| # Owner(s): ["module: primTorch", "module: decompositions"] |
| |
| from collections import defaultdict |
| from torch import Tensor |
| import torch.autograd |
| from torch._decomp import decomposition_table |
| from torch.utils._python_dispatch import TorchDispatchMode |
| |
| from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten |
| from torch.testing import make_tensor |
| from torch.testing._internal.common_utils import ( |
| is_iterable_of_tensors, |
| TestCase, |
| skipIfCrossRef, |
| suppress_warnings, |
| TEST_WITH_ASAN, |
| run_tests, |
| skipIfTorchDynamo, |
| ) |
| from torch.testing._internal.common_modules import module_db, modules |
| from torch.testing._internal.common_device_type import ( |
| onlyNativeDeviceTypes, |
| ops, |
| instantiate_device_type_tests, |
| onlyCUDA, |
| ) |
| from torch.testing._internal.common_methods_invocations import op_db |
| from torch._dispatch.python import enable_python_dispatcher |
| from torch._ops import DispatchKey |
| |
| import itertools |
| import functools |
| from functools import partial |
| import unittest |
| |
| aten = torch.ops.aten |
| |
| |
| # TODO: this isn't going to work with non-aten namespaces |
| def overload_to_aten_name(overload): |
| return overload._schema.name.split("::")[1] |
| |
| |
| # All operators that can have decomp tests |
| decomposition_names = {overload_to_aten_name(k) for k in decomposition_table} |
| _decomp_test_ops = [ |
| op |
| for op in op_db |
| if op.aten_name in decomposition_names |
| or op.aten_backward_name in decomposition_names |
| ] |
| |
| |
| def diff_arg(arg, requires_grad=True): |
| def is_differentiable_arg(arg): |
| if requires_grad: |
| return arg.requires_grad |
| else: |
| return arg.is_floating_point() or arg.is_complex() |
| |
| if is_iterable_of_tensors(arg): |
| if all(is_differentiable_arg(a) for a in arg): |
| return True |
| if all(not is_differentiable_arg(a) for a in arg): |
| return False |
| raise RuntimeError("NYI: The test runner can't handle this") |
| return isinstance(arg, Tensor) and is_differentiable_arg(arg) |
| |
| |
| # Version of autograd.grad with some differences: |
| # - pytree inputs is allowed (but leaves of the pytree have to all |
| # be tensors) |
| # - if an input is not used as part of derivatives, we will return a |
| # zero-filled tensor for the result |
| def _autograd_grad( |
| outputs, inputs, grad_outputs=None, retain_graph=False, create_graph=True |
| ): |
| inputs, inputs_spec = tree_flatten(inputs) |
| diff_inputs = tuple(inp for inp in inputs if inp.requires_grad) |
| if grad_outputs is None: |
| diff_outputs = tuple(out for out in outputs if out.requires_grad) |
| else: |
| diff_grad_outputs = [ |
| (out, go) for out, go in zip(outputs, grad_outputs) if out.requires_grad |
| ] |
| if len(diff_grad_outputs) == 0: |
| diff_outputs, grad_outputs = (), () |
| else: |
| diff_outputs, grad_outputs = zip(*diff_grad_outputs) |
| grad_inputs = torch.autograd.grad( |
| diff_outputs, |
| diff_inputs, |
| grad_outputs, |
| retain_graph=retain_graph, |
| create_graph=create_graph, |
| allow_unused=True, |
| ) |
| result = [] |
| grad_inputs_iter = iter(grad_inputs) |
| for inp in inputs: |
| if inp.requires_grad: |
| grad_input = next(grad_inputs_iter) |
| if grad_input is None: |
| result.append(torch.zeros_like(inp)) |
| else: |
| result.append(grad_input) |
| else: |
| result.append(torch.zeros_like(inp)) |
| return tree_unflatten(result, inputs_spec) |
| |
| |
| def _as_tuple(val): |
| if isinstance(val, tuple): |
| return val |
| return (val,) |
| |
| |
| def ref_vjp_no_create(f, *primals): |
| result = f(*primals) |
| |
| def wrapped(cotangents): |
| return _autograd_grad( |
| _as_tuple(result), primals, _as_tuple(cotangents), create_graph=False |
| ) |
| |
| return result, wrapped |
| |
| |
| dtype_precisions = { |
| torch.float16: (0.001, 1e-5), |
| torch.bfloat16: (0.016, 1e-4), |
| torch.float32: (1.3e-6, 1e-5), |
| torch.float64: (1e-7, 1e-7), |
| torch.complex32: (0.001, 1e-5), |
| torch.complex64: (1.3e-6, 1e-5), |
| torch.complex128: (1e-7, 1e-7), |
| } |
| # Returns the "default" rtol and atol for comparing scalars or |
| # tensors of the given dtypes. |
| |
| |
| def _getDefaultRtolAndAtol(dtype0, dtype1): |
| rtol = max( |
| dtype_precisions.get(dtype0, (0, 0))[0], dtype_precisions.get(dtype1, (0, 0))[0] |
| ) |
| atol = max( |
| dtype_precisions.get(dtype0, (0, 0))[1], dtype_precisions.get(dtype1, (0, 0))[1] |
| ) |
| return rtol, atol |
| |
| |
| def op_assert_ref(test_case, op, test_dtype, i, orig, decomp, ref, args, kwargs): |
| assert orig.dtype == decomp.dtype, f"{i} Operation: {op}" |
| if orig.numel() == 0 or decomp.numel() == 0: |
| assert orig.numel() == decomp.numel() |
| return |
| assert orig.shape == decomp.shape, f"{i} Operation: {op}" |
| tol_table = { |
| (torch.bfloat16, torch.ops.aten.native_layer_norm.default): 1e-5, |
| (torch.float16, torch.ops.aten.native_layer_norm.default): 1e-5, |
| (torch.float16, torch.ops.aten.native_layer_norm_backward.default): 1e-3, |
| (torch.bfloat16, torch.ops.aten.native_layer_norm_backward.default): 2e-2, |
| (torch.bfloat16, torch.ops.aten.native_batch_norm.default): 1e-5, |
| (torch.float16, torch.ops.aten.native_batch_norm.default): 1e-5, |
| (torch.bfloat16, torch.ops.aten._native_batch_norm_legit.default): 1e-5, |
| (torch.bfloat16, torch.ops.aten._native_batch_norm_legit.no_stats): 1e-5, |
| (torch.float16, torch.ops.aten._native_batch_norm_legit.default): 1e-5, |
| (torch.float16, torch.ops.aten._native_batch_norm_legit.no_stats): 1e-5, |
| (torch.bfloat16, torch.ops.aten.linalg_vector_norm.default): 1e-4, |
| (torch.float16, torch.ops.aten.linalg_vector_norm.default): 1e-4, |
| (torch.bfloat16, torch.ops.aten.var_mean.correction): 5e-7, |
| (torch.float16, torch.ops.aten.var_mean.correction): 5e-7, |
| (torch.bfloat16, torch.ops.aten.var_mean.dim): 5e-7, |
| (torch.float16, torch.ops.aten.var_mean.dim): 5e-7, |
| (torch.float16, torch.ops.aten.nll_loss_forward.default): 1e-2, |
| (torch.bfloat16, torch.ops.aten.nll_loss_forward.default): 1e-1, |
| # see https://github.com/pytorch/pytorch/pull/96264 |
| (torch.float16, torch.ops.aten.mv.default): 1e-5, |
| } |
| if ref.is_floating_point(): |
| orig_diff = (orig - ref).abs().max() |
| decomp_diff = (decomp - ref).abs().max() |
| atol = tol_table.get((test_dtype, op), 1e-7) |
| if decomp_diff > orig_diff + atol: |
| raise RuntimeError( |
| f"Difference from float64 is larger with decomposition {op.__name__}" |
| f" than original on output {i}. Original max diff: {orig_diff}, Decomp max diff: {decomp_diff}\n" |
| f"atol = {atol}\n" |
| f"args = {args}\n" |
| f"kwargs = {kwargs}" |
| ) |
| else: |
| test_case.assertEqual( |
| orig, decomp, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}" |
| ) |
| |
| |
| def op_assert_equal(test_case, op, test_dtype, orig, decomp, args, kwargs): |
| test_case.assertEqual( |
| orig.dtype, decomp.dtype, f"Operation: {op}, orig.dtype: {orig.dtype}, decomp.dtype: {decomp.dtype}, {args}, {kwargs}") |
| # Before adding an entry to this table, make sure your decomposition is right :) |
| tol_table = { |
| # Due to strange epsilon behaviors, see https://github.com/pytorch/pytorch/issues/73161 |
| (torch.float32, torch.ops.aten.native_layer_norm.default): (1e-3, 1e-3), |
| (torch.float32, torch.ops.aten.native_layer_norm_backward.default): ( |
| 1e-3, |
| 1e-3, |
| ), |
| (torch.float64, torch.ops.aten.native_layer_norm.default): (1e-6, 1e-6), |
| # This exceeds default tolerances only on CPU, on CUDA it's fine |
| (torch.float32, torch.ops.aten.grid_sampler_2d.default) : (7e-6, 3e-5), |
| # Exceeds tolerances on CUDA, likely due to fma |
| (torch.float32, torch.ops.aten.mv.default) : (1e-5, 3e-5), |
| (torch.complex64, torch.ops.aten.mv.default): (5e-5, 5e-5), |
| (torch.float64, torch.ops.aten.upsample_bicubic2d.vec) : (1e-5, 5e-4), |
| (torch.float64, torch.ops.aten.upsample_bicubic2d.default) : (1e-5, 5e-4), |
| # The decomposition is TOO correct. It computes everything in int64, so sometimes |
| # there's an off-by-one error. See |
| # https://github.com/pytorch/pytorch/issues/81996 |
| # https://github.com/pytorch/pytorch/issues/82230 |
| (torch.int8, torch.ops.aten.linspace.default) : (0, 1), |
| (torch.uint8, torch.ops.aten.linspace.default) : (0, 1), |
| (torch.int16, torch.ops.aten.linspace.default) : (0, 1), |
| (torch.int32, torch.ops.aten.linspace.default) : (0, 1), |
| (torch.int64, torch.ops.aten.linspace.default) : (0, 1), |
| } |
| if (decomp.dtype, op) in tol_table: |
| rtol, atol = tol_table[(decomp.dtype, op)] |
| else: |
| rtol, atol = _getDefaultRtolAndAtol(orig.dtype, decomp.dtype) |
| test_case.assertEqual(orig, decomp, rtol=rtol, atol=atol, msg=f"{op.__name__}\nargs = {args}\nkwargs = {kwargs}") |
| |
| |
| # Given f, returns an f' such that: |
| # - f' takes only positional arguments |
| # - All arguments to f' are floating-point Tensors |
| # - All outputs of f' are floating-point Tensors |
| def normalize_op_input_output2( |
| f, args, kwargs, output_process_fn_grad=None, requires_grad=True |
| ): |
| flat_args, args_spec = tree_flatten(args) |
| diff_argnums = tuple( |
| i |
| for i, arg in enumerate(flat_args) |
| if diff_arg(arg, requires_grad=requires_grad) |
| ) |
| assert len(diff_argnums) > 0 |
| primals = tuple(flat_args[i] for i in diff_argnums) |
| |
| @functools.wraps(f) |
| def wrapped(*primals): |
| _args = list(flat_args) |
| for num, arg in zip(diff_argnums, primals): |
| _args[num] = arg |
| _args = tree_unflatten(_args, args_spec) |
| result = f(*_args, **kwargs) |
| if output_process_fn_grad is not None: |
| result = output_process_fn_grad(result) |
| if isinstance(result, tuple): |
| # TODO We should check that the integer outputs also agree |
| result = tuple( |
| r |
| for r in result |
| if isinstance(r, Tensor) and (r.is_floating_point() or r.is_complex()) |
| ) |
| assert len(result) > 0 |
| return result |
| |
| return wrapped, primals |
| |
| |
| # NB: This also upcasts dtype arguments |
| # TODO: handle complex correctly |
| def upcast_tensor(x, dtype=torch.float32): |
| if isinstance(x, Tensor) and x.dtype.is_floating_point: |
| return x.to(dtype=dtype) |
| elif (isinstance(x, torch.dtype) |
| and x in [torch.float16, torch.bfloat16, torch.float]): |
| return dtype |
| else: |
| return x |
| |
| |
| def normalize_op_input_output(f, sample, requires_grad=True): |
| args = tuple([sample.input] + list(sample.args)) |
| return normalize_op_input_output2( |
| f, |
| args, |
| sample.kwargs, |
| sample.output_process_fn_grad, |
| requires_grad=requires_grad, |
| ) |
| |
| |
| CROSS_REF_EXCLUDE_SET = { |
| # CUBLAS_STATUS_NOT_SUPPORTED when calling |
| # `cublasGemmStridedBatchedExFix(handle, opa, opb, (int)m, (int)n, (int)k, |
| # (void*)&falpha, a, CUDA_R_16BF, (int)lda, stridea, b, CUDA_R_16BF, |
| # (int)ldb, strideb, (void*)&fbeta, c, CUDA_R_16BF, (int)ldc, stridec, |
| # (int)num_batches, CUDA_R_32F, CUBLAS_GEMM_DEFAULT_TENSOR_OP)` |
| ("cuda", torch.bfloat16, "nn.functional.bilinear"), |
| # randomness |
| (None, None, "special.ndtr"), # aten.special_ndtr was not decomposed |
| (None, None, "new_empty"), |
| (None, None, "empty_like"), |
| (None, None, "empty"), |
| |
| # AssertionError: False is not true : aten.item was not decomposed, saw calls for: aten._local_scalar_dense.default. |
| (None, None, "item"), |
| |
| # It's the only in-place op without an out-of-place equivalent in the Python API |
| # Its OpInfo wrongly registers it as `torch.zero_(x.clone())`. |
| (None, None, "zero_"), |
| |
| # No idea what's going on here |
| # In the recursive test logsumexp.default fails with args = (torch.tensor(-math.inf), []) |
| # in the test, but it seems to pass when tested locally and in the logsumexp test |
| (None, torch.float32, "masked.logsumexp"), |
| (None, torch.float64, "masked.logsumexp"), |
| |
| # exp_vml_cpu not implemented for Half |
| (torch.cpu, torch.float16, "signal.windows.exponential"), |
| (torch.cpu, torch.float16, "signal.windows.gaussian"), |
| # sin_vml_cpu not implemented for Half |
| (torch.cpu, torch.float16, "signal.windows.cosine"), |
| # CompositeAutogradImplicit |
| # See https://github.com/pytorch/pytorch/issues/81669 |
| (None, None, "nn.functional.relu6"), |
| (None, None, "meshgrid"), |
| # diag was not decomposed (it just registers a decomp for diag_out, torch.diag is CompImplicit) |
| (None, None, "diag"), |
| # _softmax_backward_data's CPU kernel for bfloat16 always return the grad_input as float32 |
| ("cpu", torch.bfloat16, "_softmax_backward_data"), |
| (None, None, "norm"), |
| # native_batch_norm is only implicit when python dispatcher is on (and noncomposite otherwise) |
| (None, None, "native_batch_norm"), |
| |
| (None, None, "_upsample_bilinear2d_aa"), |
| } |
| |
| CROSS_REF_BACKWARD_EXCLUDE_SET = { |
| # Decomposed backward formula is not as precise |
| ("cpu", torch.bfloat16, "nn.functional.hardswish"), |
| ("cuda", torch.float16, "nn.functional.cross_entropy"), |
| } |
| |
| all_decomposed = set() |
| all_called = defaultdict(int) |
| |
| # Helpful snippet for testing coverage |
| """ |
| import atexit |
| def check_coverage(): |
| print("missing coverage:") |
| print("\n".join(map(str, decomposition_table.keys() - all_decomposed))) |
| atexit.register(check_coverage) |
| """ |
| |
| # Helpful snippet for Horace to create his google sheet :) |
| """ |
| import atexit |
| def dump_ops(): |
| with open('run_ops.txt', 'w') as f, open('count_ops.txt', 'w') as g: |
| for op, count in sorted(all_called.items(), key=lambda x: x[0].__name__): |
| f.write(f'{op.__name__}\n') |
| g.write(f'{count}\n') |
| with open('run_decompositions.txt', 'w') as f: |
| for op in sorted([i.__name__ for i in all_decomposed]): |
| f.write(f'{op}\n') |
| |
| atexit.register(dump_ops) |
| """ |
| |
| |
| def any_unsupported(args, kwargs): |
| def test_unsupported(t): |
| if type(t) is torch.Tensor or type(t) is torch.nn.Parameter: |
| # These are all things that we haven't coded decompositions |
| # to handle correctly. Maybe they should. |
| return any([ |
| t.is_sparse_csr, t.is_sparse, t.is_mkldnn, t.is_quantized, |
| t.is_nested, torch._is_functional_tensor(t), |
| ]) |
| elif torch.overrides.is_tensor_like(t): |
| # Decompositions will generally change the behavior of Tensor-like |
| # subclasses, so bypass tests in this case too |
| return True |
| else: |
| return False |
| |
| flat_args, _ = tree_flatten(args) |
| flat_kwargs, _ = tree_flatten(kwargs) |
| return any(test_unsupported(x) for x in itertools.chain(flat_args, flat_kwargs)) |
| |
| |
| class TestDecomp(TestCase): |
| longMessage = True |
| |
| # NB: This actually overlaps with test_comprehensive, but it only |
| # runs on things that are definitely decomposed so it's a lot faster |
| # to run |
| @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN") |
| @onlyNativeDeviceTypes |
| @skipIfCrossRef |
| @suppress_warnings |
| @ops(_decomp_test_ops) |
| def test_quick(self, device, dtype, op): |
| self.do_cross_ref(device, dtype, op, run_all=False) |
| |
| @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN") |
| @onlyNativeDeviceTypes |
| @skipIfCrossRef |
| @suppress_warnings |
| @ops(op_db) |
| def test_comprehensive(self, device, dtype, op): |
| self.do_cross_ref(device, dtype, op, run_all=True) |
| |
| def test_uniform(self, device): |
| size = (2, 3, 4, 5) |
| dtype = torch.float32 |
| x = make_tensor(size, dtype=dtype, device=device) |
| low = 0.3 |
| high = 0.9 |
| |
| torch.manual_seed(123) |
| ref = torch.ops.aten.uniform(x, low, high) |
| torch.manual_seed(123) |
| res = torch._decomp.decompositions.uniform(x, low=low, high=high) |
| self.assertEqual(ref, res) |
| |
| |
| @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN") |
| @suppress_warnings |
| # only tests RNNs since we have py dispsatcher decomps for them |
| @modules(filter(lambda m: m.module_cls in (torch.nn.RNN, torch.nn.LSTM, torch.nn.GRU), module_db)) |
| def test_rnn_decomp_module(self, device, dtype, module_info, training): |
| module_cls = module_info.module_cls |
| module_inputs = module_info.module_inputs_func(module_info, device=device, dtype=dtype, |
| requires_grad=True, training=training) |
| for module_input in module_inputs: |
| if module_input.forward_input is None: |
| continue |
| args, kwargs = module_input.constructor_input.args, module_input.constructor_input.kwargs |
| m = module_cls(*args, **kwargs) |
| m.to(device).to(dtype) |
| |
| args, kwargs = module_input.forward_input.args, module_input.forward_input.kwargs |
| with self.DecompCrossRefMode(self, self.precision, self.rel_tol, dtype, run_all=True), enable_python_dispatcher(): |
| decomp_out = m(*args, **kwargs) |
| |
| non_decomp_out = m(*args, **kwargs) |
| # without this check, incorrect decomps at the python dispatcher level can still pass because |
| # they're checking aten decomps at the torch_dispatch level |
| self.assertEqual(decomp_out, non_decomp_out) |
| |
| class DecompCrossRefMode(TorchDispatchMode): |
| def __init__(self, test_case, saved_precision, saved_rel_tol, dtype, run_all): |
| self.test_case = test_case |
| self.saved_precision = saved_precision |
| self.saved_rel_tol = saved_rel_tol |
| self.test_dtype = dtype |
| self.run_all = run_all |
| |
| # We check the correctness of each decomposition right after running it. |
| # So, when we encounter a decomposition, we run the function normally, and |
| # then run the decomposition, and ensure they're identical. |
| self.called = set() |
| self.decomposed = set() |
| |
| def __torch_dispatch__(self, func, types, args=(), kwargs=None): |
| self.test_case.precision = self.saved_precision |
| self.test_case.rel_tol = self.saved_rel_tol |
| |
| self.called.add(func) |
| all_called[func] += 1 |
| |
| # Stuff we shouldn't bother testing |
| # (TODO: remove detach from the decomp table?) |
| # N.b. Testing in-place ops would need dedicated logic |
| in_place = func.name()[-1] == '_' |
| if func not in decomposition_table or func in [ |
| torch.ops.aten.detach.default, |
| # non-deterministic ops |
| torch.ops.aten.empty.memory_format, |
| torch.ops.aten.empty_like.default, |
| torch.ops.aten.new_empty.default, |
| torch.ops.aten.empty_strided.default, |
| torch.ops.aten.new_empty_strided.default, |
| torch.ops.aten.randn.default, |
| torch.ops.aten.native_dropout.default, |
| ] or any_unsupported(args, kwargs) or in_place: |
| return func(*args, **kwargs) |
| |
| self.decomposed.add(func) |
| all_decomposed.add(func) |
| |
| # We take 2 main strategies for verifying correctness/numerical stability of decompositions |
| # The first one is simply tolerance checking between decomp_out and pytorch_out |
| # However, for fp16/bf16 and reductions, this becomes very |
| # finicky, as there are not many guarantees we can make. |
| # So, for fp16/bf16, we instead compare the difference of |
| # {decomp_out, pytorch_out_64} and {pytorch_out, |
| # pytorch_out_64}. In other words, we compare how far the |
| # decomposition and pytorch are from the "ground truth" (i.e. |
| # fp64). If the decomposition results in more error, we error |
| |
| # We also decompose the decomposition recursively for |
| # further coverage, as some paths not be exercised directly by |
| # OpInfos (sadly) but just by other ops |
| |
| decomposition = decomposition_table[func] |
| |
| do_relative_check = self.test_dtype in [torch.float16, torch.bfloat16] |
| if self.run_all: |
| # Execute recursively via DFS, to find the root of a possible error first |
| with self: |
| decomp_out, _ = tree_flatten(decomposition(*args, **kwargs)) |
| else: |
| decomp_out, _ = tree_flatten(decomposition(*args, **kwargs)) |
| |
| # At this stage we should not be decomposing an in-place op |
| # We'd like to have decompositions that decompose out-of-place ops into out-of-place ops |
| # because decompositions are run after functionalisation and we would not like them to |
| # de-functionalise the graph, as that would break AoTAutograd |
| # We run the real function *after* the decomposition to make sure that the |
| # decomposition does not modify any of the inputs in-place. If it does |
| # real_out should be differen than decom_out so we should catch this |
| real_out_unflat = func(*args, **kwargs) |
| real_out, _ = tree_flatten(real_out_unflat) |
| |
| assert len(real_out) == len(decomp_out) |
| |
| if do_relative_check: |
| upcast = partial(upcast_tensor, dtype=torch.float64) |
| real_out_double, _ = tree_flatten( |
| func(*tree_map(upcast, args), **tree_map(upcast, kwargs)) |
| ) |
| for i, (orig, decomp, ref) in enumerate(zip(real_out, decomp_out, real_out_double)): |
| if not isinstance(orig, torch.Tensor): |
| assert type(orig) == type(decomp) |
| assert orig == decomp |
| continue |
| op_assert_ref(self.test_case, func, self.test_dtype, i, orig, decomp, ref, args, kwargs) |
| else: |
| for orig, decomp in zip(real_out, decomp_out): |
| if not isinstance(orig, torch.Tensor): |
| assert type(orig) == type(decomp) |
| assert orig == decomp |
| continue |
| op_assert_equal(self.test_case, func, self.test_dtype, orig, decomp, args, kwargs) |
| |
| return real_out_unflat |
| |
| |
| @skipIfTorchDynamo("Test does not work with TorchDynamo") |
| def do_cross_ref(self, device, dtype, op, *, run_all): |
| test_keys = [ |
| (torch.device(device).type, dtype, op.name), |
| (None, dtype, op.name), |
| (None, None, op.name), |
| ] |
| if any(key in CROSS_REF_EXCLUDE_SET for key in test_keys): |
| self.skipTest(f"{op.name} in {dtype} not supported") |
| |
| skip_decomp_vjp = any(key in CROSS_REF_BACKWARD_EXCLUDE_SET for key in test_keys) |
| |
| requires_grad = ( |
| op.supports_autograd |
| and dtype in op.supported_backward_dtypes(torch.device(device).type) |
| # TODO: OpInfo really ought to error out for this case, but it's |
| # not exercised in test_ops_gradients atm. The problem is not |
| # complex32 per-se (which is supported by data movement only ops) |
| # but that when we do backwards we expect other ops like add to work |
| and not dtype == torch.complex32 |
| ) |
| samples = op.sample_inputs(device, dtype, requires_grad=requires_grad) |
| |
| def check_decomposed(aten_name, mode): |
| self.assertTrue( |
| any(overload_to_aten_name(c) == aten_name for c in mode.decomposed), |
| msg=(f"aten.{aten_name} was not decomposed, saw calls for: " |
| f"{', '.join(map(str, list(mode.called)))}. If your op is " |
| f"CompositeImplicitAutograd you should skip this test " |
| "by updating CROSS_REF_EXCLUDE_SET.") |
| ) |
| |
| aten_name = op.decomp_aten_name or op.aten_name |
| |
| func = op.get_op() |
| for sample_input in samples: |
| if requires_grad: |
| fn, primals = normalize_op_input_output(func, sample_input) |
| primals = tree_map( |
| lambda x: x if isinstance(x, torch.Tensor) else x, primals |
| ) |
| |
| # Once https://github.com/pytorch/pytorch/pull/75965/ I can |
| # store the called list on the mode object instance and no |
| # explicit clearing is necessary as I will create a fresh mode |
| # for each region |
| with self.DecompCrossRefMode(self, self.precision, self.rel_tol, dtype, run_all)\ |
| as mode, enable_python_dispatcher(): |
| decomp_out, decomp_vjp_fn = ref_vjp_no_create(fn, *primals) |
| if aten_name in decomposition_names: |
| check_decomposed(aten_name, mode) |
| |
| if not skip_decomp_vjp and (op.aten_backward_name in decomposition_names or run_all): |
| cotangents = tree_map(lambda x: torch.randn_like(x), decomp_out) |
| |
| with self.DecompCrossRefMode(self, self.precision, self.rel_tol, dtype, run_all)\ |
| as mode, enable_python_dispatcher(): |
| decomp_vjp_fn(cotangents) |
| if not run_all: |
| check_decomposed(op.aten_backward_name, mode) |
| |
| elif aten_name in decomposition_names or run_all: |
| args = [sample_input.input] + list(sample_input.args) |
| kwargs = sample_input.kwargs |
| with self.DecompCrossRefMode(self, self.precision, self.rel_tol, dtype, run_all)\ |
| as mode, enable_python_dispatcher(): |
| func(*args, **kwargs) |
| if not run_all: |
| check_decomposed(aten_name, mode) |
| else: |
| assert op.supports_autograd |
| self.skipTest( |
| "only backwards is decomposed, but dtype doesn't support AD" |
| ) |
| |
| instantiate_device_type_tests(TestDecomp, globals()) |
| |
| |
| class DecompOneOffTests(TestCase): |
| @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN") |
| @onlyNativeDeviceTypes |
| @skipIfCrossRef |
| def test_contiguous_softmax(self, device): |
| size = (2, 4, 3, 3) |
| stride = (9, 18, 3, 1) |
| dtype = torch.float32 |
| |
| x = torch.randn(size, dtype=dtype, device=device) |
| x = torch.as_strided(x, size, stride) |
| |
| ref = torch.ops.aten._softmax(x, -1, False) |
| res = torch._decomp.decompositions._softmax(x, -1, False) |
| self.assertEqual(ref.stride(), res.stride()) |
| |
| @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN") |
| @onlyNativeDeviceTypes |
| @skipIfCrossRef |
| def test_contiguous_log_softmax(self, device): |
| size = (2, 4, 3, 3) |
| stride = (9, 18, 3, 1) |
| |
| dtype = torch.float32 |
| x = torch.randn(size, dtype=dtype, device=device) |
| x = torch.as_strided(x, size, stride) |
| |
| ref = torch.ops.aten._log_softmax(x, -1, False) |
| res = torch._decomp.decompositions._log_softmax(x, -1, False) |
| self.assertEqual(ref.stride(), res.stride()) |
| |
| @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN") |
| @skipIfCrossRef |
| @onlyCUDA |
| def test_amp_batch_norm_backward(self): |
| device = "cuda" |
| grad_out = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device) |
| x = torch.randn((1, 2, 16, 16), dtype=torch.float16, device=device) |
| weight = torch.randn((2,), dtype=torch.float32, device=device) |
| rmean = torch.randn((2,), dtype=torch.float32, device=device) |
| rvar = torch.randn((2,), dtype=torch.float32, device=device) |
| mean = torch.randn((0,), dtype=torch.float32, device=device) |
| |
| ref = torch.ops.aten.native_batch_norm_backward( |
| grad_out, |
| x, |
| weight, |
| rmean, |
| rvar, |
| mean, |
| mean, |
| False, |
| 1e-05, |
| [True, True, True]) |
| res = torch._decomp.decompositions.native_batch_norm_backward( |
| grad_out, |
| x, |
| weight, |
| rmean, |
| rvar, |
| mean, |
| mean, |
| False, |
| 1e-05, |
| [True, True, True]) |
| for (a, b) in zip(ref, res): |
| self.assertEqual(a.stride(), b.stride()) |
| self.assertEqual(a.dtype, b.dtype) |
| |
| |
| @unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN") |
| @onlyNativeDeviceTypes |
| @skipIfCrossRef |
| def test_elu_backward(self, device): |
| size = (2, 4, 3, 3) |
| dtype = torch.float32 |
| grad_out = torch.randn(size, dtype=dtype, device=device) |
| out = torch.randn(size, dtype=dtype, device=device) |
| |
| ref = torch.ops.aten.elu_backward(grad_out, 1.0, 1, 1, True, out) |
| res = torch._decomp.decompositions.elu_backward(grad_out, 1.0, 1, 1, True, out) |
| self.assertEqual(ref, res) |
| |
| |
| instantiate_device_type_tests(DecompOneOffTests, globals()) |
| |
| |
| |
| class HasDecompTest(TestCase): |
| def setUp(self): |
| super().setUp() |
| self.maxDiff = None |
| |
| def test_has_decomposition(self): |
| |
| def can_appear_in_trace(op) -> bool: |
| has_tensor_arg = any( |
| "Tensor" in str(a.type) |
| for a in itertools.chain(op._schema.arguments, op._schema.returns)) |
| if not has_tensor_arg: |
| return False |
| |
| try: |
| # CompositeImplicitAutograd ops are transparent to the tracer, so don't need decompositions |
| return not op.has_kernel_for_dispatch_key(DispatchKey.CompositeImplicitAutograd) |
| except RuntimeError as e: |
| # has_key fails for some jit-registered ops, which shouldn't be |
| # relevant here anyway |
| if 'does not exist' in str(e): |
| return False |
| raise |
| |
| def all_aten_overloads(): |
| for name in torch._C._dispatch_get_all_op_names(): |
| if not name.startswith("aten::"): |
| continue |
| |
| name = name[6:] |
| if "." in name: |
| packet_name, overload_name = name.split(".") |
| else: |
| packet_name, overload_name = name, "default" |
| |
| packet = getattr(aten, packet_name) |
| assert isinstance(packet, torch._ops.OpOverloadPacket) |
| op = getattr(packet, overload_name) |
| yield op |
| |
| # This is for operators that are only registered in some CI |
| # configurations, so would cause the test to fail |
| allow_list = {aten.get_gradients.default} |
| |
| overloads_wanting_decomp = {op for op in all_aten_overloads() if can_appear_in_trace(op)} |
| ops_missing_decomp = overloads_wanting_decomp - decomposition_table.keys() |
| ops_missing_decomp -= allow_list |
| self.assertExpected("".join(sorted(op.name() + "\n" for op in ops_missing_decomp))) |
| |
| if __name__ == "__main__": |
| run_tests() |