) |
| |
| debug_info = None |
| if "debug_info" in data: |
| di_list = data["debug_info"] |
| assert isinstance(di_list, list) |
| |
| debug_info = tuple(str(x) for x in di_list) |
| |
| operators = {} |
| operators_dict = data.get("operators", {}) |
| assert isinstance(operators_dict, dict) |
| |
| for k, v in operators_dict.items(): |
| operators[k] = SelectiveBuildOperator.from_yaml_dict(k, v) |
| |
| kernel_metadata = {} |
| kernel_metadata_dict = data.get("kernel_metadata", {}) |
| assert isinstance(kernel_metadata_dict, dict) |
| |
| for k, v in kernel_metadata_dict.items(): |
| kernel_metadata[str(k)] = [str(dtype) for dtype in v] |
| |
| et_kernel_metadata = data.get("et_kernel_metadata", {}) |
| assert isinstance(et_kernel_metadata, dict) |
| |
| custom_classes = data.get("custom_classes", []) |
| assert isinstance(custom_classes, Iterable) |
| custom_classes = set(custom_classes) |
| |
| build_features = data.get("build_features", []) |
| assert isinstance(build_features, Iterable) |
| build_features = set(build_features) |
| |
| include_all_non_op_selectives = data.get("include_all_non_op_selectives", False) |
| assert isinstance(include_all_non_op_selectives, bool) |
| |
| return SelectiveBuilder( |
| include_all_operators, |
| debug_info, |
| operators, |
| kernel_metadata, |
| et_kernel_metadata, |
| custom_classes, # type: ignore[arg-type] |
| build_features, # type: ignore[arg-type] |
| include_all_non_op_selectives, |
| ) |
| |
| @staticmethod |
| def from_yaml_str(config_contents: str) -> "SelectiveBuilder": |
| contents = yaml.safe_load(config_contents) |
| return SelectiveBuilder.from_yaml_dict(contents) |
| |
| @staticmethod |
| def from_yaml_path(config_path: str) -> "SelectiveBuilder": |
| with open(config_path) as f: |
| contents = yaml.safe_load(f) |
| return SelectiveBuilder.from_yaml_dict(contents) |
| |
| @staticmethod |
| def from_legacy_op_registration_allow_list( |
| allow_list: Set[str], is_root_operator: bool, is_used_for_training: bool |
| ) -> "SelectiveBuilder": |
| operators = {} |
| for op in allow_list: |
| operators[op] = { |
| "name": op, |
| "is_root_operator": is_root_operator, |
| "is_used_for_training": is_used_for_training, |
| "include_all_overloads": True, |
| } |
| return SelectiveBuilder.from_yaml_dict( |
| { |
| "operators": operators, |
| "include_all_non_op_selectives": True, |
| } |
| ) |
| |
| def is_operator_selected(self, name: str) -> bool: |
| if self.include_all_operators: |
| return True |
| |
| if name in self.operators: |
| return True |
| name = strip_operator_overload_name(name) |
| return name in self.operators and self.operators[name].include_all_overloads |
| |
| def is_native_function_selected(self, func: NativeFunction) -> bool: |
| op_name = op_name_from_native_function(func) |
| return self.is_operator_selected(op_name) |
| |
| def is_operator_selected_for_training(self, name: str) -> bool: |
| if not self.is_operator_selected(name): |
| return False |
| if self.include_all_operators: |
| return True |
| |
| not_training_op = SelectiveBuildOperator( |
| name="", |
| is_root_operator=False, |
| is_used_for_training=False, |
| include_all_overloads=False, |
| _debug_info=None, |
| ) |
| op = not_training_op |
| if name in self.operators: |
| op = self.operators[name] |
| |
| name = strip_operator_overload_name(name) |
| base_op = not_training_op |
| if name in self.operators: |
| base_op = self.operators[name] |
| |
| return op.is_used_for_training or ( |
| base_op.include_all_overloads and base_op.is_used_for_training |
| ) |
| |
| def is_native_function_selected_for_training(self, func: NativeFunction) -> bool: |
| op_name = op_name_from_native_function(func) |
| return self.is_operator_selected_for_training(op_name) |
| |
| def is_root_operator(self, name: str) -> bool: |
| if not self.is_operator_selected(name): |
| return False |
| if self.include_all_operators: |
| return True |
| |
| if name in self.operators: |
| op: SelectiveBuildOperator = self.operators[name] |
| return op.is_root_operator |
| name = strip_operator_overload_name(name) |
| if name not in self.operators: |
| return False |
| base_op: SelectiveBuildOperator = self.operators[name] |
| return base_op.include_all_overloads and base_op.is_root_operator |
| |
| def is_kernel_dtype_selected(self, kernel_tag: str, dtype: str) -> bool: |
| if self.include_all_operators or self.include_all_non_op_selectives: |
| return True |
| |
| return ( |
| kernel_tag in self.kernel_metadata |
| and dtype in self.kernel_metadata[kernel_tag] |
| ) |
| |
| def et_get_selected_kernels(self, op_name: str, kernel_key: List[str]) -> List[str]: |
| """ |
| Return a list of kernel keys that cover the used ops |
| """ |
| # If no kernel metadata, either it's implied by include_all_operators=True or the op is not used. |
| if op_name not in self.et_kernel_metadata: |
| return kernel_key if self.include_all_operators else [] |
| # Otherwise, only return the specific kernel keys. |
| |
| result_set = set() |
| |
| for model_kernel_keys in self.et_kernel_metadata[op_name]: |
| key_found = False |
| for key in kernel_key: |
| # Don't compare the version for now |
| if ( |
| key != "default" |
| and key.split("/")[1] == model_kernel_keys.split("/")[1] |
| ): |
| result_set.add(key) |
| key_found = True |
| break |
| if not key_found: |
| if "default" not in kernel_key: |
| raise Exception("Missing kernel for the model") |
| else: |
| result_set.add("default") |
| |
| return list(result_set) |
| |
| def to_dict(self) -> Dict[str, object]: |
| ret: Dict[str, object] = { |
| "include_all_non_op_selectives": self.include_all_non_op_selectives, |
| "include_all_operators": self.include_all_operators, |
| } |
| operators = {} |
| for op_name, op in self.operators.items(): |
| operators[op_name] = op.to_dict() |
| ret["operators"] = operators |
| |
| if self._debug_info is not None: |
| ret["debug_info"] = sorted(self._debug_info) |
| |
| ret["kernel_metadata"] = { |
| k: sorted(v) for (k, v) in self.kernel_metadata.items() |
| } |
| |
| ret["et_kernel_metadata"] = self.et_kernel_metadata |
| |
| ret["custom_classes"] = sorted(self.custom_classes) |
| |
| ret["build_features"] = sorted(self.build_features) |
| |
| return ret |
| |
| |
| def merge_kernel_metadata( |
| lhs: Dict[str, List[str]], |
| rhs: Dict[str, List[str]], |
| ) -> Dict[str, List[str]]: |
| kernel_metadata: Dict[str, List[str]] = {} |
| for tag_name, dtypes in list(lhs.items()) + list(rhs.items()): |
| dtypes_copy = set(dtypes) |
| if tag_name in kernel_metadata: |
| dtypes_copy |= set(kernel_metadata[tag_name]) |
| |
| kernel_metadata[tag_name] = list(dtypes_copy) |
| |
| return kernel_metadata |
| |
| |
| def merge_et_kernel_metadata( |
| lhs: Dict[str, List[str]], |
| rhs: Dict[str, List[str]], |
| ) -> Dict[str, List[str]]: |
| merge_et_kernel_metadata: Dict[str, Set[str]] = defaultdict(set) |
| for op in list(lhs.keys()) + list(rhs.keys()): |
| merge_et_kernel_metadata[op].update(lhs.get(op, [])) |
| merge_et_kernel_metadata[op].update(rhs.get(op, [])) |
| |
| return {op: sorted(val) for op, val in merge_et_kernel_metadata.items()} |
| |
| |
| def combine_selective_builders( |
| lhs: SelectiveBuilder, rhs: SelectiveBuilder |
| ) -> SelectiveBuilder: |
| include_all_operators = lhs.include_all_operators or rhs.include_all_operators |
| debug_info = merge_debug_info(lhs._debug_info, rhs._debug_info) |
| operators = merge_operator_dicts(lhs.operators, rhs.operators) |
| kernel_metadata = merge_kernel_metadata(lhs.kernel_metadata, rhs.kernel_metadata) |
| et_kernel_metadata = merge_et_kernel_metadata( |
| lhs.et_kernel_metadata, rhs.et_kernel_metadata |
| ) |
| include_all_non_op_selectives = ( |
| lhs.include_all_non_op_selectives or rhs.include_all_non_op_selectives |
| ) |
| custom_classes = lhs.custom_classes.union(rhs.custom_classes) |
| build_features = lhs.build_features.union(rhs.build_features) |
| return SelectiveBuilder( |
| include_all_operators, |
| debug_info, |
| operators, |
| kernel_metadata, |
| et_kernel_metadata, |
| custom_classes, |
| build_features, |
| include_all_non_op_selectives, |
| ) |
| |
| |
| def op_name_from_native_function(f: NativeFunction) -> str: |
| # This was originally read from the 'operator_name_with_overload' field in the |
| # declaration dict, which was the part before the first '(' in 'schema_string'. |
| return f"{f.namespace}::{f.func.name}" |