| # Owner(s): ["oncall: jit"] |
| |
| import torch |
| |
| from torch.testing._internal.common_utils import TestCase |
| from torch import float32, float16 |
| import torch._lazy |
| import torch._lazy.ts_backend |
| |
| torch._lazy.ts_backend.init() |
| |
| class TestMetaKernel(TestCase): |
| |
| def test_addmm_invalid_dtype(self): |
| """Tests that the addmm meta kernel returns the correct output type""" |
| input = torch.ones(2, 2, dtype=torch.float16).to("lazy") |
| self.assertTrue(input.dtype == torch.float16) |
| |
| fc_nobias = torch.nn.Linear(2, 2, bias=False, dtype=float32).to("lazy") |
| |
| with self.assertRaises(Exception): |
| out_nobias = fc_nobias(input) |
| |
| def test_addmm(self): |
| """Tests that the addmm meta kernel returns the correct output type""" |
| input = torch.ones(2, 2, dtype=torch.float16).to("lazy") |
| self.assertEqual(input.dtype, torch.float16) |
| |
| fc_nobias = torch.nn.Linear(2, 2, bias=False, dtype=float16).to("lazy") |
| out_nobias = fc_nobias(input) |
| self.assertEqual(out_nobias.dtype, torch.float16) |
| |
| fc_bias = torch.nn.Linear(2, 2, bias=True, dtype=float16).to("lazy") |
| out_bias = fc_bias(input) |
| self.assertEqual(out_bias.dtype, torch.float16) |
| |
| def test_add_invalid_device(self): |
| with self.assertRaisesRegex(RuntimeError, '.*not a lazy tensor.*'): |
| _ = torch.tensor([1], device="cpu") + torch.tensor([1], device="lazy") |