| # Owner(s): ["oncall: jit"] |
| |
| import torch |
| import torch._lazy |
| import torch._lazy.config |
| import torch._lazy.ir_cache |
| import torch._lazy.ts_backend |
| import torch._lazy.metrics as metrics |
| from torch.testing._internal.common_utils import IS_WINDOWS, run_tests, TestCase |
| import os |
| import unittest |
| |
| torch._lazy.ts_backend.init() |
| torch._lazy.config.set_reuse_ir(True) |
| |
| def get_test_device(): |
| return 'cuda' if 'LTC_TS_CUDA' in os.environ else 'cpu' |
| |
| @unittest.skipIf(IS_WINDOWS, "To be fixed") |
| class TestLazyReuseIr(TestCase): |
| def testAdd(self): |
| device = get_test_device() |
| x = torch.randn(2, 3, 4, device=device) |
| y = torch.randn(2, 3, 4, device=device) |
| z = torch.zeros(2, 3, 4, device=device) |
| |
| device = 'lazy' |
| x_lazy = x.detach().clone().to(device=device) |
| y_lazy = y.detach().clone().to(device=device) |
| z_lazy = z.detach().clone().to(device=device) |
| |
| for i in range(10): |
| z += (x + y) |
| |
| for i in range(10): |
| z_lazy += (x_lazy + y_lazy) |
| torch._lazy.mark_step() |
| |
| torch.testing.assert_close(z.cpu(), z_lazy.cpu()) |
| assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 14 |
| metrics.reset() |
| torch._lazy.ir_cache.reset() |
| |
| def testAddSub(self): |
| device = get_test_device() |
| x = torch.randn(2, 3, 4, device=device) |
| y = torch.randn(2, 3, 4, device=device) |
| z = torch.zeros(2, 3, 4, device=device) |
| |
| device = 'lazy' |
| x_lazy = x.detach().clone().to(device=device) |
| y_lazy = y.detach().clone().to(device=device) |
| z_lazy = z.detach().clone().to(device=device) |
| |
| for i in range(10): |
| if i < 5: |
| z += (x + y) |
| else: |
| z += (x - y) |
| |
| for i in range(10): |
| if i < 5: |
| z_lazy += (x_lazy + y_lazy) |
| else: |
| z_lazy += (x_lazy - y_lazy) |
| torch._lazy.mark_step() |
| |
| torch.testing.assert_close(z.cpu(), z_lazy.cpu()) |
| assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 8 |
| metrics.reset() |
| torch._lazy.ir_cache.reset() |
| |
| def testAddSubFallback(self): |
| torch._lazy.config.set_force_fallback("aten::sub") |
| device = get_test_device() |
| x = torch.randn(2, 3, 4, device=device) |
| y = torch.randn(2, 3, 4, device=device) |
| z = torch.zeros(2, 3, 4, device=device) |
| |
| device = 'lazy' |
| x_lazy = x.detach().clone().to(device=device) |
| y_lazy = y.detach().clone().to(device=device) |
| z_lazy = z.detach().clone().to(device=device) |
| |
| for i in range(10): |
| if i < 5: |
| z += (x + y) |
| else: |
| z += (x - y) |
| |
| for i in range(10): |
| if i < 5: |
| z_lazy += (x_lazy + y_lazy) |
| else: |
| z_lazy += (x_lazy - y_lazy) |
| torch._lazy.mark_step() |
| |
| torch.testing.assert_close(z.cpu(), z_lazy.cpu()) |
| assert metrics.counter_value("IrNodeReused_torch::lazy::AddTensor") >= 8 |
| metrics.reset() |
| torch._lazy.ir_cache.reset() |
| torch._lazy.config.set_force_fallback("") |
| |
| def testBatchNorm(self): |
| device = get_test_device() |
| x = torch.randn(16, 3, 224, 224, device=device) |
| weight = torch.randn(3, device=device) |
| bias = torch.randn(3, device=device) |
| |
| for i in range(10): |
| # BatchNorm2d does extra checks on dimensions which SymInts don't support yet |
| # so we call `torch.ops.aten.native_batch_norm` to bypass the checks. |
| z, _, _ = torch.ops.aten.native_batch_norm(x, weight, bias, None, None, True, 0.1, 1e-5) |
| z_legit, _, _ = torch.ops.aten._native_batch_norm_legit(x, weight, bias, True, 0.1, 1e-5) |
| |
| device = "lazy" |
| x_lazy = x.detach().clone().to(device=device) |
| weight_lazy = weight.detach().clone().to(device=device) |
| bias_lazy = bias.detach().clone().to(device=device) |
| for i in range(10): |
| z_lazy, _, _ = torch.ops.aten.native_batch_norm(x_lazy, weight_lazy, bias_lazy, None, None, True, 0.1, 1e-5) |
| z_legit_lazy, _, _ = torch.ops.aten._native_batch_norm_legit(x_lazy, weight_lazy, bias_lazy, True, 0.1, 1e-5) |
| torch._lazy.mark_step() |
| |
| torch.testing.assert_close(z.cpu(), z_lazy.cpu()) |
| torch.testing.assert_close(z_legit.cpu(), z_legit_lazy.cpu()) |
| assert metrics.counter_value("IrNodeReused_torch::lazy::NativeBatchNorm") >= 7 |
| metrics.reset() |
| torch._lazy.ir_cache.reset() |
| |
| |
| if __name__ == '__main__': |
| run_tests() |