blob: 2f9aad141e30af9a130ed050f812e2bcbc4f9d7b [file] [log] [blame]
# Owner(s): ["module: autograd"]
from torch.testing._internal.common_utils import TestCase, run_tests, IS_JETSON, IS_WINDOWS
from torch._utils_internal import get_file_path_2
import pkgutil
import torch
import importlib
from typing import Callable
import inspect
import json
import os
import unittest
from importlib import import_module
from itertools import chain
from pathlib import Path
def _find_all_importables(pkg):
"""Find all importables in the project.
Return them in order.
"""
return sorted(
set(
chain.from_iterable(
_discover_path_importables(Path(p), pkg.__name__)
for p in pkg.__path__
),
),
)
def _discover_path_importables(pkg_pth, pkg_name):
"""Yield all importables under a given path and package.
This is like pkgutil.walk_packages, but does *not* skip over namespace
packages. Taken from https://stackoverflow.com/questions/41203765/init-py-required-for-pkgutil-walk-packages-in-python3
"""
for dir_path, _d, file_names in os.walk(pkg_pth):
pkg_dir_path = Path(dir_path)
if pkg_dir_path.parts[-1] == '__pycache__':
continue
if all(Path(_).suffix != '.py' for _ in file_names):
continue
rel_pt = pkg_dir_path.relative_to(pkg_pth)
pkg_pref = '.'.join((pkg_name, ) + rel_pt.parts)
yield from (
pkg_path
for _, pkg_path, _ in pkgutil.walk_packages(
(str(pkg_dir_path), ), prefix=f'{pkg_pref}.',
)
)
class TestPublicBindings(TestCase):
def test_no_new_bindings(self):
"""
This test aims to stop the introduction of new JIT bindings into torch._C
whose names do not start with _. Such bindings are made available as
torch.XXX, which may not be desirable.
If your change causes this test to fail, add your new binding to a relevant
submodule of torch._C, such as torch._C._jit (or other relevant submodule of
torch._C). If your binding really needs to be available as torch.XXX, add it
to torch._C and add it to the allowlist below.
If you have removed a binding, remove it from the allowlist as well.
"""
# This allowlist contains every binding in torch._C that is copied into torch at
# the time of writing. It was generated with
#
# {elem for elem in dir(torch._C) if not elem.startswith("_")}
#
torch_C_allowlist_superset = {
"AggregationType",
"AliasDb",
"AnyType",
"Argument",
"ArgumentSpec",
"AwaitType",
"autocast_decrement_nesting",
"autocast_increment_nesting",
"AVG",
"BenchmarkConfig",
"BenchmarkExecutionStats",
"Block",
"BoolType",
"BufferDict",
"StorageBase",
"CallStack",
"Capsule",
"ClassType",
"clear_autocast_cache",
"Code",
"CompilationUnit",
"CompleteArgumentSpec",
"ComplexType",
"ConcreteModuleType",
"ConcreteModuleTypeBuilder",
"cpp",
"CudaBFloat16TensorBase",
"CudaBoolTensorBase",
"CudaByteTensorBase",
"CudaCharTensorBase",
"CudaComplexDoubleTensorBase",
"CudaComplexFloatTensorBase",
"CudaDoubleTensorBase",
"CudaFloatTensorBase",
"CudaHalfTensorBase",
"CudaIntTensorBase",
"CudaLongTensorBase",
"CudaShortTensorBase",
"DeepCopyMemoTable",
"default_generator",
"DeserializationStorageContext",
"device",
"DeviceObjType",
"DictType",
"DisableTorchFunction",
"DisableTorchFunctionSubclass",
"DispatchKey",
"DispatchKeySet",
"dtype",
"EnumType",
"ErrorReport",
"ExcludeDispatchKeyGuard",
"ExecutionPlan",
"FatalError",
"FileCheck",
"finfo",
"FloatType",
"fork",
"FunctionSchema",
"Future",
"FutureType",
"Generator",
"GeneratorType",
"get_autocast_cpu_dtype",
"get_autocast_ipu_dtype",
"get_default_dtype",
"get_num_interop_threads",
"get_num_threads",
"Gradient",
"Graph",
"GraphExecutorState",
"has_cuda",
"has_cudnn",
"has_lapack",
"has_mkl",
"has_mkldnn",
"has_mps",
"has_openmp",
"has_spectral",
"iinfo",
"import_ir_module_from_buffer",
"import_ir_module",
"InferredType",
"init_num_threads",
"InterfaceType",
"IntType",
"SymFloatType",
"SymBoolType",
"SymIntType",
"IODescriptor",
"is_anomaly_enabled",
"is_anomaly_check_nan_enabled",
"is_autocast_cache_enabled",
"is_autocast_cpu_enabled",
"is_autocast_ipu_enabled",
"is_autocast_enabled",
"is_grad_enabled",
"is_inference_mode_enabled",
"JITException",
"layout",
"ListType",
"LiteScriptModule",
"LockingLogger",
"LoggerBase",
"memory_format",
"merge_type_from_type_comment",
"ModuleDict",
"Node",
"NoneType",
"NoopLogger",
"NumberType",
"OperatorInfo",
"OptionalType",
"ParameterDict",
"parse_ir",
"parse_schema",
"parse_type_comment",
"PyObjectType",
"PyTorchFileReader",
"PyTorchFileWriter",
"qscheme",
"read_vitals",
"RRefType",
"ScriptClass",
"ScriptClassFunction",
"ScriptDict",
"ScriptDictIterator",
"ScriptDictKeyIterator",
"ScriptList",
"ScriptListIterator",
"ScriptFunction",
"ScriptMethod",
"ScriptModule",
"ScriptModuleSerializer",
"ScriptObject",
"ScriptObjectProperty",
"SerializationStorageContext",
"set_anomaly_enabled",
"set_autocast_cache_enabled",
"set_autocast_cpu_dtype",
"set_autocast_ipu_dtype",
"set_autocast_cpu_enabled",
"set_autocast_ipu_enabled",
"set_autocast_enabled",
"set_flush_denormal",
"set_num_interop_threads",
"set_num_threads",
"set_vital",
"Size",
"StaticModule",
"Stream",
"StreamObjType",
"StringType",
"SUM",
"SymFloat",
"SymInt",
"TensorType",
"ThroughputBenchmark",
"TracingState",
"TupleType",
"Type",
"unify_type_list",
"UnionType",
"Use",
"Value",
'set_autocast_gpu_dtype',
'get_autocast_gpu_dtype',
"vitals_enabled",
"wait",
"Tag",
"set_autocast_xla_enabled",
"set_autocast_xla_dtype",
"get_autocast_xla_dtype",
"is_autocast_xla_enabled",
}
torch_C_bindings = {elem for elem in dir(torch._C) if not elem.startswith("_")}
# torch.TensorBase is explicitly removed in torch/__init__.py, so included here (#109940)
explicitly_removed_torch_C_bindings = {
"TensorBase",
}
torch_C_bindings = torch_C_bindings - explicitly_removed_torch_C_bindings
# Check that the torch._C bindings are all in the allowlist. Since
# bindings can change based on how PyTorch was compiled (e.g. with/without
# CUDA), the two may not be an exact match but the bindings should be
# a subset of the allowlist.
difference = torch_C_bindings.difference(torch_C_allowlist_superset)
msg = f"torch._C had bindings that are not present in the allowlist:\n{difference}"
self.assertTrue(torch_C_bindings.issubset(torch_C_allowlist_superset), msg)
@staticmethod
def _is_mod_public(modname):
split_strs = modname.split('.')
for elem in split_strs:
if elem.startswith("_"):
return False
return True
def test_modules_can_be_imported(self):
failures = []
for _, modname, _ in _discover_path_importables(str(torch.__path__), "torch"):
try:
# TODO: fix "torch/utils/model_dump/__main__.py"
# which calls sys.exit() when we try to import it
if "__main__" in modname:
continue
import_module(modname)
except Exception as e:
# Some current failures are not ImportError
failures.append((modname, type(e)))
# It is ok to add new entries here but please be careful that these modules
# do not get imported by public code.
private_allowlist = {
"torch._inductor.codegen.cuda.cuda_kernel",
"torch.onnx._internal.fx._pass",
"torch.onnx._internal.fx.analysis",
"torch.onnx._internal.fx.decomposition_skip",
"torch.onnx._internal.fx.diagnostics",
"torch.onnx._internal.fx.fx_onnx_interpreter",
"torch.onnx._internal.fx.fx_symbolic_graph_extractor",
"torch.onnx._internal.fx.onnxfunction_dispatcher",
"torch.onnx._internal.fx.op_validation",
"torch.onnx._internal.fx.passes",
"torch.onnx._internal.fx.type_utils",
"torch.testing._internal.common_distributed",
"torch.testing._internal.common_fsdp",
"torch.testing._internal.dist_utils",
"torch.testing._internal.distributed.common_state_dict",
"torch.testing._internal.distributed._shard.sharded_tensor",
"torch.testing._internal.distributed._shard.test_common",
"torch.testing._internal.distributed._tensor.common_dtensor",
"torch.testing._internal.distributed.ddp_under_dist_autograd_test",
"torch.testing._internal.distributed.distributed_test",
"torch.testing._internal.distributed.distributed_utils",
"torch.testing._internal.distributed.fake_pg",
"torch.testing._internal.distributed.multi_threaded_pg",
"torch.testing._internal.distributed.nn.api.remote_module_test",
"torch.testing._internal.distributed.pipe_with_ddp_test",
"torch.testing._internal.distributed.rpc.dist_autograd_test",
"torch.testing._internal.distributed.rpc.dist_optimizer_test",
"torch.testing._internal.distributed.rpc.examples.parameter_server_test",
"torch.testing._internal.distributed.rpc.examples.reinforcement_learning_rpc_test",
"torch.testing._internal.distributed.rpc.faulty_agent_rpc_test",
"torch.testing._internal.distributed.rpc.faulty_rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc.jit.dist_autograd_test",
"torch.testing._internal.distributed.rpc.jit.rpc_test",
"torch.testing._internal.distributed.rpc.jit.rpc_test_faulty",
"torch.testing._internal.distributed.rpc.rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc.rpc_test",
"torch.testing._internal.distributed.rpc.tensorpipe_rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc_utils",
"torch.utils.tensorboard._caffe2_graph",
"torch._inductor.codegen.cuda.cuda_template",
"torch._inductor.codegen.cuda.gemm_template",
"torch._inductor.triton_helpers",
"torch.ao.pruning._experimental.data_sparsifier.lightning.callbacks.data_sparsity",
"torch.backends._coreml.preprocess",
"torch.contrib._tensorboard_vis",
"torch.distributed._composable",
"torch.distributed._functional_collectives",
"torch.distributed._functional_collectives_impl",
"torch.distributed._shard",
"torch.distributed._sharded_tensor",
"torch.distributed._sharding_spec",
"torch.distributed._spmd.api",
"torch.distributed._spmd.batch_dim_utils",
"torch.distributed._spmd.comm_tensor",
"torch.distributed._spmd.data_parallel",
"torch.distributed._spmd.distribute",
"torch.distributed._spmd.experimental_ops",
"torch.distributed._spmd.parallel_mode",
"torch.distributed._tensor",
"torch.distributed.algorithms._checkpoint.checkpoint_wrapper",
"torch.distributed.algorithms._optimizer_overlap",
"torch.distributed.rpc._testing.faulty_agent_backend_registry",
"torch.distributed.rpc._utils",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.dlrm_utils",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_disk_savings",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_forward_time",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_model_metrics",
"torch.ao.pruning._experimental.data_sparsifier.lightning.tests.test_callbacks",
"torch.csrc.jit.tensorexpr.scripts.bisect",
"torch.csrc.lazy.test_mnist",
"torch.distributed._shard.checkpoint._fsspec_filesystem",
"torch.distributed._tensor.examples.visualize_sharding_example",
"torch.distributed.checkpoint._fsspec_filesystem",
"torch.distributed.examples.memory_tracker_example",
"torch.testing._internal.distributed.rpc.fb.thrift_rpc_agent_test_fixture",
"torch.utils._cxx_pytree",
}
# No new entries should be added to this list.
# All public modules should be importable on all platforms.
public_allowlist = {
"torch.distributed.algorithms.ddp_comm_hooks",
"torch.distributed.algorithms.model_averaging.averagers",
"torch.distributed.algorithms.model_averaging.hierarchical_model_averager",
"torch.distributed.algorithms.model_averaging.utils",
"torch.distributed.checkpoint",
"torch.distributed.constants",
"torch.distributed.distributed_c10d",
"torch.distributed.elastic.agent.server",
"torch.distributed.elastic.rendezvous",
"torch.distributed.fsdp",
"torch.distributed.launch",
"torch.distributed.launcher",
"torch.distributed.nn",
"torch.distributed.nn.api.remote_module",
"torch.distributed.optim",
"torch.distributed.optim.optimizer",
"torch.distributed.pipeline.sync",
"torch.distributed.rendezvous",
"torch.distributed.rpc.api",
"torch.distributed.rpc.backend_registry",
"torch.distributed.rpc.constants",
"torch.distributed.rpc.internal",
"torch.distributed.rpc.options",
"torch.distributed.rpc.rref_proxy",
"torch.distributed.elastic.rendezvous.etcd_rendezvous",
"torch.distributed.elastic.rendezvous.etcd_rendezvous_backend",
"torch.distributed.elastic.rendezvous.etcd_store",
"torch.distributed.rpc.server_process_global_profiler",
"torch.distributed.run",
"torch.distributed.tensor.parallel",
"torch.distributed.utils",
"torch.utils.tensorboard",
}
errors = []
for mod, excep_type in failures:
if mod in public_allowlist:
# TODO: Ensure this is the right error type
continue
if mod in private_allowlist:
continue
errors.append(f"{mod} failed to import with error {excep_type}")
self.assertEqual("", "\n".join(errors))
# AttributeError: module 'torch.distributed' has no attribute '_shard'
@unittest.skipIf(IS_WINDOWS or IS_JETSON, "Distributed Attribute Error")
def test_correct_module_names(self):
'''
An API is considered public, if its `__module__` starts with `torch.`
and there is no name in `__module__` or the object itself that starts with “_”.
Each public package should either:
- (preferred) Define `__all__` and all callables and classes in there must have their
`__module__` start with the current submodule's path. Things not in `__all__` should
NOT have their `__module__` start with the current submodule.
- (for simple python-only modules) Not define `__all__` and all the elements in `dir(submod)` must have their
`__module__` that start with the current submodule.
'''
failure_list = []
with open(get_file_path_2(os.path.dirname(__file__), 'allowlist_for_publicAPI.json')) as json_file:
# no new entries should be added to this allow_dict.
# New APIs must follow the public API guidelines.
allow_dict = json.load(json_file)
# Because we want minimal modifications to the `allowlist_for_publicAPI.json`,
# we are adding the entries for the migrated modules here from the original
# locations.
for modname in allow_dict["being_migrated"]:
if modname in allow_dict:
allow_dict[allow_dict["being_migrated"][modname]] = allow_dict[modname]
def test_module(modname):
try:
if "__main__" in modname:
return
mod = importlib.import_module(modname)
except Exception:
# It is ok to ignore here as we have a test above that ensures
# this should never happen
return
if not self._is_mod_public(modname):
return
# verifies that each public API has the correct module name and naming semantics
def check_one_element(elem, modname, mod, *, is_public, is_all):
obj = getattr(mod, elem)
# torch.dtype is not a class nor callable, so we need to check for it separately
if not (isinstance(obj, (Callable, torch.dtype)) or inspect.isclass(obj)):
return
elem_module = getattr(obj, '__module__', None)
# Only used for nice error message below
why_not_looks_public = ""
if elem_module is None:
why_not_looks_public = "because it does not have a `__module__` attribute"
# If a module is being migrated from foo.a to bar.a (that is entry {"foo": "bar"}),
# the module's starting package would be referred to as the new location even
# if there is a "from foo import a" inside the "bar.py".
modname = allow_dict["being_migrated"].get(modname, modname)
elem_modname_starts_with_mod = elem_module is not None and \
elem_module.startswith(modname) and \
'._' not in elem_module
if not why_not_looks_public and not elem_modname_starts_with_mod:
why_not_looks_public = f"because its `__module__` attribute (`{elem_module}`) is not within the " \
f"torch library or does not start with the submodule where it is defined (`{modname}`)"
# elem's name must NOT begin with an `_` and it's module name
# SHOULD start with it's current module since it's a public API
looks_public = not elem.startswith('_') and elem_modname_starts_with_mod
if not why_not_looks_public and not looks_public:
why_not_looks_public = f"because it starts with `_` (`{elem}`)"
if is_public != looks_public:
if modname in allow_dict and elem in allow_dict[modname]:
return
if is_public:
why_is_public = f"it is inside the module's (`{modname}`) `__all__`" if is_all else \
"it is an attribute that does not start with `_` on a module that " \
"does not have `__all__` defined"
fix_is_public = f"remove it from the modules's (`{modname}`) `__all__`" if is_all else \
f"either define a `__all__` for `{modname}` or add a `_` at the beginning of the name"
else:
assert is_all
why_is_public = f"it is not inside the module's (`{modname}`) `__all__`"
fix_is_public = f"add it from the modules's (`{modname}`) `__all__`"
if looks_public:
why_looks_public = "it does look public because it follows the rules from the doc above " \
"(does not start with `_` and has a proper `__module__`)."
fix_looks_public = "make its name start with `_`"
else:
why_looks_public = why_not_looks_public
if not elem_modname_starts_with_mod:
fix_looks_public = "make sure the `__module__` is properly set and points to a submodule "\
f"of `{modname}`"
else:
fix_looks_public = "remove the `_` at the beginning of the name"
failure_list.append(f"# {modname}.{elem}:")
is_public_str = "" if is_public else " NOT"
failure_list.append(f" - Is{is_public_str} public: {why_is_public}")
looks_public_str = "" if looks_public else " NOT"
failure_list.append(f" - Does{looks_public_str} look public: {why_looks_public}")
# Swap the str below to avoid having to create the NOT again
failure_list.append(" - You can do either of these two things to fix this problem:")
failure_list.append(f" - To make it{looks_public_str} public: {fix_is_public}")
failure_list.append(f" - To make it{is_public_str} look public: {fix_looks_public}")
if hasattr(mod, '__all__'):
public_api = mod.__all__
all_api = dir(mod)
for elem in all_api:
check_one_element(elem, modname, mod, is_public=elem in public_api, is_all=True)
else:
all_api = dir(mod)
for elem in all_api:
if not elem.startswith('_'):
check_one_element(elem, modname, mod, is_public=True, is_all=False)
for _, modname, _ in _discover_path_importables(str(torch.__path__), "torch"):
test_module(modname)
test_module('torch')
msg = "All the APIs below do not meet our guidelines for public API from " \
"https://github.com/pytorch/pytorch/wiki/Public-API-definition-and-documentation.\n"
msg += "Make sure that everything that is public is expected (in particular that the module " \
"has a properly populated `__all__` attribute) and that everything that is supposed to be public " \
"does look public (it does not start with `_` and has a `__module__` that is properly populated)."
msg += "\n\nFull list:\n"
msg += "\n".join(map(str, failure_list))
# empty lists are considered false in python
self.assertTrue(not failure_list, msg)
if __name__ == '__main__':
run_tests()