blob: 0bf1219bb310593f39455e6ca81995bbc406e5d6 [file] [log] [blame]
import os # noqa: C101
import sys
from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING, Union
import torch
def is_fbcode() -> bool:
return not hasattr(torch.version, "git_version")
def fx_graph_remote_cache_default() -> Optional[bool]:
if os.environ.get("TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE") == "1":
return True
if os.environ.get("TORCHINDUCTOR_FX_GRAPH_REMOTE_CACHE") == "0":
return False
return None
# add some debug printouts
debug = False
# Whether to disable a progress bar for autotuning
disable_progress = True
# Whether to enable printing the source code for each future
verbose_progress = False
# use fx aot graph codegen cache
fx_graph_cache = (
os.environ.get("TORCHINDUCTOR_FX_GRAPH_CACHE", "0" if is_fbcode() else "1") == "1"
)
# use remote fx aot graph codegen cache
# False: Disables the cache
# True: Enables the cache
# None: Not set -- Off for OSS, JustKnobs based for internal
fx_graph_remote_cache: Optional[bool] = fx_graph_remote_cache_default()
# enable autotune local cache
autotune_local_cache = True
# enable autotune remote cache
autotune_remote_cache = os.environ.get("TORCHINDUCTOR_AUTOTUNE_REMOTE_CACHE") == "1"
# Force disabled all inductor level caching -- This will override any other caching flag
force_disable_caches = os.environ.get("TORCHINDUCTOR_FORCE_DISABLE_CACHES") == "1"
# use cpp wrapper instead of python wrapper
cpp_wrapper = os.environ.get("TORCHINDUCTOR_CPP_WRAPPER", "0") == "1"
# codegen cpp wrapper code in an ABI compatible mode
abi_compatible = (
os.environ.get("TORCHINDUCTOR_ABI_COMPATIBLE", "1" if is_fbcode() else "0") == "1"
)
c_shim_version = os.environ.get(
"TORCHINDUCTOR_C_SHIM_VERSION", "1" if is_fbcode() else "2"
)
# dead code elimination
dce = False
# assume weight tensors are fixed size
static_weight_shapes = True
# put correctness assertions in generated code
size_asserts = os.environ.get("TORCHINDUCTOR_SIZE_ASSERTS", "1") == "1"
nan_asserts = os.environ.get("TORCHINDUCTOR_NAN_ASSERTS") == "1"
# enable loop reordering based on input orders
pick_loop_orders = True
# reuse a kernel input as the output
inplace_buffers = True
# reuse a buffer for an unrelated purpose
allow_buffer_reuse = True
# Enable pooled allocations for non-output tensors
memory_planning = os.environ.get("TORCHINDUCTOR_MEMORY_PLANNING", "0") == "1"
# How to organize memory under memory_planning=True:
# - "none": do not try to pool storage, just reuse
# - "intermediates": all non-outputs share storage, outputs each get unique storage
# - "outputs": two pools, one for intermediates (freed on return) and one for outputs
# - "combined": a single pool for both intermediates and outputs
memory_pool = os.environ.get("TORCHINDUCTOR_MEMORY_POOL", "intermediates")
# codegen benchmark harness
benchmark_harness = True
# fuse pointwise into templates
epilogue_fusion = True
# do epilogue fusions before other fusions
epilogue_fusion_first = False
# enable pattern match+replace optimizations
pattern_matcher = True
# set to True to enable the back-to-back GEMM pass
b2b_gemm_pass = False
# register custom graph optimization pass hook. so far, pre/post passes are
# only applied before/after pattern_matcher in post_grad_passes.
#
# def my_custom_pre_pass(graph: torch.fx.graph.Graph):
# # my custom graph optimization pass
# ...
#
# def my_custom_post_pass(graph: torch.fx.graph.Graph):
# # my custom graph optimization pass
# ...
#
# torch._inductor.config.post_grad_custom_pre_pass = my_custom_pre_pass
# torch._inductor.config.post_grad_custom_post_pass = my_custom_post_pass
post_grad_custom_pre_pass: Optional[Callable[[torch.fx.graph.Graph], None]] = None
post_grad_custom_post_pass: Optional[Callable[[torch.fx.graph.Graph], None]] = None
# Registers a custom joint graph pass.
joint_custom_pre_pass: Optional[Callable[[torch.fx.Graph], None]] = None
joint_custom_post_pass: Optional[Callable[[torch.fx.Graph], None]] = None
# Registers a custom pregrad pass. Note that the pre-grad IR is 1.
# non-functional, 2. non-normalized, and 3. prone to change. Ideally we should
# use post-grad passes.
pre_grad_custom_pass: Optional[Callable[[torch.fx.graph.Graph], None]] = None
# Registers a custom pass to be run right before fusion in Inductor scheduler.
# WARNING: Inductor scheduler IR is at prototype stage and subject to change,
# hence custom IR passes built on top of it might break in the future.
_pre_fusion_custom_pass: Optional[
Callable[
[List["torch._inductor.scheduler.BaseSchedulerNode"]],
List["torch._inductor.scheduler.BaseSchedulerNode"],
]
] = None
# Deprecated
split_cat_fx_passes = True
# Optimize conv-batchnorm if batchnorm is in eval mode. Slightly reduces numerical stability.
efficient_conv_bn_eval_fx_passes = False
# Enable predispatch aten IR for export
is_predispatch = False
# Deprecated
group_fusion = False
# Deprecated
batch_fusion = True
# Pre grad fusion and options in order, set to empty dict to disable fusion.
# Call `torch._inductor.fx_passes.group_batch_fusion.list_group_batch_fusions()` to see available fusions.
# batch fusion options:
# batch_linear
# batch_linear_lhs
# batch_layernorm
# batch_tanh
# batch_relu
# batch_sigmoid
# split cat fusion options:
# normalization_pass
# remove_split_with_size_one_pass
# merge_getitem_cat_pass
# merge_stack_tahn_unbind
# merge_splits_pass
# mutate_cat_pass
# split_cat_pass
pre_grad_fusion_options: Dict[str, Dict[str, Any]] = {
"batch_linear": {},
"batch_linear_lhs": {},
"batch_layernorm": {},
"batch_tanh": {},
"batch_relu": {},
"batch_sigmoid": {},
}
# Post grad fusion and options, set to empty dict to disable fusion.
# Call `torch._inductor.fx_passes.group_batch_fusion.list_group_batch_fusions(False)` to see available fusions.
post_grad_fusion_options: Dict[str, Dict[str, Any]] = {}
# enable reordering pass for improving memory locality
reorder_for_locality = True
# Scale down RBLOCK for better occupancy
dynamic_scale_rblock = os.environ.get("TORCHINDUCTOR_DYNAMIC_SCALE_RBLOCK", "1") == "1"
# this forces fusion for int_mm with mul. Needed when you want to avoid realizing the int32
# but the mul gets fused with other pointwise ops instead.
force_fuse_int_mm_with_mul = False
# for pattern torch.mm(a, b.to(dtype)) with cuda tensors,
# enable torch._inductor.kernel.mm.tuned_mixed_mm fused kernel.
# Autotune will compare perf with normal cast->then->mm option
use_mixed_mm = True
# enable runtime numeric check for pre/post grad fx passes
# floating point provides limited accuracy (about 7 decimal digits for single precision
# floating point numbers,about 16 decimal digits for double precision floating point numbers)
# according to PyTorch documentation.
# https://pytorch.org/docs/stable/notes/numerical_accuracy.html#batched-computations-or-slice-computations
fx_passes_numeric_check: Dict[str, Any] = {
"pre_grad": False,
"precision": 1e-4,
"num_iterations": 1,
"requires_optimizer": True,
}
# mixed_mm_choice can be used to control the behaviour for pattern torch.mm(a, b.to(dtype)) with cuda tensors.
# The fallback aten implementation is normal cast->then->mm option.
# If mixed_mm_choice is "default": this flag will be ignored.
# If mixed_mm_choice is "triton":
# - Always use torch._inductor.kernel.mm.tuned_mixed_mm's fused kernel.
# - Autotune will not compare with fallback.
# If mixed_mm_choice is "aten": always use the fallback aten implementation.
# If mixed_mm_choice is "heuristic":
# - Enables the heuristic.
# - If the heuristic decides to add a config, it will add the config as the first choice.
# - If autotune is disabled, this config will always be chosen.
# - If autotune is enabled, it will also compare with fallback aten implementation and fused kernel.
# The use_mixed_mm flag will be ignored if mixed_mm_choice != "default".
mixed_mm_choice = "heuristic"
# enable reordering pass for increasing overlap between compute and communication
reorder_for_compute_comm_overlap = False
# passes (in execution order) for increasing overlap between compute and communication
# for built-in passes, use string name; for user-defined passes, pass in the function handle
# WARNING: Inductor scheduler IR is at prototype stage and subject to change,
# hence custom IR passes built on top of it might break in the future.
reorder_for_compute_comm_overlap_passes = [
"reorder_compute_for_overlap",
"sink_waits",
"raise_comms",
]
# runtime estimation function for ops
# for built-in estimation function, pass in "default"; for user-defined estimation function, pass in the function handle
estimate_op_runtime = "default"
# unit: GB/s, uni-directional P2P bandwidth per card
# default value is NVLink
intra_node_bw = 300
# unit: GB/s, uni-directional P2P bandwidth per node
# default value is InfiniBand
inter_node_bw = 25
# enable slow autotuning passes to select algorithms
max_autotune = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE") == "1"
# enable slow autotuning passes to select pointwise/reductions algorithms
max_autotune_pointwise = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE_POINTWISE") == "1"
# enable slow autotuning passes to select gemm algorithms
max_autotune_gemm = os.environ.get("TORCHINDUCTOR_MAX_AUTOTUNE_GEMM") == "1"
# force cublas and triton to use the same precision; cublas supports TF32 for matmul operations
# when m, n, k are multiples of 16, 16, 8, whereas triton supports TF32 for matmul operations
# for any combinations of m, n, k, regardless of their alignment. setting this flag will ensure
# that triton does not use TF32 wherever cublas would not use TF32
force_same_precision = (
True if is_fbcode() else os.environ.get("TORCHINDUCTOR_FORCE_SAME_PRECISION") == "1"
)
# Specify candidate backends for gemm autotune.
# Possible choices are combinations of: ATen, Triton, CUTLASS, CK, CPP.
# ATen: default Pytorch ATen kernels.
# Triton: Triton templates defined in torch inductor (AMD and NVidia GPUs).
# CUTLASS: Cutlass templates and kernels (NVidia GPUs only).
# CK: Composable Kernel templates and kernels (AMD Instinct GPUs only).
# CPP: CPP templates and kernels for CPU.
max_autotune_gemm_backends = os.environ.get(
"TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_BACKENDS", "ATEN,TRITON,CPP"
).upper()
# As above, specify candidate backends for conv autotune.
# NB: in some cases for 1x1 convs we emit as matmul,
# which will use the backends of `max_autotune_gemm_backends`
max_autotune_conv_backends = os.environ.get(
"TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_BACKENDS", "ATEN,TRITON"
).upper()
# Specify the size of the search space for GEMM autotuning.
# DEFAULT - balance between compile time overhead and performance
# EXHAUSTIVE - maximize performance
max_autotune_gemm_search_space = os.environ.get(
"TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE", "DEFAULT"
).upper()
# Whether we fall back to ATen or hard error when no matches are found during autotuning
autotune_fallback_to_aten = (
os.environ.get("TORCHINDUCTOR_AUTOTUNE_FALLBACK_TO_ATEN", "1") == "1"
)
# the value used as a fallback for the unbacked SymInts
# that can appear in the input shapes (e.g., in autotuning)
unbacked_symint_fallback = 8192
# enable searching global and local cache regardless of `max_autotune`
search_autotune_cache = os.environ.get("TORCHINDUCTOR_SEARCH_AUTOTUNE_CACHE") == "1"
save_args = os.environ.get("TORCHINDUCTOR_SAVE_ARGS") == "1"
# We will disable creating subprocess for autotuning if this is False
autotune_in_subproc = os.environ.get("TORCHINDUCTOR_AUTOTUNE_IN_SUBPROC") == "1"
# The following three timeouts are applicable if autotune_in_subproc is True:
# Max time that a a valid benchmark result may take during autotuning
max_autotune_subproc_result_timeout_seconds = 60.0
# Additional time we allow subprocesses to terminate gracefully after the timeout until we send a SIGTERM
max_autotune_subproc_graceful_timeout_seconds = 1.0
# Additional time that we grant after a SIGTERM until we do a hard SIGKILL of subprocesses
max_autotune_subproc_terminate_timeout_seconds = 2.0
# If autotuning in subprocess, whether to use multiple devices
autotune_multi_device = os.environ.get("TORCHINDUCTOR_AUTOTUNE_MULTI_DEVICE") == "1"
coordinate_descent_tuning = (
os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_TUNING") == "1"
)
coordinate_descent_check_all_directions = (
os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_CHECK_ALL_DIRECTIONS") == "1"
)
coordinate_descent_search_radius = int(
os.environ.get("TORCHINDUCTOR_COORDINATE_DESCENT_RADIUS", "1")
)
# AutoHeuristic is a framework that allows one to collect data from autotuning, use the data to learn a heuristic, and
# generate the learned heursitic to code which is shipped with the compiler
# Specify a list of comma separated optimizations to collect data for
autoheuristic_collect = os.environ.get("TORCHINDUCTOR_AUTOHEURISTIC_COLLECT", "")
# Specify a list of comma separated optimizations to use learned heuristics for
autoheuristic_use = os.environ.get("TORCHINDUCTOR_AUTOHEURISTIC_USE", "")
def run_autoheuristic(name: str) -> bool:
return collect_autoheuristic(name) or use_autoheuristic(name)
def collect_autoheuristic(name: str) -> bool:
return name in torch._inductor.config.autoheuristic_collect.split(",")
def use_autoheuristic(name: str) -> bool:
return name in torch._inductor.config.autoheuristic_use.split(",")
# If set to "DEFAULT", this will use the default log path specified in autoheuristic.py.
# If set to another path, autoheuristic will instead log results to the given path.
autoheuristic_log_path = os.environ.get(
"TORCHINDUCTOR_AUTOHEURISTIC_LOG_PATH", "DEFAULT"
)
# Disabled by default on ROCm, opt-in if model utilises NHWC convolutions
layout_opt_default = "1" if not torch.version.hip else "0"
layout_optimization = (
os.environ.get("TORCHINDUCTOR_LAYOUT_OPTIMIZATION", layout_opt_default) == "1"
)
force_layout_optimization = os.environ.get("TORCHINDUCTOR_FORCE_LAYOUT_OPT", "0") == "1"
# Whether to keep the output strides the same as eager after layout optimization.
keep_output_stride = os.environ.get("TORCHINDUCTOR_KEEP_OUTPUT_STRIDE", "1") == "1"
# Enabling this will let compiler print warning messages if a generated triton
# kernel has inputs with mixed layouts. This is helpful for perf debugging
# since kernel with mixed layout inputs may run much slower then one whose inputs
# have uniform layouts.
warn_mix_layout = os.environ.get("TORCHINDUCTOR_WARN_MIX_LAYOUT") == "1"
# control store vs recompute heuristic
# For fanouts, rematerialization can lead to exponential blowup. So, have
# smaller threshold
realize_reads_threshold = 4
realize_opcount_threshold = 30
# Threshold to prevent excessive accumulation of ops in one buffer during lowering
realize_acc_reads_threshold = 8
# fallback to eager for random/dropout, this is slow but useful for debugging
fallback_random = False
# automatically create fallbacks when encountering an unhandled op
implicit_fallbacks = True
# fuse even in cases without common reads
aggressive_fusion = False
# For each fused kernel in the wrapper, comment with the nodes that get fused.
# Useful for debugging fusion.
debug_fusion = os.environ.get("TORCHINDUCTOR_DEBUG_FUSION") == "1"
benchmark_fusion = os.environ.get("TORCHINDUCTOR_BENCHMARK_FUSION") == "1"
enabled_metric_tables = os.environ.get("TORCHINDUCTOR_ENABLED_METRIC_TABLES", "")
# For Triton Templates, select fastest of best template + epilogue vs best template + separate epilogue kernel
benchmark_epilogue_fusion = (
os.environ.get("TORCHINDUCTOR_BENCHMARK_EPILOGUE_FUSION", "1") == "1"
)
# Take how many of the top triton kernels to benchmark epilogue
max_epilogue_benchmarked_choices = 1
# how many nodes to allow into a single fusion
max_fusion_size = 64
# max number of inputs to generate cat as a pointwise op with masked laods
max_pointwise_cat_inputs = 8
# replace small reductions with pointwise, disable with `= 1`
unroll_reductions_threshold = 8
# Add extra comments to output code (causes compile cache misses)
comment_origin = False
# Convert 1x1 convs into matmuls
conv_1x1_as_mm = False
# Enable split reductions for better utilization when the dimension
# being reduced over is large (by splitting it)
split_reductions = True
benchmark_kernel = os.environ.get("TORCHINDUCTOR_BENCHMARK_KERNEL", "0") == "1"
# Enable constant and index_expr folding
constant_and_index_propagation = True
# we always add constants into graph.constants without
# performing any constant-inlining optimization
always_keep_tensor_constants = False
# assert that indirect indexing does not read / write out of bounds
assert_indirect_indexing = True
# compute CSE bounds on variables that do not appear in the FX graph
compute_all_bounds = False
# benchmark combo kernels and only allow ones with perf gains
benchmark_combo_kernel = False
# combo_kernel autotuning options: 0 - disable, 1 - enable except for foreach,
# 2 - enable for all
combo_kernels_autotune = 1
# constant folding on the joint graph
joint_graph_constant_folding = True
# Enable indirect_indexing asserts for decompositions and lowerings
debug_index_asserts = False
# warnings intended for PyTorch developers, disable for point releases
is_nightly_or_source = "dev" in torch.__version__ or "git" in torch.__version__
developer_warnings = is_fbcode() or is_nightly_or_source
# This pattern matches a special usage of scatter
# 1. It's applied to a constant tensor
# 2. The index tensor has size 1 in the scatter dimension
# Such pattern generates a sparse matrix when the const tensor is all-zero.
# We can lower this pattern to a pointwise kernel for more fusion opportunities
# and saving memory footprint.
optimize_scatter_upon_const_tensor = (
os.environ.get("TORCHINDUCTOR_OPTIMIZE_SCATTER_UPON_CONST_TENSOR", "1") == "1"
)
# The multiprocessing start method to use for inductor workers in the codecache.
# Can be "subprocess" or "fork".
def decide_worker_start_method() -> str:
start_method = os.environ.get(
"TORCHINDUCTOR_WORKER_START", "fork" if is_fbcode() else "subprocess"
)
assert start_method in (
"subprocess",
"fork",
), f"Invalid start method: {start_method}"
return start_method
worker_start_method = decide_worker_start_method()
# Flags to turn on all_reduce fusion. These 2 flags should be automaticaly turned
# on by DDP and should not be set by the users.
_fuse_ddp_communication = False
_fuse_ddp_bucket_size = 25
# Flag to control which fusion passes to apply. Functions in the list will
# be applied in order. There are two different different fusion passes
# --"fuse_ddp_with_concat_op" and "fuse_ddp_with_coalesced_op". The default
# one is "fuse_ddp_with_concat_op". Users can also change this to a customized
# fusion function.
#
# The fusion currently does not support multiple DDP with different PG or
# data type. This feature will be added in the future PRs.
#
# "schedule_comm_wait" is used to delay the wait ops to maximize comm/comp
# overlapping. At this moment, this pass performs better than
# reorder_for_compute_comm_overlap_passes but we will add the logic of
# "schedule_comm_wait" in the future and remove the one here.
_fuse_ddp_communication_passes: List[Union[Callable[..., None], str]] = [
"fuse_ddp_with_concat_op",
"schedule_comm_wait",
]
_micro_pipeline_tp: bool = False
def decide_compile_threads() -> int:
"""
Here are the precedence to decide compile_threads
1. User can override it by TORCHINDUCTOR_COMPILE_THREADS. One may want to disable async compiling by
setting this to 1 to make pdb happy.
2. Set to 1 if it's win32 platform
3. decide by the number of CPU cores
"""
if "TORCHINDUCTOR_COMPILE_THREADS" in os.environ:
return int(os.environ["TORCHINDUCTOR_COMPILE_THREADS"])
elif sys.platform == "win32":
return 1
elif is_fbcode() and worker_start_method != "subprocess":
return 1
else:
cpu_count = (
len(os.sched_getaffinity(0))
if hasattr(os, "sched_getaffinity")
else os.cpu_count()
)
assert cpu_count
return min(32, cpu_count)
compile_threads = decide_compile_threads()
# gemm autotuning global cache dir
if is_fbcode():
from libfb.py import parutil
try:
if __package__:
global_cache_dir = parutil.get_dir_path(
os.path.join(__package__.replace(".", os.sep), "fb/cache")
)
else:
global_cache_dir = parutil.get_dir_path("fb/cache")
except ValueError:
global_cache_dir = None
else:
global_cache_dir = None
# If kernel is fused, the name is generated from the origin node op names
# for larger kernels limit this
kernel_name_max_ops = 10
# Pad input tensors of matmul/bmm/addmm to leverage Tensor Cores in NVIDIA GPUs
shape_padding = os.environ.get("TORCHINDUCTOR_SHAPE_PADDING", "1") == "1"
# Control if we will do padding for pointwise/reductions
comprehensive_padding = (
os.environ.get("TORCHINDUCTOR_COMPREHENSIVE_PADDING", "1") == "1"
)
pad_channels_last = False
# Whether to treat output of the backward graph as user visible.
# For user visible outputs, inductor will make sure the stride matches with eager.
bw_outputs_user_visible = True
# Whether to always use shape padding if it is enabled and possible
force_shape_pad: bool = False
# Fx-based linear/matmul/bmm + permute/transpose vertical fusion
permute_fusion = os.environ.get("TORCHINDUCTOR_PERMUTE_FUSION", "0") == "1"
# Mark the wrapper call in PyTorch profiler
profiler_mark_wrapper_call = False
# Generate hook calls to torch._inductor.hooks.run_intermediate_hooks for
# every intermediate for which we can correlate it with an intermediate
# from the original FX graph
generate_intermediate_hooks = False
# Populate traceback field on IRNode; good for debugging why origin_node is
# not populated, or finding out where an IRNode was constructed
debug_ir_traceback = False
# used for debugging to make sure config is properly set
_raise_error_for_testing = False
_profile_var = os.environ.get("TORCHINDUCTOR_PROFILE", "")
profile_bandwidth = _profile_var != ""
profile_bandwidth_regex = "" if _profile_var == "1" else _profile_var
# Specify a file where we print out the profiling results.
# None means we do not dump results to a file.
profile_bandwidth_output = os.environ.get("TORCHINDUCTOR_PROFILE_OUTPUT", None)
# TODO: remove later
disable_cpp_codegen = False
# Freezing will attempt to inline weights as constants in optimization
# and run constant folding and other optimizations on them. After freezing, weights
# can no longer be updated.
freezing: bool = os.environ.get("TORCHINDUCTOR_FREEZING", "0") == "1"
# Make freezing invalidate the eager Parameters of nn modules, to avoid memory overhead
# of potentially keeping multiple copies of weights.
freezing_discard_parameters: bool = False
# Kill switch for allowing temporary tensors to be allocated as stack arrays. Tests
# should be run with this flag both on and off to make sure we have coverage.
allow_stack_allocation: bool = (
os.environ.get("TORCHINDUCTOR_STACK_ALLOCATION", "1" if is_fbcode() else "0") == "1"
)
# Enables an alternate DSO interface (the "minimal ArrayRef interface") intended
# to maximize performance for use cases that it can accommodate at the expense of
# generality. In brief:
# - inputs and outputs are ArrayRefTensor<T> (note that strides are required, but the
# tensor must be contiguous)
# - constant handling is unchanged because it is not a per-inference-iteration bottleneck
#
# When the DSO is generated in this mode, the usual interface will also be supported,
# but performance for that interface may be degraded.
use_minimal_arrayref_interface: bool = False
# decompose some memory bound matmul/bmm to mul
decompose_mem_bound_mm: bool = False
# assume_aligned_inputs means that we assume that inputs will be aligned; we generate
# code using this assumption, and clone tensors before use if they aren't aligned.
# In the common case, most inputs will be aligned.
assume_aligned_inputs: bool = False
# config specific to codegen/cpp.py
class cpp:
# set to torch.get_num_threads()
threads = -1
# Do not generate loops when the condition doesn't hold, like:
# for(long i0=4096; i0<4096; i0+=1)
no_redundant_loops = (
os.environ.get("TORCHINDUCTOR_CPP_NO_REDUNDANT_LOOPS", "1") == "1"
)
# Assume number of threads is dynamic, don't specialize thread number.
# Kernels don't recompile on thread number changes with this flag on.
# For single-threaded workload, turning it on would incur a slight
# performance degradation.
dynamic_threads = os.environ.get("TORCHINDUCTOR_CPP_DYNAMIC_THREADS", "0") == "1"
simdlen: Optional[int] = None
min_chunk_size = int(os.environ.get("TORCHINDUCTOR_CPP_MIN_CHUNK_SIZE", "4096"))
cxx = (
None, # download gcc12 from conda-forge if conda is installed
# "g++-12",
# "g++-11",
# "g++-10",
# "clang++",
os.environ.get("CXX", "clang++" if sys.platform == "darwin" else "g++"),
# "g++.par",
)
# Allow kernel performance profiling via PyTorch profiler
enable_kernel_profile = (
os.environ.get("TORCHINDUCTOR_CPP_ENABLE_KERNEL_PROFILE", "0") == "1"
)
# enable weight prepacking to get a better performance; may lead to large memory footprint
weight_prepack = os.environ.get("TORCHINDUCTOR_CPP_WEIGHT_PREPACK", "1") == "1"
# Inject a bug into our relu implementation; useful for testing our repro
# extraction and minification functionality.
# Valid values: "compile_error", "runtime_error", "accuracy"
inject_relu_bug_TESTING_ONLY: Optional[str] = None
inject_log1p_bug_TESTING_ONLY: Optional[str] = None
# If None, autodetect whether or not AVX512/AVX2 can be used. Otherwise,
# force usage as specified, without testing.
vec_isa_ok: Optional[bool] = None
# similar to config.triton.descriptive_names
descriptive_names = "original_aten"
# how many nodes to allow into a single horizontal fusion
max_horizontal_fusion_size = int(
os.environ.get("TORCHINDUCTOR_CPP_MAX_HORIZONTAL_FUSION_SIZE", "16")
)
# Make scatter_reduce fallback when reduce is sum to avoid performance regression
# using atomic_add.
fallback_scatter_reduce_sum = (
os.environ.get("TORCHINDUCTOR_CPP_FALLBACK_SCATTER_REDUCE_SUM", "1") == "1"
)
# Use funsafe-math-optimizations when compiling
enable_unsafe_math_opt_flag = (
os.environ.get("TORCHINDUCTOR_CPP_ENABLE_UNSAFE_MATH_OPT_FLAG", "0") == "1"
)
# Use ffp-contract when compiling
enable_floating_point_contract_flag = (
os.environ.get("TORCHINDUCTOR_CPP_ENABLE_FLOATING_POINT_CONTRACT_FLAG", "0")
== "1"
)
# Maximal allowed number of slices on K-dim for a GEMM kernel. This controls
# the maximal parallelism of K-slicing. Since K-slicing requires extra thread
# synchronization and buffers, the maximal number of slices is limited to
# mitigate the sync overhead and memory usage.
# When set to 0, the number of slices is unlimited.
gemm_max_k_slices = int(os.environ.get("TORCHINDUCTOR_CPP_GEMM_MAX_K_SLICES", "1"))
# config specific to codegen/triton.py
class triton:
# Use cudagraphs on output code
cudagraphs = os.environ.get("TORCHINDUCTOR_CUDAGRAPHS") == "1"
# Use cudagraph trees for memory pooling if `cudagraphs` is True
cudagraph_trees = True
# Should we skip cudagraphing graphs with dynamic shape inputs
# If False, we will re-record a graph for each unique set of shape inputs
cudagraph_skip_dynamic_graphs = False
# assertions not on the fast path, steady state
slow_path_cudagraph_asserts = True
# TODO - need to debug why this prevents cleanup
cudagraph_trees_history_recording = False
# Enable cudagraph support for mutated inputs from prior cudagraph pool
cudagraph_support_input_mutation = False if is_fbcode() else True
# Maximal number of allowed cudagraph re-record for a function and
# a cudagraph node due to static input tensor address changes or
# cudagraph managed tensor data pointer changed.
# i.e., allow num_recording <= cudagraph_unexpected_rerecord_limit
# note: we are conservative here and choose a large limit.
cudagraph_unexpected_rerecord_limit = 128
# Warn loudly when the number of cudagraphs due to dynamic shape
# exceeds this limit
cudagraph_dynamic_shape_warn_limit: Optional[int] = 50
# synchronize after cudagraph invocation
force_cudagraph_sync = False
# always run cudagraphs in the eager warmup stage
# instead of recording and executing cudagraphs
force_cudagraphs_warmup = False
# assertions on the fast path
fast_path_cudagraph_asserts = False
# skip warmup for cudagraph trees
skip_cudagraph_warmup = False
# Synchronize before and after every compiled graph.
debug_sync_graph = False
# Synchronize after every kernel launch, to help pinpoint bugs
debug_sync_kernel = False
# Always load full blocks (rather than broadcasting inside the block)
dense_indexing = False
# limit tiling dimensions
max_tiles = 2
# use triton.autotune for pointwise ops with complex layouts
# this should only be disabled for debugging/testing
autotune_pointwise = True
# max autotune gemm with cublasLt
autotune_cublasLt = True
# Tune the generated Triton kernels at compile time instead of first time they run
autotune_at_compile_time = False
# should we stop a fusion to allow better tiling?
tiling_prevents_pointwise_fusion = True
tiling_prevents_reduction_fusion = True
# should we give different names to kernels
# Note: This is orthogonal to descriptive_names - this is deciding whether
# our triton kernel names should all be `triton_` (to maximize caching) or
# whether they should be unique.
unique_kernel_names = os.environ.get("TORCHINDUCTOR_UNIQUE_KERNEL_NAMES") == "1"
# should we put op names in kernel names
# False: No special names (just triton__1, triton__2, etc.)
# "torch": Maps to the fx op in the Dynamo graph (module name, method name, etc.)
# "original_aten": Maps to the highest-level aten op (i.e. pre-decompositions)
# "inductor_node": Maps to the node name in the FX graph passed to Inductor
descriptive_names = "original_aten"
# use alternate codegen for smaller reductions
persistent_reductions = (
os.environ.get("TORCHINDUCTOR_PERSISTENT_REDUCTIONS", "1") == "1"
)
# 0/False: disable
# 1/True: enable, use tuning to pick between different subkernels
# 2: enable, force using persistent reduction (for debugging)
# 3: enable, force using non-persistent reduction (for debugging)
multi_kernel = int(os.environ.get("TORCHINDUCTOR_MULTI_KERNEL", "0"))
# hint to Triton when arguments are divisible by 16
divisible_by_16 = True
# Minimum RBLOCK to be used for a TritonSplitScanKernel
# NOTE: This also indirectly controls the size of workspace buffer required
min_split_scan_rblock = 256
# Store the generated cubin files for cpp wrapper code to load
store_cubin = False
# the max number of spills we allow for the configs we benchmark.
# Setting this to 0 means we skip a config if it spills even a single
# register.
# Setting it to a larger value allows a config spilling a small amount
# of registers being benchmarked.
#
# NOTE: triton will always report >0 register spills for kernels using sin/cos.
# (check this issue https://github.com/openai/triton/issues/1756 )
# So far we see a fixed 8 spilled registers for kernels using sin/cos.
# Raise the threshold to 16 to be safe.
# We should revisit this once we understand more of the source of register spills.
spill_threshold: int = 16
# Generate code containing the newer tl.make_block_ptr() API for loads/store
use_block_ptr = False
# Inject a bug into our relu implementation; useful for testing our repro
# extraction and minification functionality.
# Valid values: "compile_error", "runtime_error", "accuracy"
inject_relu_bug_TESTING_ONLY: Optional[str] = None
class aot_inductor:
# AOTInductor output path
# If an absolute path is specified, the generated lib files will be stored under the directory;
# If a relative path is specified, it will be used as a subdirectory under the default caching path;
# If not specified, a temp directory will be created under the default caching path.
# If the specified path contains something like "model.so", the sub-string will be used
# to name the generated library.
output_path = ""
debug_compile = os.environ.get("AOT_INDUCTOR_DEBUG_COMPILE", "0") == "1"
debug_dump_consts_bin: bool = (
os.environ.get("AOT_INDUCTOR_DEBUG_DUMP_CONSTS_BIN", "0") == "1"
)
# Serialized tree spec for flattening inputs
serialized_in_spec = ""
# Serialized tree spec for flattening outputs
serialized_out_spec = ""
# flag to decide whether to create a submodule for constant graph.
use_runtime_constant_folding: bool = False
# flag to force weight to be appened to the shared library and mmaped by the runtime
# rather than embedded into the data section. Needed to support 1B+ parameter models
force_mmap_weights: bool = False
package: bool = False
class cuda:
# CUDA arch to use for CUDA template kernel compilation.
# e.g. "70", "75", "80", "90", etc.
# When arch is None, Inductor uses torch.cuda.get_device_capability(0).
arch: Optional[str] = None
# CUDA version to use for CUDA template kernel compilation.
# e.g. "11.4", "12.1", etc.
# When version is None, Inductor uses torch.version.cuda.
version: Optional[str] = None
# Optimization level for the host compiler.
compile_opt_level = "-O1"
# Whether to enable device LTO (link-time-optimization).
enable_cuda_lto = False
# Whether to keep intermediate files dring compilation.
enable_ptxas_info = False
# Whether to enable debug info, e.g. line number, cutlass debug info.
enable_debug_info = False
# Whether to use fast math.
use_fast_math = False
# Path to the CUTLASS repo root directory.
# The default path only works under PyTorch local development environment.
cutlass_dir = os.environ.get(
"TORCHINDUCTOR_CUTLASS_DIR",
os.path.abspath(
os.path.join(os.path.dirname(torch.__file__), "../third_party/cutlass/")
),
)
# Configures the maximum number of CUTLASS configs to profile in max_autotune.
# By default it's None, so that all CUTLASS configs are tuned.
# This is mainly used to reduce test time in CI.
cutlass_max_profiling_configs: Optional[int] = None
# Path to CUDA NVCC.
# NVCC search order:
# 1) cuda_cxx set in this config
# 2) CUDACXX environment variable
# 3) CUDA_HOME environment variable
# 4) default system search PATH.
cuda_cxx: Optional[str] = None
# Minimum value of M*N*K to consider the CUTLASS backend for GEMM ops.
cutlass_backend_min_gemm_size: int = 1
# enable generation of inline standalone runner in CUDA CPP generated code
# which allows to compile the generated code into a standalone executable.
generate_test_runner: bool = (
os.environ.get("INDUCTOR_CUDA_BACKEND_GENERATE_TEST_RUNNER_CODE", "1") == "1"
)
# Keep only Cutlass op configs which contain this regular expression pattern
# Set this to "warpspecialized_cooperative_epi_tma" to enable only SM90 TMA Cutlass Kernels for large GEMMs
cutlass_op_allowlist_regex: Optional[str] = None
# Note: Names of Cutlass ops names can be obtained by calling
# op.configuration_name() on a Cutlass op instance, for example those
# returned from cutlass_utils.gen_ops() or the op argument passed to
# CUTLASSGemmTemplate.render(...)
# Filter Cutlass configs which contain this regular expression pattern
# Set this to "pingpong" to avoid numerical issues
# caused by the op ordering of the "pingpong" memory access
# pattern used by some Cutlass Kernels.
cutlass_op_denylist_regex: Optional[str] = "pingpong"
class rocm:
# Offload arch list for device code compilation, e.g. ["gfx941", "gfx942"].
# If empty, the `native` arch is used
arch: List[str] = []
# Enable for CDNA3 only for now
# Processor name reference: https://llvm.org/docs/AMDGPUUsage.html#processors
# Keep it ordered, unordered set can cause spurious inductor cache misses
supported_arch: List[str] = ["gfx940", "gfx941", "gfx942"]
# Optimization level, use to balance compilation speed and runtime performance
compile_opt_level = "-O2"
# Flag to keep debug information in compiled objects
is_debug = False
# Flag to keep intermediate files (assembly listings, preprocessed sources, etc.)
save_temps = False
# Flag to add `-ffast-math`` to compile flags
use_fast_math = True
# Flag to add `-fgpu-flush-denormals-to-zero` to compile flags
flush_denormals = True
# Flag to print register and LDS usage during compilation
print_kernel_resource_usage = False
# Path to ROCm installation, if None, use env variable ROCM_HOME
rocm_home: Optional[str] = None
# Path to Composable Kernel library.
# Install with `pip install git+https://github.com/rocm/composable_kernel@develop`.
ck_dir = os.environ.get("TORCHINDUCTOR_CK_DIR")
# Number of op instance choices to trade off between runtime perf and compilation time
n_max_profiling_configs: Optional[int] = None
# Flag to use a short list of CK instances which perform well across a variety of shapes.
# Currently RCR and F16 only
use_preselected_instances: bool = False
# Backend to use for CPU codegen either "cpp" or "halide" (experimental)
cpu_backend = "cpp"
# Backend to use for CUDA codegen either "triton" or "halide" (experimental)
cuda_backend = "triton"
class halide:
# Base halide target to use for CPU devices
cpu_target = "host"
# Base halide target to use for CUDA devices
gpu_target = "host-cuda"
# Halide autoscheduler to use, choices are:
# "Anderson2021" (gpu-only), "Li2018", "Adams2019" (cpu-only), or "Mullapudi2016" (cpu-only)
scheduler_cuda = "Anderson2021"
scheduler_cpu = "Adams2019"
# Controls `no_asserts` flag passed to Halide target (warning: can false positive)
asserts = False
# Controls `debug` flag passed to Halide target
debug = False
# Enable (or fallback on) scan kernels such as cumsum
# Halide autoschedulers struggle with these kernels
scan_kernels = False
# create a directory containing lots of debug information
class trace:
# master switch for all debugging flags below
enabled = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1"
# Save debug information to a temporary directory
# If not specified, a temp directory will be created by system
debug_dir: Optional[str] = None
# Save python logger call >=logging.DEBUG
debug_log = False
# Save python logger call >=logging.INFO
info_log = False
# Save input FX graph (post decomps, pre optimization)
fx_graph = True
# Save FX graph after transformations
fx_graph_transformed = True
# Save TorchInductor IR before fusion pass
ir_pre_fusion = True
# Save TorchInductor IR after fusion pass
ir_post_fusion = True
# Copy generated code to trace dir
output_code = True
# SVG figure showing post-fusion graph
graph_diagram = os.environ.get("INDUCTOR_POST_FUSION_SVG", "0") == "1"
# SVG figure showing fx with fusion
draw_orig_fx_graph = os.environ.get("INDUCTOR_ORIG_FX_SVG", "0") == "1"
# We draw our fx graphs with the "record" shape attribute by default.
# Sometimes, when the graph is very complex, we may hit dot errors like below:
# "flat edge between adjacent nodes one of which has a record shape -
# replace records with HTML-like labels"
# and thus fail to generate a graph. So, let's give the user an option
# to specify the shape attribute for the dot graph. For example, passing
# INDUCTOR_DOT_GRAPH_SHAPE_SVG = "none" would let us generate HTML-like lables
# to workaround the above failure.
dot_graph_shape = os.environ.get("INDUCTOR_DOT_GRAPH_SHAPE_SVG", None)
# If not None, this is the URL that saves the SVG files of the input/output
# graph of each pass that changed the graph
# The nodes that are being transformed in each pass will be colored in yellow
# URL only supports local directory for now
log_url_for_graph_xform = os.environ.get("INDUCTOR_LOG_URL_FOR_GRAPH_XFORM", None)
# Store cProfile (see snakeviz to view)
compile_profile = False
# Upload the .tar.gz file
# Needs to be overriden based on specific environment needs
upload_tar: Optional[Callable[[str], None]] = None
log_autotuning_results: bool = False
_save_config_ignore = [
# workaround: "Can't pickle <function ...>"
"trace.upload_tar",
"post_grad_custom_post_pass",
"post_grad_custom_pre_pass",
"joint_custom_pre_pass",
"joint_custom_post_pass",
"pre_grad_custom_pass",
]
_cache_config_ignore_prefix = [
# trace functions are not relevant to config caching
"trace",
# uses absolute path
"cuda.cutlass_dir",
# not relevant
"compile_threads",
]
if TYPE_CHECKING:
from torch.utils._config_typing import * # noqa: F401, F403
from torch.utils._config_module import install_config_module
# adds patch, save_config, etc
install_config_module(sys.modules[__name__])