blob: 96fe74d23257730bc0cbd064716e48a3d7a1ae5d [file] [log] [blame]
# Owner(s): ["oncall: jit"]
import torch
from torch.testing._internal.common_utils import TestCase
from torch import float32, float16
import torch._lazy
import torch._lazy.ts_backend
torch._lazy.ts_backend.init()
class TestMetaKernel(TestCase):
def test_addmm_invalid_dtype(self):
"""Tests that the addmm meta kernel returns the correct output type"""
input = torch.ones(2, 2, dtype=torch.float16).to("lazy")
self.assertTrue(input.dtype == torch.float16)
fc_nobias = torch.nn.Linear(2, 2, bias=False, dtype=float32).to("lazy")
with self.assertRaises(Exception):
out_nobias = fc_nobias(input)
def test_addmm(self):
"""Tests that the addmm meta kernel returns the correct output type"""
input = torch.ones(2, 2, dtype=torch.float16).to("lazy")
self.assertEqual(input.dtype, torch.float16)
fc_nobias = torch.nn.Linear(2, 2, bias=False, dtype=float16).to("lazy")
out_nobias = fc_nobias(input)
self.assertEqual(out_nobias.dtype, torch.float16)
fc_bias = torch.nn.Linear(2, 2, bias=True, dtype=float16).to("lazy")
out_bias = fc_bias(input)
self.assertEqual(out_bias.dtype, torch.float16)
def test_add_invalid_device(self):
with self.assertRaisesRegex(RuntimeError, '.*not a lazy tensor.*'):
_ = torch.tensor([1], device="cpu") + torch.tensor([1], device="lazy")