blob: 11b3215c2d5e6afcf070fc4c38171bd5e8cbc817 [file] [log] [blame]
# Owner(s): ["module: mta"]
from contextlib import nullcontext
from numbers import Number
import random
import re
import torch
import unittest
import itertools
import weakref
from torch.testing import make_tensor
from torch.testing._comparison import default_tolerances
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.common_utils import \
TestCase, run_tests, TEST_WITH_ROCM, skipIfTorchDynamo, parametrize, gradcheck, skipIfRocmVersionLessThan
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyCUDA, ops, OpDTypes)
from torch.testing._internal.common_methods_invocations import (
foreach_unary_op_db, foreach_binary_op_db, foreach_pointwise_op_db,
foreach_reduce_op_db, foreach_other_op_db)
from torch.testing._internal.common_dtype import (
all_types_and_complex_and, floating_types_and, floating_types, integral_types_and,
)
_BOOL_SUB_ERR_MSG = "Subtraction, the `-` operator"
class RegularFuncWrapper:
def __init__(self, func):
self.func = func
def __call__(self, inputs, scalars=None, **kwargs):
if scalars is not None:
assert len(inputs) == 3
# We need to distribute each scalar to the regular func and it needs
# special consideration as it is a keyword only argument to the
# regular func. (Strangely, it is not a keyword only argument to the
# foreach func)
return [self.func(*i, value=scalars[idx], **kwargs) for idx, i in enumerate(zip(*inputs))]
if len(inputs) == 2 and isinstance(inputs[1], (Number, torch.Tensor)):
# binary op with tensorlist and scalar.
inputs[1] = [inputs[1] for _ in range(len(inputs[0]))]
return [self.func(*i, **kwargs) for i in zip(*inputs)]
class ForeachFuncWrapper:
def __init__(self, func):
self.func = func
# Some foreach functions don't have in-place implementations.
self.is_inplace = False if func is None else func.__name__.endswith('_')
def __call__(self, inputs, is_cuda, expect_fastpath, **kwargs):
actual = None
zero_size = kwargs.pop("zero_size", False)
if (
is_cuda and
torch.autograd.kineto_available() and
torch.profiler.ProfilerActivity.CUDA in torch.profiler.supported_activities()
):
with torch.profiler.profile() as p:
actual = self.func(*inputs, **kwargs)
keys = tuple([e.key for e in p.key_averages()])
mta_called = any("multi_tensor_apply_kernel" in k for k in keys)
assert mta_called == (expect_fastpath and (not zero_size))
else:
actual = self.func(*inputs, **kwargs)
if self.is_inplace:
assert id(inputs[0]) == id(actual)
return actual
class InplaceForeachVersionBumpCheck:
def __init__(self, testcase: TestCase, tensorlist: "List[torch.Tensor]") -> None: # noqa: F821
self._testcase = testcase
self._tensorlist = tensorlist
self._orig_version_counts = [t._version for t in tensorlist]
def __enter__(self):
pass
def __exit__(self, exc_type, exc_value, traceback):
# note(crcrpar): some methods e.g. `_binary_test` could call the given inplace function multiple times
self._testcase.assertGreaterEqual([t._version for t in self._tensorlist], self._orig_version_counts)
def get_transform_func(num_tensors, dtype, device, is_fastpath):
def transform(t):
if not torch.is_tensor(t):
return t
if torch.is_tensor(t) and t.ndim == 0:
return t
return make_tensor(
(num_tensors, num_tensors), dtype=dtype, device=device,
requires_grad=True, noncontiguous=not is_fastpath,
)
return transform
# note(crcrpar): `zero_size` is `False` unless (dtype, device) == (torch.float32, "cuda")
# as the pair would go through `multi_tensor_apply_kernel` if inputs are not zero size.
class TestForeach(TestCase):
@property
def is_cuda(self):
return self.device_type == 'cuda'
def _get_funcs(self, op):
return (
ForeachFuncWrapper(op.method_variant),
RegularFuncWrapper(op.ref),
ForeachFuncWrapper(op.inplace_variant),
RegularFuncWrapper(op.ref_inplace),
)
# note(crcrpar): Make sure 0-size tensors are appropriately ignored by `multi_tensor_apply`
# which is originally reported in https://github.com/pytorch/pytorch/issues/94865.
# rel:
# - https://github.com/pytorch/pytorch/pull/94655
# - https://github.com/pytorch/pytorch/issues/100701
# - https://github.com/pytorch/pytorch/pull/100811
@onlyCUDA
@ops(
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_reduce_op_db + foreach_other_op_db,
dtypes=(torch.float32,)
)
def test_all_zero_size_tensors_do_not_launch_kernel(self, device, dtype, op):
wrapped_op, _, inplace_op, _ = self._get_funcs(op)
for sample in op.sample_zero_size_inputs(device, dtype):
if op.supports_out:
wrapped_op((sample.input, *sample.args), is_cuda=self.is_cuda, expect_fastpath=True, zero_size=True)
with InplaceForeachVersionBumpCheck(self, sample.input):
inplace_op((sample.input, *sample.args), is_cuda=self.is_cuda, expect_fastpath=True, zero_size=True)
@skipIfRocmVersionLessThan((6, 0))
@ops(
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_reduce_op_db + foreach_other_op_db,
)
@parametrize(
"noncontiguous,inplace",
[(False, False), (False, True), (True, False), (True, True)],
name_fn=lambda x, y: '{}_{}'.format(
'fastpath' if not x else 'slowpath', 'inplace' if y else 'outplace'
)
)
def test_parity(self, device, dtype, op, noncontiguous, inplace):
if inplace:
_, _, func, ref = self._get_funcs(op)
else:
func, ref, _, _ = self._get_funcs(op)
for sample in op.sample_inputs(device, dtype, noncontiguous=noncontiguous):
ref_kwargs = sample.kwargs
# div promotes ints to floats, so we cannot go on the fastpath there
div_slowpath = dtype in integral_types_and(torch.bool) and op.name == '_foreach_div'
expect_fastpath = not (noncontiguous or sample.disable_fastpath or div_slowpath)
ref_input, ctxmgr = sample.input, nullcontext()
if inplace:
with torch.no_grad():
ref_input = [t.clone().detach() for t in sample.input]
ctxmgr = InplaceForeachVersionBumpCheck(self, sample.input)
try:
with ctxmgr:
actual = func([sample.input, *sample.args], self.is_cuda, expect_fastpath, **sample.kwargs)
except Exception as e:
with (
self.assertRaisesRegex(type(e), re.escape(str(e)))
if not (op.has_no_in_place or not op.supports_out)
else self.assertRaises(type(e))
):
ref([ref_input, *sample.ref_args], **ref_kwargs)
else:
expected = ref([ref_input, *sample.ref_args], **ref_kwargs)
self.assertEqual(expected, actual)
def _binary_test(
self,
dtype, op, ref, inputs, is_fastpath, is_inplace,
*,
alpha, scalar_self_arg: bool,
):
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1]] if is_inplace else inputs
try:
with InplaceForeachVersionBumpCheck(self, inputs[0]) if op.is_inplace else nullcontext():
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
if not scalar_self_arg:
ref(ref_inputs)
else:
[ref.func(ref_inputs[0], t) for t in ref_inputs[1]]
else:
expected = ref(ref_inputs) if not scalar_self_arg else [ref.func(ref_inputs[0], t) for t in ref_inputs[1]]
self.assertEqual(actual, expected)
if alpha is not None and not scalar_self_arg:
kwargs = {'alpha': alpha}
ref_inputs = inputs
try:
op_kwargs = {}
op_kwargs.update(kwargs)
with InplaceForeachVersionBumpCheck(self, inputs[0]) if op.is_inplace else nullcontext():
actual = op(inputs, self.is_cuda, is_fastpath, **op_kwargs)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs, **kwargs)
else:
expected = ref(ref_inputs, **kwargs)
if dtype in (torch.float16, torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(expected, actual, atol=1.e-3, rtol=default_tolerances(dtype)[0])
else:
self.assertEqual(expected, actual)
@ops(filter(lambda op: op.supports_scalar_self_arg, foreach_binary_op_db))
@parametrize("is_fastpath", (True, False))
def test_binary_op_with_scalar_self_support(self, device, dtype, op, is_fastpath):
def clone(arg):
if isinstance(arg, (list, tuple)):
return [clone(a) for a in arg]
if torch.is_tensor(arg):
return arg.clone().detach().requires_grad_()
else:
return arg
scalar_self_arg_test_complete = False
for i, sample in enumerate(op.sample_inputs(device, dtype, noncontiguous=not is_fastpath)):
(rhs_arg,) = sample.args
kwargs = {} or sample.kwargs
alpha = kwargs.pop("alpha", None)
wrapped_op, ref, inplace_op, inplace_ref = self._get_funcs(op)
if isinstance(rhs_arg, Number) and not scalar_self_arg_test_complete:
scalar_self_arg_test_complete = True
self._binary_test(
dtype, wrapped_op, ref, [rhs_arg, sample.input], is_fastpath, False,
alpha=alpha, scalar_self_arg=True,
)
if op.supports_autograd and dtype == torch.float32:
transformed_sample = sample.transform(
get_transform_func(len(sample.input), dtype, device, is_fastpath))
tensors = transformed_sample.input
(rhs_arg,) = transformed_sample.args
ref_tensors, ref_rhs_arg = clone(tensors), clone(rhs_arg)
sum(wrapped_op(
[rhs_arg, tensors], is_cuda=False, expect_fastpath=False
)).mean().backward()
sum([ref.func(ref_rhs_arg, t) for t in ref_tensors]).mean().backward()
self.assertEqual([t.grad for t in tensors], [t.grad for t in ref_tensors])
@ops(foreach_pointwise_op_db)
@parametrize("is_fastpath", (True, False))
def test_pointwise_op_with_tensor_of_scalarlist_overload(self, device, dtype, op, is_fastpath):
for sample in op.sample_inputs(device, dtype, noncontiguous=not is_fastpath):
assert isinstance(sample.args, tuple)
assert len(sample.args) == 2
inputs = [sample.input, *sample.args]
kwargs = sample.kwargs.copy()
disable_fastpath = sample.disable_fastpath and is_fastpath
wrapped_op, ref, inplace_op, inplace_ref = self._get_funcs(op)
scalars = kwargs.pop("scalars", None)
if is_fastpath and scalars:
sample = sample.transform(lambda t: t.clone().detach() if torch.is_tensor(t) else t)
inputs = [sample.input, *sample.args]
tensor_values = torch.tensor(scalars)
# 1D Tensor of scalars
for is_inplace, op_, ref_ in ((False, wrapped_op, ref), (True, inplace_op, inplace_ref)):
self._pointwise_test(
op_, ref_, inputs, is_fastpath and not disable_fastpath, is_inplace,
scalars=tensor_values, **kwargs)
self._pointwise_test(
op_, ref_, inputs, is_fastpath and not disable_fastpath, is_inplace,
scalars=tensor_values[0],
custom_values_err="Expected packed scalar Tensor to be of dimension 1. Got 0 instead.",
**kwargs,
)
if self.is_cuda:
self._pointwise_test(
op_, ref_, inputs, is_fastpath and not disable_fastpath, is_inplace,
scalars=tensor_values.cuda(),
custom_values_err="Expected scalars to be on CPU, got cuda:0 instead.",
**kwargs,
)
self._pointwise_test(
op_, ref_, inputs, is_fastpath and not disable_fastpath, is_inplace,
scalars=tensor_values[:2],
custom_values_err=f"Expected length of scalars to match input of length {len(scalars)} but got 2 instead.",
**kwargs,
)
self._pointwise_test(
op_, ref_, inputs, is_fastpath and not disable_fastpath, is_inplace,
scalars=torch.tensor([[0, 1], [2, 3]])[:, 1],
custom_values_err="Expected scalars to be contiguous.",
**kwargs,
)
# Tests of implicit broadcasting
N = len(sample.input)
inputs = [
[make_tensor((N, N), device=device, dtype=dtype, noncontiguous=not is_fastpath) for _ in range(N)],
[
make_tensor((N - i, 1), device=device, dtype=dtype, noncontiguous=not is_fastpath)
for i in range(N)
],
[
make_tensor((1, N - i), device=device, dtype=dtype, noncontiguous=not is_fastpath)
for i in range(N)
],
]
self._pointwise_test(
wrapped_op, ref, inputs, is_fastpath and disable_fastpath, is_inplace=False,
scalars=scalars, **kwargs)
self._pointwise_test(
inplace_op, inplace_ref, inputs, is_fastpath and disable_fastpath,
is_inplace=True, scalars=scalars, **kwargs)
def _pointwise_test(
self,
op, ref, inputs, is_fastpath, is_inplace,
*,
scalars=None, custom_values_err=None, **kwargs
):
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1], inputs[2]] if is_inplace else inputs
try:
with (InplaceForeachVersionBumpCheck(self, inputs[0]) if is_inplace else nullcontext()):
actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs, **kwargs)
else:
expected = ref(ref_inputs, **kwargs)
self.assertEqual(expected, actual)
if scalars is not None:
kwargs = kwargs.copy()
kwargs["scalars"] = scalars
try:
actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
except RuntimeError as e:
# Match with error messages from regular non-foreach reference if no
# custom error message was provided.
if custom_values_err is None:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs, **kwargs)
else:
self.assertEqual(re.escape(str(e)), re.escape(custom_values_err))
else:
expected = ref(ref_inputs, **kwargs)
self.assertEqual(expected, actual)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [[torch.randn([0], device=device, dtype=dtype)],
[torch.empty_strided((0, 1), (0, 0), dtype=dtype, device=device)]]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
torch._foreach_add_(tensors, 1)
self.assertEqual(res, tensors)
# Regression test for https://github.com/pytorch/pytorch/issues/113156
torch._foreach_mul_(tensors, 1)
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=OpDTypes.supported,
)
def test_binary_op_scalar_with_overlapping_tensors(self, device, dtype, op):
foreach_op, ref = op.method_variant, op.ref
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
if ref == torch.sub and dtype == torch.bool:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
[ref(t, 1) for t in tensors]
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op(tensors, 1)
return
expected = [ref(t, 1) for t in tensors]
res = foreach_op(tensors, 1)
self.assertEqual(res, expected)
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
allowed_dtypes=[torch.float],
)
def test_binary_op_scalar_with_different_tensor_dtypes(self, device, dtype, op):
foreach_op = op.method_variant
tensors = [
torch.tensor([1.1], dtype=torch.float, device=device),
torch.tensor([1], dtype=torch.long, device=device),
]
runtime_error = None
try:
foreach_op(tensors, 1)
except RuntimeError as e:
runtime_error = e
self.assertIsNone(runtime_error)
@skipIfTorchDynamo("Different error msgs, TODO")
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=OpDTypes.supported,
)
def test_binary_op_list_error_cases(self, device, dtype, op):
foreach_op, foreach_op_, ref, ref_ = op.method_variant, op.inplace_variant, op.ref, op.ref_inplace
tensors1 = []
tensors2 = []
ops_to_test = [foreach_op, foreach_op_]
# Empty lists
for fop in ops_to_test:
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
fop(tensors1, tensors2)
# One empty list
tensors1.append(torch.tensor([1], device=device, dtype=dtype))
for fop in ops_to_test:
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
fop(tensors1, tensors2)
# Lists have different amount of tensors
tensors2.append(torch.tensor([1], device=device))
tensors2.append(torch.tensor([1], device=device))
for fop in ops_to_test:
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
fop(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 2 and 1"):
fop(tensors2, tensors1)
# Corresponding tensors with different sizes that aren't compatible with broadcast
# If sizes are different then foreach chooses slow path, thus error messages are expected
# to be the same as torch regular function.
tensors1 = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
tensors2 = [torch.ones(11, 11, device=device, dtype=dtype) for _ in range(10)]
try:
foreach_op(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[ref(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
try:
foreach_op_(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[ref_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
# different devices
if self.device_type == "cuda" and torch.cuda.device_count() > 1:
tensor1 = torch.zeros(10, 10, device="cuda:0", dtype=dtype)
tensor2 = torch.ones(10, 10, device="cuda:1", dtype=dtype)
if dtype == torch.bool and foreach_op == torch._foreach_sub:
for fop in ops_to_test:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
fop([tensor1], [tensor2])
return
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
foreach_op([tensor1], [tensor2])
if dtype in integral_types_and(torch.bool) and foreach_op == torch._foreach_div:
with self.assertRaisesRegex(RuntimeError, "result type"):
foreach_op_([tensor1], [tensor2])
else:
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
foreach_op_([tensor1], [tensor2])
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=OpDTypes.supported,
)
def test_binary_op_list_slow_path(self, device, dtype, op):
foreach_op, native_op, foreach_op_, native_op_ = self._get_funcs(op)
# 0-strides
tensor1 = make_tensor((10, 10), dtype=dtype, device=device)
tensor2 = make_tensor((1,), device=device, dtype=dtype).expand_as(tensor1)
inputs = ([tensor1], [tensor2])
self._binary_test(
dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False,
alpha=None, scalar_self_arg=False)
self._binary_test(
dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True,
alpha=None, scalar_self_arg=False)
# different strides
tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
inputs = ([tensor1], [tensor2.t()])
self._binary_test(
dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False,
alpha=None, scalar_self_arg=False)
self._binary_test(
dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True,
alpha=None, scalar_self_arg=False)
# non contiguous
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True)
tensor2 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True)
self.assertFalse(tensor1.is_contiguous())
self.assertFalse(tensor2.is_contiguous())
inputs = ([tensor1], [tensor2])
self._binary_test(
dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False,
alpha=None, scalar_self_arg=False)
self._binary_test(
dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True,
alpha=None, scalar_self_arg=False)
# sliced tensor
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype)
tensor2 = make_tensor((5, 2, 1, 3 * 7), device=device, dtype=dtype)[:, :, :, ::7]
inputs = ([tensor1], [tensor2])
self._binary_test(
dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False,
alpha=None, scalar_self_arg=False)
self._binary_test(
dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True,
alpha=None, scalar_self_arg=False)
@ops(
filter(lambda op: op.supports_out, foreach_binary_op_db),
dtypes=floating_types_and(torch.half, torch.bfloat16),
)
def test_binary_op_float_inf_nan(self, device, dtype, op):
inputs = (
[
torch.tensor([float("inf")], device=device, dtype=dtype),
torch.tensor([-float("inf")], device=device, dtype=dtype),
torch.tensor([float("nan")], device=device, dtype=dtype),
torch.tensor([float("nan")], device=device, dtype=dtype),
],
[
torch.tensor([-float("inf")], device=device, dtype=dtype),
torch.tensor([float("inf")], device=device, dtype=dtype),
torch.tensor([float("inf")], device=device, dtype=dtype),
torch.tensor([float("nan")], device=device, dtype=dtype),
],
)
op, ref, inplace_op, inplace_ref = self._get_funcs(op)
self._binary_test(dtype, op, ref, inputs, True, False, alpha=None, scalar_self_arg=False)
self._binary_test(
dtype, inplace_op, inplace_ref, inputs, True, True, alpha=None, scalar_self_arg=False
)
# note: Below three tests (postfixed with `_tensors_on_different_devices`)
# checks whether foreach works with lists of tensors on different devices
# but tensors of the same index are on the same device, e.g., ['cuda', 'cpu].
@onlyCUDA
@ops(foreach_unary_op_db)
def test_unary_op_tensors_on_different_devices(self, device, dtype, op):
method, ref, inplace_method, ref_inplace = self._get_funcs(op)
# tensors: ['cuda', 'cpu]
tensors = next(iter(op.sample_inputs(device, dtype, num_input_tensors=[2]))).input
tensors[1] = tensors[1].to("cpu")
if not op.supports_out:
try:
actual = method((tensors,), False, False, zero_size=False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e)):
ref((tensors,))
else:
expected = ref((tensors,))
self.assertEqual(expected, actual)
try:
inplace_method((tensors,), False, False, zero_size=False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e)):
ref_inplace((tensors,))
else:
if not op.supports_out:
self.assertEqual(expected, tensors)
else:
self.assertEqual([torch.zeros_like(t) for t in tensors], tensors)
@onlyCUDA
@ops(filter(lambda op: op.supports_out, foreach_binary_op_db))
def test_binary_op_tensors_on_different_devices(self, device, dtype, op):
# `tensors1`: ['cuda', 'cpu']
# `tensors2`: ['cuda', 'cpu']
_cuda_tensors = next(iter(op.sample_inputs(device, dtype, num_input_tensors=[2], same_size=True))).input
_cpu_tensors = next(iter(op.sample_inputs("cpu", dtype, num_input_tensors=[2], same_size=True))).input
tensors1, tensors2 = list(zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_ = op.method_variant, op.inplace_variant
native_op, native_op_ = op.ref, op.ref_inplace
try:
actual = foreach_op(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
expected = [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
self.assertEqual(expected, actual)
try:
foreach_op_(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[native_op_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
self.assertEqual(actual, tensors1)
@onlyCUDA
@ops(foreach_pointwise_op_db, allowed_dtypes=floating_types())
def test_pointwise_op_tensors_on_different_devices(self, device, dtype, op):
# tensors1: ['cuda', 'cpu]
# tensors2: ['cuda', 'cpu]
# tensors3: ['cuda', 'cpu]
# first tensorlist is zero-size when float32
_cuda_tensors = list(
op.sample_inputs(device, dtype, num_input_tensors=[3], same_size=True)
)[int(dtype == torch.float32)].input
_cpu_tensors = next(iter(op.sample_inputs("cpu", dtype, num_input_tensors=[3], same_size=True))).input
tensors1, tensors2, tensors3 = list(zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_, native_op = op.method_variant, op.inplace_variant, op.ref
actual = foreach_op(tensors1, tensors2, tensors3)
expected = [native_op(*_cuda_tensors), native_op(*_cpu_tensors)]
self.assertEqual(expected, actual)
# note(mkozuki): Limiting dtypes to FP32&FP64, we can safely run inplace ops.
foreach_op_(tensors1, tensors2, tensors3)
self.assertEqual(expected, tensors1)
# note: BFloat16 has the same number of exponent bits as FP32
# so if squared L2 norm overflows in BF16, then it also overflows in FP32.
@onlyCUDA
@ops(foreach_reduce_op_db, allowed_dtypes=(torch.half, torch.bfloat16))
def test_foreach_l2_large_value_input(self, device, dtype, op):
ord, N = 2, 10
max_value = torch.finfo(dtype).max
scaler = torch.tensor([max_value]).sqrt().to(device=device, dtype=dtype)
inputs = ([
t * scaler for t in next(iter(op.sample_inputs(device, dtype, requries_grad=True, num_input_tensors=[N], low=1))).input
][:-1],)
# make sure that the min. of squared L2 norm value per tensor is greater than the max value of `dtype`.
self.assertTrue(scaler * scaler * N > max_value)
fn, ref_fn, *_ = self._get_funcs(op)
actual = fn(inputs, is_cuda=True, expect_fastpath=True, ord=ord, zero_size=False)
expect = ref_fn(inputs, ord=ord)
if dtype == torch.float16:
# making sure the reference L2 norm values are in the range of FP16.
self.assertFalse(any(torch.isinf(e) for e in expect))
else:
self.assertTrue(all(
inputs[0][i].numel() == 0 or torch.isinf(e)
for i, e in enumerate(expect)))
self.assertEqual(expect, actual, equal_nan=False)
@onlyCUDA
@ops(foreach_reduce_op_db, allowed_dtypes=floating_types())
def test_big_num_tensors(self, device, dtype, op):
N = 600
tensorlist = [make_tensor((2, 3), dtype=dtype, device=device, noncontiguous=False) for _ in range(N)]
fn, ref_fn, *_ = self._get_funcs(op)
import math
for ord in (1, 2, math.inf):
actual = fn(inputs=[tensorlist], is_cuda=True, expect_fastpath=True, ord=ord, zero_size=False)
expect = ref_fn(inputs=[tensorlist], ord=ord)
self.assertEqual(expect, actual, equal_nan=True)
@onlyCUDA
@ops(foreach_reduce_op_db)
def test_foreach_reduce_large_input(self, device, dtype, op):
# test inputs larger than kChunkSize = 65536
ord, N = 2, 65536 * 2
disable_fastpath = True
if ord in (1, 2) and dtype in floating_types_and(torch.half, torch.bfloat16):
disable_fastpath = False
inputs = ([make_tensor((N,), dtype=dtype, device=device, noncontiguous=False)],)
wrapped_op, ref, _, _ = self._get_funcs(op)
self.assertEqual(
ref(inputs, ord=ord),
wrapped_op(inputs, self.is_cuda, not disable_fastpath, ord=ord, zero_size=False),
)
@onlyCUDA
@ops(
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_other_op_db,
dtypes=(torch.float,),
)
def test_inplace_foreach_leaf_check_and_grad_fn(self, device, dtype, op):
inplace_op = op.inplace_variant
if inplace_op is None:
self.skipTest("no in-place op available")
sample = next(iter(op.sample_inputs(dtype=dtype, device=device, num_input_tensors=[2], same_size=True)))
sample.input[0].requires_grad_(True)
with self.assertRaisesRegex(RuntimeError, "a leaf Variable that requires grad"):
inplace_op(sample.input, *sample.args)
sample.input[1].requires_grad_(True)
with self.assertRaisesRegex(RuntimeError, "a leaf Variable that requires grad"):
inplace_op(sample.input, *sample.args)
_tensors = [t.clone().detach().requires_grad_(i == 0) for i, t in enumerate(sample.input)]
tensors = [t.clone() for t in _tensors]
inplace_op(tensors, *sample.args)
self.assertIsNotNone(tensors[0].grad_fn)
self.assertIsNone(tensors[1].grad_fn)
@onlyCUDA
@ops(
filter(
lambda op: op.supports_out,
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_other_op_db,
),
dtypes=(torch.float,),
)
def test_outplace_with_invalid_grads(self, device, dtype, op):
func, *_ = self._get_funcs(op)
sample = next(iter(op.sample_inputs(dtype=dtype, device=device, requires_grad=True, num_input_tensors=[2], same_size=True)))
self.assertTrue(all(t.requires_grad for t in sample.input))
(out1, out2) = func([sample.input, *sample.args], is_cuda=False, expect_fastpath=False, **sample.kwargs)
out1.backward(torch.ones_like(out1))
self.assertIsNotNone(sample.input[0].grad)
self.assertIsNone(sample.input[1].grad)
@ops(
filter(
lambda op: op.backward_requires_result,
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_other_op_db,
),
dtypes=(torch.float32,),
)
def test_lifetime_of_grad_fn_when_result_is_saved(self, device, dtype, op):
def get_ref(func, sample):
class Foo:
pass
out = func((sample.input, *sample.args), is_cuda=False, expect_fastpath=False, **sample.kwargs)
foo = Foo()
meta_dict = out[0].grad_fn.metadata
meta_dict[0] = foo
ref = weakref.ref(foo)
return out, ref
def _test(func, sample):
out, ref = get_ref(func, sample)
self.assertIsNotNone(ref())
del out
self.assertIsNone(ref())
func = self._get_funcs(op)[0]
for sample in op.sample_inputs(device, dtype, requires_grad=True, num_input_tensors=[1]):
for key in ("is_fastpath", "disable_fastpath"):
if key in sample.kwargs:
del sample.kwargs[key]
# note: `_foreach_pow.Scalar` and `_foreach_pow.ScalarList` don't depend on `result`
# see: https://github.com/pytorch/pytorch/blob/5403c777/tools/autograd/derivatives.yaml#L3048-L3049
if op.name == "_foreach_pow":
if (
(isinstance(sample.args[0], list) and isinstance(sample.args[0][0], Number))
or (isinstance(sample.args[0], Number) and not isinstance(sample.args[0], float))
):
continue
if isinstance(sample.args[0], float):
new_args = (sample.input,)
sample.input = sample.args[0]
sample.args = new_args
_test(func, sample)
@unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported")
def test_tensors_grouping(self):
num_tensors_per_list = 10
num_devices = torch.cuda.device_count()
dtypes = (torch.float16, torch.float32, torch.float64)
list1 = [
torch.tensor(
i,
device=torch.device("cuda", random.randint(0, num_devices - 1)),
dtype=dtypes[random.randint(0, 2)],
) for i in range(num_tensors_per_list)
]
list2 = [None for _ in list1]
list3 = [torch.rand_like(t) for t in list1]
nested_tensorlists = [list1, list2, list3]
grouped_tensors = torch.utils._foreach_utils._group_tensors_by_device_and_dtype(nested_tensorlists, with_indices=True)
num_tensors_seen = 0
for (device, dtype), ([l1, l2, l3], indices) in grouped_tensors.items():
for t in itertools.chain(l1, l3):
self.assertEqual(t.device, device)
self.assertEqual(t.dtype, dtype)
num_tensors_seen += 1
self.assertEqual(len(l1), len(l2))
self.assertTrue(all(p is None for p in l2))
for i, index in enumerate(indices):
self.assertEqual(l1[i], list1[index])
self.assertEqual(l2[i], list2[index])
self.assertEqual(l3[i], list3[index])
self.assertEqual(num_tensors_seen, 2 * num_tensors_per_list)
@onlyCUDA
def test_0dim_tensor_overload_cpu_ok(self):
tensors = [torch.ones((), device="cuda", dtype=torch.float32) for _ in range(2)]
scalar_cpu_tensor = torch.tensor(4.0, device="cpu")
# For mul and div, the scalar is allowed to be on CPU too
actual = torch._foreach_mul(tensors, scalar_cpu_tensor)
self.assertEqual(actual, [t.mul(scalar_cpu_tensor) for t in tensors])
actual = torch._foreach_div(tensors, scalar_cpu_tensor)
self.assertEqual(actual, [t.div(scalar_cpu_tensor) for t in tensors])
@onlyCUDA
def test_0dim_tensor_overload_exception(self):
# check exceptions of fast path
tensors = [make_tensor((2, 2), dtype=torch.float, device="cuda") for _ in range(2)]
with self.assertRaisesRegex(RuntimeError, "scalar tensor expected to be on"):
torch._foreach_add(tensors, torch.tensor(1.0, device="cpu"), alpha=1.0)
tensors = [make_tensor((2, 2), dtype=torch.float, device=d) for d in ("cpu", "cuda")]
with self.assertRaisesRegex(RuntimeError, "scalar tensor expected to be 0 dim but"):
torch._foreach_mul(tensors, torch.tensor([1.0, 1.0], device="cuda"))
with self.assertRaisesRegex(RuntimeError, "scalar tensor expected to be 0 dim but"):
torch._foreach_add(tensors, torch.tensor([1.0, 1.0], device="cuda"))
@onlyCUDA
@ops(filter(lambda op: op.name == "_foreach_copy", foreach_binary_op_db))
def test_foreach_copy_with_multi_device_inputs(self, device, dtype, op):
foreach_copy_ = op.inplace_variant
copy_ = op.ref_inplace
for non_blocking in (False, True):
for sample in op.sample_inputs(device, dtype, noncontiguous=False):
with torch.no_grad():
ref_input = [t.clone().detach() for t in sample.input]
foreach_copy_(sample.input, sample.args[0], non_blocking)
for t, s in zip(ref_input, sample.args[0]):
copy_(t, s, non_blocking)
self.assertEqual(sample.input, ref_input)
if torch.cuda.device_count() > 1:
device = torch.device("cuda", 1)
rhs_tensors = [t.to(device) for t in sample.args[0]]
foreach_copy_(sample.input, rhs_tensors, non_blocking)
for t, s in zip(ref_input, rhs_tensors):
copy_(t, s, non_blocking)
self.assertEqual(ref_input, sample.input)
@onlyCUDA
@ops(filter(lambda op: op.name == "_foreach_copy", foreach_binary_op_db))
def test_foreach_copy_with_multi_dtypes(self, device, dtype, op):
# check (a) multi_tensor_apply is called and (b) numerical parity with for-loop and Tensor.copy_
foreach_copy_ = ForeachFuncWrapper(op.inplace_variant)
for sample in op.sample_inputs(device, dtype, noncontiguous=False):
for src_dtype in floating_types_and(torch.half, torch.bfloat16):
if src_dtype == dtype:
continue
self_tensors = [t.clone() for t in sample.input]
src_tensors = [t.to(src_dtype) for t in self_tensors]
out = foreach_copy_((self_tensors, src_tensors), is_cuda=True, expect_fastpath=True)
self.assertEqual(out, [torch.empty_like(t).copy_(s) for t, s in zip(self_tensors, src_tensors)])
# Test reverse-mode & forward-mode AD if supported.
@onlyCUDA
@ops(
foreach_unary_op_db + foreach_binary_op_db + foreach_pointwise_op_db + foreach_reduce_op_db + foreach_other_op_db,
dtypes=OpDTypes.supported,
allowed_dtypes=(torch.float64, torch.complex128),
)
@parametrize("inplace", (False, True), name_fn=lambda x: "inplace" if x else "outplace")
def test_autodiff(self, device, dtype, op, inplace):
if not (op.supports_autograd or op.supports_forward_ad):
self.skipTest("neither reverse mode nor forward mode supported")
if (not inplace) and not op.supports_out:
self.skipTest("out-of-place not implemented")
if inplace and op.has_no_in_place:
self.skipTest("in-place not implemented")
# note(crcrpar): without this, some unary functions fail, unlike inplace and/or complex.
if (not inplace) and dtype == torch.float64 and op.name in (
"_foreach_acos", "_foreach_asin", "_foreach_log10", "_foreach_log1p", "_foreach_log2",
"_foreach_log", "_foreach_pow", "_foreach_sqrt",
):
value_range = {"low": 0.5, "high": 1.0}
else:
value_range = {}
for sample in op.sample_inputs(
device, dtype, requires_grad=True, num_input_tensors=[5], **value_range,
):
# Skip `_foreach_pow.ScalarAndTensor(Scalar, Tensor[])`
if op.name == "_foreach_pow" and isinstance(sample.input, Number):
continue
func = None
if inplace:
# Call `clone` to avoid inplace modifications likewise
# `torch.testing._internal.common_utils.TestGradients._get_safe_inplace`
def inplace_func(*tensorlist):
kwargs = {"alpha": sample.kwargs["alpha"]} if "alpha" in sample.kwargs else {}
op.inplace_variant(tuple(t.clone() for t in tensorlist), *sample.args, **kwargs)
return tensorlist
func = inplace_func
else:
def outplace_func(*tensorlist):
kwargs = {"alpha": sample.kwargs["alpha"]} if "alpha" in sample.kwargs else {}
return op.method_variant(tensorlist, *sample.args, **kwargs)
func = outplace_func
working_sample, err_msg_pattern = check_autodiff_sample(op, sample, dtype, inplace)
def call_gradcheck():
gradcheck(
func,
sample.input,
raise_exception=True,
check_forward_ad=op.supports_forward_ad,
check_batched_forward_grad=False,
check_backward_ad=op.supports_autograd,
check_batched_grad=False,
)
if not working_sample:
if not err_msg_pattern:
# lhs of float64 and rhs of complex.
continue
with self.assertRaisesRegex(RuntimeError, re.escape(err_msg_pattern)):
call_gradcheck()
continue
call_gradcheck()
# Test per-tensor `grad_fn` behavior.
if inplace and op.supports_inplace_autograd:
# per-tensor `grad_fn` check.
hook_buffer = []
def get_grad_fn_hook(i):
def hook(grad_inputs, grad_outputs) -> None:
hook_buffer.append(i)
return hook
_inputs = [t.clone().detach().requires_grad_() for t in sample.input]
inputs = [t.clone() for t in _inputs]
kwargs = {"alpha": sample.kwargs["alpha"]} if "alpha" in sample.kwargs else {}
op.inplace_variant(inputs, *sample.args, **kwargs)
self.assertEqual(len({t.grad_fn for t in inputs}), len(inputs))
for i, t in enumerate(inputs):
t.grad_fn.register_hook(get_grad_fn_hook(i))
torch.autograd.grad(
inputs[0],
inputs=(_inputs[0],),
grad_outputs=(torch.rand_like(inputs[0]),),
retain_graph=True,
)
self.assertEqual(hook_buffer, [0])
hook_buffer.clear()
# tensors have different shapes.
sum_of_cloned_tensors = torch.cat([t.view(-1) for t in inputs]).sum()
grad_output = torch.rand_like(sum_of_cloned_tensors)
torch.autograd.grad(
sum_of_cloned_tensors,
inputs=tuple(_inputs),
grad_outputs=(grad_output,),
retain_graph=False,
)
self.assertEqual(hook_buffer, list(reversed(range(len(inputs)))))
# TODO(crcrpar): Hide this inside torch/testing/_internal.
# would end up adding another layer to `foreach_inputs_sample_func.__call__`
# so that we can use this function as something like the first argument of `filter` function.
# Even after moving this function to testing, I personally think it'd be better to check the error message.
def check_autodiff_sample(op, sample, dtype, is_inplace):
if op.name == "_foreach_abs" and is_inplace and dtype == torch.complex128:
return False, "In-place abs is not supported for complex tensors."
if (
op.name == "_foreach_sub"
and (
(isinstance(sample.args[0], list) and any(isinstance(a, bool) for a in sample.args[0]))
or isinstance(sample.args[0], bool)
)
):
return False, _BOOL_SUB_ERR_MSG
if op.name == "_foreach_norm" and (not is_inplace):
return (
False,
"Trying to set a forward gradient that has a different size than that of the original Tensor, "
"this is not supported. Tensor is of size [] while the given forward gradient is of size [1, 1]."
)
rhs_arg_has_complex_number = sample.args and ((
isinstance(sample.args[0], list)
and any(isinstance(a, complex) for a in sample.args[0])
) or (
isinstance(sample.args[0], complex)
))
if rhs_arg_has_complex_number and dtype == torch.float64:
if op.name in ("_foreach_clamp_max", "_foreach_clamp_min", "_foreach_maximum", "_foreach_minimum"):
return False, "clamp is not supported for complex types"
if not is_inplace:
return False, ""
else:
if op.name == "_foreach_pow":
return False, "Found dtype Double but expected ComplexDouble"
if op.name in ("_foreach_add", "_foreach_sub", "_foreach_mul", "_foreach_div"):
return False, "result type ComplexDouble can't be cast to the desired output type Double"
return True, ""
instantiate_device_type_tests(TestForeach, globals())
if __name__ == "__main__":
run_tests()