| # Owner(s): ["module: autograd"] |
| |
| from torch.testing._internal.common_utils import TestCase, run_tests, IS_JETSON, IS_WINDOWS |
| from torch._utils_internal import get_file_path_2 |
| |
| import pkgutil |
| import torch |
| import importlib |
| from typing import Callable |
| import inspect |
| import json |
| import os |
| import unittest |
| from importlib import import_module |
| from itertools import chain |
| from pathlib import Path |
| |
| def _find_all_importables(pkg): |
| """Find all importables in the project. |
| |
| Return them in order. |
| """ |
| return sorted( |
| set( |
| chain.from_iterable( |
| _discover_path_importables(Path(p), pkg.__name__) |
| for p in pkg.__path__ |
| ), |
| ), |
| ) |
| |
| |
| def _discover_path_importables(pkg_pth, pkg_name): |
| """Yield all importables under a given path and package. |
| |
| This is like pkgutil.walk_packages, but does *not* skip over namespace |
| packages. Taken from https://stackoverflow.com/questions/41203765/init-py-required-for-pkgutil-walk-packages-in-python3 |
| """ |
| for dir_path, _d, file_names in os.walk(pkg_pth): |
| pkg_dir_path = Path(dir_path) |
| |
| if pkg_dir_path.parts[-1] == '__pycache__': |
| continue |
| |
| if all(Path(_).suffix != '.py' for _ in file_names): |
| continue |
| |
| rel_pt = pkg_dir_path.relative_to(pkg_pth) |
| pkg_pref = '.'.join((pkg_name, ) + rel_pt.parts) |
| yield from ( |
| pkg_path |
| for _, pkg_path, _ in pkgutil.walk_packages( |
| (str(pkg_dir_path), ), prefix=f'{pkg_pref}.', |
| ) |
| ) |
| |
| |
| class TestPublicBindings(TestCase): |
| def test_no_new_bindings(self): |
| """ |
| This test aims to stop the introduction of new JIT bindings into torch._C |
| whose names do not start with _. Such bindings are made available as |
| torch.XXX, which may not be desirable. |
| |
| If your change causes this test to fail, add your new binding to a relevant |
| submodule of torch._C, such as torch._C._jit (or other relevant submodule of |
| torch._C). If your binding really needs to be available as torch.XXX, add it |
| to torch._C and add it to the allowlist below. |
| |
| If you have removed a binding, remove it from the allowlist as well. |
| """ |
| # This allowlist contains every binding in torch._C that is copied into torch at |
| # the time of writing. It was generated with |
| # |
| # {elem for elem in dir(torch._C) if not elem.startswith("_")} |
| # |
| torch_C_allowlist_superset = { |
| "AggregationType", |
| "AliasDb", |
| "AnyType", |
| "Argument", |
| "ArgumentSpec", |
| "AwaitType", |
| "autocast_decrement_nesting", |
| "autocast_increment_nesting", |
| "AVG", |
| "BenchmarkConfig", |
| "BenchmarkExecutionStats", |
| "Block", |
| "BoolType", |
| "BufferDict", |
| "StorageBase", |
| "CallStack", |
| "Capsule", |
| "ClassType", |
| "clear_autocast_cache", |
| "Code", |
| "CompilationUnit", |
| "CompleteArgumentSpec", |
| "ComplexType", |
| "ConcreteModuleType", |
| "ConcreteModuleTypeBuilder", |
| "cpp", |
| "CudaBFloat16TensorBase", |
| "CudaBoolTensorBase", |
| "CudaByteTensorBase", |
| "CudaCharTensorBase", |
| "CudaComplexDoubleTensorBase", |
| "CudaComplexFloatTensorBase", |
| "CudaDoubleTensorBase", |
| "CudaFloatTensorBase", |
| "CudaHalfTensorBase", |
| "CudaIntTensorBase", |
| "CudaLongTensorBase", |
| "CudaShortTensorBase", |
| "DeepCopyMemoTable", |
| "default_generator", |
| "DeserializationStorageContext", |
| "device", |
| "DeviceObjType", |
| "DictType", |
| "DisableTorchFunction", |
| "DisableTorchFunctionSubclass", |
| "DispatchKey", |
| "DispatchKeySet", |
| "dtype", |
| "EnumType", |
| "ErrorReport", |
| "ExcludeDispatchKeyGuard", |
| "ExecutionPlan", |
| "FatalError", |
| "FileCheck", |
| "finfo", |
| "FloatType", |
| "fork", |
| "FunctionSchema", |
| "Future", |
| "FutureType", |
| "Generator", |
| "GeneratorType", |
| "get_autocast_cpu_dtype", |
| "get_autocast_ipu_dtype", |
| "get_default_dtype", |
| "get_num_interop_threads", |
| "get_num_threads", |
| "Gradient", |
| "Graph", |
| "GraphExecutorState", |
| "has_cuda", |
| "has_cudnn", |
| "has_lapack", |
| "has_mkl", |
| "has_mkldnn", |
| "has_mps", |
| "has_openmp", |
| "has_spectral", |
| "iinfo", |
| "import_ir_module_from_buffer", |
| "import_ir_module", |
| "InferredType", |
| "init_num_threads", |
| "InterfaceType", |
| "IntType", |
| "SymFloatType", |
| "SymBoolType", |
| "SymIntType", |
| "IODescriptor", |
| "is_anomaly_enabled", |
| "is_anomaly_check_nan_enabled", |
| "is_autocast_cache_enabled", |
| "is_autocast_cpu_enabled", |
| "is_autocast_ipu_enabled", |
| "is_autocast_enabled", |
| "is_grad_enabled", |
| "is_inference_mode_enabled", |
| "JITException", |
| "layout", |
| "ListType", |
| "LiteScriptModule", |
| "LockingLogger", |
| "LoggerBase", |
| "memory_format", |
| "merge_type_from_type_comment", |
| "ModuleDict", |
| "Node", |
| "NoneType", |
| "NoopLogger", |
| "NumberType", |
| "OperatorInfo", |
| "OptionalType", |
| "ParameterDict", |
| "parse_ir", |
| "parse_schema", |
| "parse_type_comment", |
| "PyObjectType", |
| "PyTorchFileReader", |
| "PyTorchFileWriter", |
| "qscheme", |
| "read_vitals", |
| "RRefType", |
| "ScriptClass", |
| "ScriptClassFunction", |
| "ScriptDict", |
| "ScriptDictIterator", |
| "ScriptDictKeyIterator", |
| "ScriptList", |
| "ScriptListIterator", |
| "ScriptFunction", |
| "ScriptMethod", |
| "ScriptModule", |
| "ScriptModuleSerializer", |
| "ScriptObject", |
| "ScriptObjectProperty", |
| "SerializationStorageContext", |
| "set_anomaly_enabled", |
| "set_autocast_cache_enabled", |
| "set_autocast_cpu_dtype", |
| "set_autocast_ipu_dtype", |
| "set_autocast_cpu_enabled", |
| "set_autocast_ipu_enabled", |
| "set_autocast_enabled", |
| "set_flush_denormal", |
| "set_num_interop_threads", |
| "set_num_threads", |
| "set_vital", |
| "Size", |
| "StaticModule", |
| "Stream", |
| "StreamObjType", |
| "StringType", |
| "SUM", |
| "SymFloat", |
| "SymInt", |
| "TensorType", |
| "ThroughputBenchmark", |
| "TracingState", |
| "TupleType", |
| "Type", |
| "unify_type_list", |
| "UnionType", |
| "Use", |
| "Value", |
| 'set_autocast_gpu_dtype', |
| 'get_autocast_gpu_dtype', |
| "vitals_enabled", |
| "wait", |
| "Tag", |
| "set_autocast_xla_enabled", |
| "set_autocast_xla_dtype", |
| "get_autocast_xla_dtype", |
| "is_autocast_xla_enabled", |
| } |
| torch_C_bindings = {elem for elem in dir(torch._C) if not elem.startswith("_")} |
| |
| # torch.TensorBase is explicitly removed in torch/__init__.py, so included here (#109940) |
| explicitly_removed_torch_C_bindings = { |
| "TensorBase", |
| } |
| torch_C_bindings = torch_C_bindings - explicitly_removed_torch_C_bindings |
| |
| # Check that the torch._C bindings are all in the allowlist. Since |
| # bindings can change based on how PyTorch was compiled (e.g. with/without |
| # CUDA), the two may not be an exact match but the bindings should be |
| # a subset of the allowlist. |
| difference = torch_C_bindings.difference(torch_C_allowlist_superset) |
| msg = f"torch._C had bindings that are not present in the allowlist:\n{difference}" |
| self.assertTrue(torch_C_bindings.issubset(torch_C_allowlist_superset), msg) |
| |
| @staticmethod |
| def _is_mod_public(modname): |
| split_strs = modname.split('.') |
| for elem in split_strs: |
| if elem.startswith("_"): |
| return False |
| return True |
| |
| |
| def test_modules_can_be_imported(self): |
| failures = [] |
| for _, modname, _ in _discover_path_importables(str(torch.__path__), "torch"): |
| try: |
| # TODO: fix "torch/utils/model_dump/__main__.py" |
| # which calls sys.exit() when we try to import it |
| if "__main__" in modname: |
| continue |
| import_module(modname) |
| except Exception as e: |
| # Some current failures are not ImportError |
| failures.append((modname, type(e))) |
| |
| # It is ok to add new entries here but please be careful that these modules |
| # do not get imported by public code. |
| private_allowlist = { |
| "torch._inductor.codegen.cuda.cuda_kernel", |
| "torch.onnx._internal.fx._pass", |
| "torch.onnx._internal.fx.analysis", |
| "torch.onnx._internal.fx.decomposition_skip", |
| "torch.onnx._internal.fx.diagnostics", |
| "torch.onnx._internal.fx.fx_onnx_interpreter", |
| "torch.onnx._internal.fx.fx_symbolic_graph_extractor", |
| "torch.onnx._internal.fx.onnxfunction_dispatcher", |
| "torch.onnx._internal.fx.op_validation", |
| "torch.onnx._internal.fx.passes", |
| "torch.onnx._internal.fx.type_utils", |
| "torch.testing._internal.common_distributed", |
| "torch.testing._internal.common_fsdp", |
| "torch.testing._internal.dist_utils", |
| "torch.testing._internal.distributed.common_state_dict", |
| "torch.testing._internal.distributed._shard.sharded_tensor", |
| "torch.testing._internal.distributed._shard.test_common", |
| "torch.testing._internal.distributed._tensor.common_dtensor", |
| "torch.testing._internal.distributed.ddp_under_dist_autograd_test", |
| "torch.testing._internal.distributed.distributed_test", |
| "torch.testing._internal.distributed.distributed_utils", |
| "torch.testing._internal.distributed.fake_pg", |
| "torch.testing._internal.distributed.multi_threaded_pg", |
| "torch.testing._internal.distributed.nn.api.remote_module_test", |
| "torch.testing._internal.distributed.pipe_with_ddp_test", |
| "torch.testing._internal.distributed.rpc.dist_autograd_test", |
| "torch.testing._internal.distributed.rpc.dist_optimizer_test", |
| "torch.testing._internal.distributed.rpc.examples.parameter_server_test", |
| "torch.testing._internal.distributed.rpc.examples.reinforcement_learning_rpc_test", |
| "torch.testing._internal.distributed.rpc.faulty_agent_rpc_test", |
| "torch.testing._internal.distributed.rpc.faulty_rpc_agent_test_fixture", |
| "torch.testing._internal.distributed.rpc.jit.dist_autograd_test", |
| "torch.testing._internal.distributed.rpc.jit.rpc_test", |
| "torch.testing._internal.distributed.rpc.jit.rpc_test_faulty", |
| "torch.testing._internal.distributed.rpc.rpc_agent_test_fixture", |
| "torch.testing._internal.distributed.rpc.rpc_test", |
| "torch.testing._internal.distributed.rpc.tensorpipe_rpc_agent_test_fixture", |
| "torch.testing._internal.distributed.rpc_utils", |
| "torch.utils.tensorboard._caffe2_graph", |
| "torch._inductor.codegen.cuda.cuda_template", |
| "torch._inductor.codegen.cuda.gemm_template", |
| "torch._inductor.triton_helpers", |
| "torch.ao.pruning._experimental.data_sparsifier.lightning.callbacks.data_sparsity", |
| "torch.backends._coreml.preprocess", |
| "torch.contrib._tensorboard_vis", |
| "torch.distributed._composable", |
| "torch.distributed._functional_collectives", |
| "torch.distributed._functional_collectives_impl", |
| "torch.distributed._shard", |
| "torch.distributed._sharded_tensor", |
| "torch.distributed._sharding_spec", |
| "torch.distributed._spmd.api", |
| "torch.distributed._spmd.batch_dim_utils", |
| "torch.distributed._spmd.comm_tensor", |
| "torch.distributed._spmd.data_parallel", |
| "torch.distributed._spmd.distribute", |
| "torch.distributed._spmd.experimental_ops", |
| "torch.distributed._spmd.parallel_mode", |
| "torch.distributed._tensor", |
| "torch.distributed.algorithms._checkpoint.checkpoint_wrapper", |
| "torch.distributed.algorithms._optimizer_overlap", |
| "torch.distributed.rpc._testing.faulty_agent_backend_registry", |
| "torch.distributed.rpc._utils", |
| "torch.ao.pruning._experimental.data_sparsifier.benchmarks.dlrm_utils", |
| "torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_disk_savings", |
| "torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_forward_time", |
| "torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_model_metrics", |
| "torch.ao.pruning._experimental.data_sparsifier.lightning.tests.test_callbacks", |
| "torch.csrc.jit.tensorexpr.scripts.bisect", |
| "torch.csrc.lazy.test_mnist", |
| "torch.distributed._shard.checkpoint._fsspec_filesystem", |
| "torch.distributed._tensor.examples.visualize_sharding_example", |
| "torch.distributed.checkpoint._fsspec_filesystem", |
| "torch.distributed.examples.memory_tracker_example", |
| "torch.testing._internal.distributed.rpc.fb.thrift_rpc_agent_test_fixture", |
| "torch.utils._cxx_pytree", |
| } |
| |
| # No new entries should be added to this list. |
| # All public modules should be importable on all platforms. |
| public_allowlist = { |
| "torch.distributed.algorithms.ddp_comm_hooks", |
| "torch.distributed.algorithms.model_averaging.averagers", |
| "torch.distributed.algorithms.model_averaging.hierarchical_model_averager", |
| "torch.distributed.algorithms.model_averaging.utils", |
| "torch.distributed.checkpoint", |
| "torch.distributed.constants", |
| "torch.distributed.distributed_c10d", |
| "torch.distributed.elastic.agent.server", |
| "torch.distributed.elastic.rendezvous", |
| "torch.distributed.fsdp", |
| "torch.distributed.launch", |
| "torch.distributed.launcher", |
| "torch.distributed.nn", |
| "torch.distributed.nn.api.remote_module", |
| "torch.distributed.optim", |
| "torch.distributed.optim.optimizer", |
| "torch.distributed.pipeline.sync", |
| "torch.distributed.rendezvous", |
| "torch.distributed.rpc.api", |
| "torch.distributed.rpc.backend_registry", |
| "torch.distributed.rpc.constants", |
| "torch.distributed.rpc.internal", |
| "torch.distributed.rpc.options", |
| "torch.distributed.rpc.rref_proxy", |
| "torch.distributed.elastic.rendezvous.etcd_rendezvous", |
| "torch.distributed.elastic.rendezvous.etcd_rendezvous_backend", |
| "torch.distributed.elastic.rendezvous.etcd_store", |
| "torch.distributed.rpc.server_process_global_profiler", |
| "torch.distributed.run", |
| "torch.distributed.tensor.parallel", |
| "torch.distributed.utils", |
| "torch.utils.tensorboard", |
| } |
| |
| errors = [] |
| for mod, excep_type in failures: |
| if mod in public_allowlist: |
| # TODO: Ensure this is the right error type |
| continue |
| |
| if mod in private_allowlist: |
| continue |
| |
| errors.append(f"{mod} failed to import with error {excep_type}") |
| |
| self.assertEqual("", "\n".join(errors)) |
| |
| # AttributeError: module 'torch.distributed' has no attribute '_shard' |
| @unittest.skipIf(IS_WINDOWS or IS_JETSON, "Distributed Attribute Error") |
| def test_correct_module_names(self): |
| ''' |
| An API is considered public, if its `__module__` starts with `torch.` |
| and there is no name in `__module__` or the object itself that starts with “_”. |
| Each public package should either: |
| - (preferred) Define `__all__` and all callables and classes in there must have their |
| `__module__` start with the current submodule's path. Things not in `__all__` should |
| NOT have their `__module__` start with the current submodule. |
| - (for simple python-only modules) Not define `__all__` and all the elements in `dir(submod)` must have their |
| `__module__` that start with the current submodule. |
| ''' |
| failure_list = [] |
| with open(get_file_path_2(os.path.dirname(__file__), 'allowlist_for_publicAPI.json')) as json_file: |
| # no new entries should be added to this allow_dict. |
| # New APIs must follow the public API guidelines. |
| allow_dict = json.load(json_file) |
| # Because we want minimal modifications to the `allowlist_for_publicAPI.json`, |
| # we are adding the entries for the migrated modules here from the original |
| # locations. |
| for modname in allow_dict["being_migrated"]: |
| if modname in allow_dict: |
| allow_dict[allow_dict["being_migrated"][modname]] = allow_dict[modname] |
| |
| def test_module(modname): |
| try: |
| if "__main__" in modname: |
| return |
| mod = importlib.import_module(modname) |
| except Exception: |
| # It is ok to ignore here as we have a test above that ensures |
| # this should never happen |
| return |
| |
| if not self._is_mod_public(modname): |
| return |
| |
| # verifies that each public API has the correct module name and naming semantics |
| def check_one_element(elem, modname, mod, *, is_public, is_all): |
| obj = getattr(mod, elem) |
| # torch.dtype is not a class nor callable, so we need to check for it separately |
| if not (isinstance(obj, (Callable, torch.dtype)) or inspect.isclass(obj)): |
| return |
| elem_module = getattr(obj, '__module__', None) |
| # Only used for nice error message below |
| why_not_looks_public = "" |
| if elem_module is None: |
| why_not_looks_public = "because it does not have a `__module__` attribute" |
| # If a module is being migrated from foo.a to bar.a (that is entry {"foo": "bar"}), |
| # the module's starting package would be referred to as the new location even |
| # if there is a "from foo import a" inside the "bar.py". |
| modname = allow_dict["being_migrated"].get(modname, modname) |
| elem_modname_starts_with_mod = elem_module is not None and \ |
| elem_module.startswith(modname) and \ |
| '._' not in elem_module |
| if not why_not_looks_public and not elem_modname_starts_with_mod: |
| why_not_looks_public = f"because its `__module__` attribute (`{elem_module}`) is not within the " \ |
| f"torch library or does not start with the submodule where it is defined (`{modname}`)" |
| # elem's name must NOT begin with an `_` and it's module name |
| # SHOULD start with it's current module since it's a public API |
| looks_public = not elem.startswith('_') and elem_modname_starts_with_mod |
| if not why_not_looks_public and not looks_public: |
| why_not_looks_public = f"because it starts with `_` (`{elem}`)" |
| |
| if is_public != looks_public: |
| if modname in allow_dict and elem in allow_dict[modname]: |
| return |
| |
| if is_public: |
| why_is_public = f"it is inside the module's (`{modname}`) `__all__`" if is_all else \ |
| "it is an attribute that does not start with `_` on a module that " \ |
| "does not have `__all__` defined" |
| fix_is_public = f"remove it from the modules's (`{modname}`) `__all__`" if is_all else \ |
| f"either define a `__all__` for `{modname}` or add a `_` at the beginning of the name" |
| else: |
| assert is_all |
| why_is_public = f"it is not inside the module's (`{modname}`) `__all__`" |
| fix_is_public = f"add it from the modules's (`{modname}`) `__all__`" |
| |
| if looks_public: |
| why_looks_public = "it does look public because it follows the rules from the doc above " \ |
| "(does not start with `_` and has a proper `__module__`)." |
| fix_looks_public = "make its name start with `_`" |
| else: |
| why_looks_public = why_not_looks_public |
| if not elem_modname_starts_with_mod: |
| fix_looks_public = "make sure the `__module__` is properly set and points to a submodule "\ |
| f"of `{modname}`" |
| else: |
| fix_looks_public = "remove the `_` at the beginning of the name" |
| |
| failure_list.append(f"# {modname}.{elem}:") |
| is_public_str = "" if is_public else " NOT" |
| failure_list.append(f" - Is{is_public_str} public: {why_is_public}") |
| looks_public_str = "" if looks_public else " NOT" |
| failure_list.append(f" - Does{looks_public_str} look public: {why_looks_public}") |
| # Swap the str below to avoid having to create the NOT again |
| failure_list.append(" - You can do either of these two things to fix this problem:") |
| failure_list.append(f" - To make it{looks_public_str} public: {fix_is_public}") |
| failure_list.append(f" - To make it{is_public_str} look public: {fix_looks_public}") |
| |
| if hasattr(mod, '__all__'): |
| public_api = mod.__all__ |
| all_api = dir(mod) |
| for elem in all_api: |
| check_one_element(elem, modname, mod, is_public=elem in public_api, is_all=True) |
| else: |
| all_api = dir(mod) |
| for elem in all_api: |
| if not elem.startswith('_'): |
| check_one_element(elem, modname, mod, is_public=True, is_all=False) |
| |
| for _, modname, _ in _discover_path_importables(str(torch.__path__), "torch"): |
| test_module(modname) |
| |
| test_module('torch') |
| |
| msg = "All the APIs below do not meet our guidelines for public API from " \ |
| "https://github.com/pytorch/pytorch/wiki/Public-API-definition-and-documentation.\n" |
| msg += "Make sure that everything that is public is expected (in particular that the module " \ |
| "has a properly populated `__all__` attribute) and that everything that is supposed to be public " \ |
| "does look public (it does not start with `_` and has a `__module__` that is properly populated)." |
| msg += "\n\nFull list:\n" |
| msg += "\n".join(map(str, failure_list)) |
| |
| # empty lists are considered false in python |
| self.assertTrue(not failure_list, msg) |
| |
| if __name__ == '__main__': |
| run_tests() |