blob: 6a4c9dadc29707a4fbc3a261fba647335de1f70c [file] [log] [blame]
# Owner(s): ["module: primTorch"]
import itertools
import torch
import os
from enum import Enum
from torch.overrides import resolve_name
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
from torch._subclasses.meta_utils import MetaConverter, assert_metadata_eq
import torch.utils._python_dispatch
from torch._dispatch.python import enable_python_dispatcher
from torch.testing._internal.common_utils import (
TestCase,
skipIfCrossRef,
skipIfTorchDynamo,
suppress_warnings,
TEST_WITH_ASAN,
run_tests,
dtype_abbrs
)
from torch.testing._internal.common_device_type import (
ops,
instantiate_device_type_tests,
onlyCUDA,
onlyCPU,
OpDTypes,
)
from torch.testing._internal.common_methods_invocations import op_db
from torchgen.yaml_utils import YamlLoader
from torchgen.model import OperatorName
import sys
import yaml
import atexit
import re
from collections import defaultdict
import unittest
import warnings
import weakref
from functools import wraps
bf16 = torch.bfloat16
f64 = torch.float64
f32 = torch.float32
f16 = torch.float16
c32 = torch.complex32
c64 = torch.complex64
c128 = torch.complex128
i8 = torch.int8
i16 = torch.int16
i32 = torch.int32
i64 = torch.int64
b8 = torch.bool
u8 = torch.uint8
class TestMetaConverter(TestCase):
def assertSameVersionCounter(self, m1, m2):
# Cannot easily test m1 and m2 have same storage due to
# lack of Storage bindings. Use version counter.
vc = m1._version
self.assertEqual(m2._version, vc)
# Doing it this way ensures that we get VC bump even with leaves
with torch.no_grad():
m1._base.add_(3)
self.assertNotEqual(m1._version, vc)
self.assertEqual(m2._version, m1._version)
def assertMetadataMatches(self, m1, m2):
assert_metadata_eq(self.assertEqual, m1, m2)
def test_view_of_non_leaf(self):
x = torch.randn(4, requires_grad=True)
y = x.neg()
z1 = y[:]
z2 = y[:]
to_meta = MetaConverter()
m1 = to_meta(z1)
m2 = to_meta(z2)
# check the test is actually testing what it claims
self.assertTrue(m1._is_view())
self.assertFalse(m1._base.is_leaf)
self.assertIsNot(m1, m2)
self.assertMetadataMatches(m1, z1)
self.assertMetadataMatches(m2, z2)
self.assertSameVersionCounter(m1, m2)
def test_view_of_leaf(self):
x = torch.randn(4, requires_grad=True)
z1 = x[:]
z2 = x[:]
to_meta = MetaConverter()
m1 = to_meta(z1)
m2 = to_meta(z2)
# check the test is actually testing what it claims
self.assertTrue(m1._is_view())
self.assertTrue(m1._base.is_leaf)
self.assertIsNot(m1, m2)
self.assertMetadataMatches(m1, z1)
self.assertMetadataMatches(m2, z2)
self.assertSameVersionCounter(m1, m2)
def test_view_of_view_of_leaf(self):
x = torch.randn(8)
y = x.view(2, 4)
y.requires_grad = True
z = y.view(2, 2, 2)
to_meta = MetaConverter()
mx = to_meta(x)
mz = to_meta(z)
self.assertFalse(z.is_leaf)
self.assertMetadataMatches(mx, x)
self.assertMetadataMatches(mz, z)
def test_leaf(self):
x = torch.randn(4, requires_grad=True)
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertTrue(m.is_leaf)
self.assertTrue(m.requires_grad)
self.assertMetadataMatches(m, x)
def test_non_leaf(self):
x = torch.randn(4, requires_grad=True)
y = x.neg()
to_meta = MetaConverter()
m = to_meta(y)
# check the test is actually testing what it claims
self.assertFalse(m.is_leaf)
self.assertTrue(m.requires_grad)
self.assertMetadataMatches(m, y)
def test_requires_grad_false(self):
x = torch.randn(4, requires_grad=False)
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertFalse(m.requires_grad)
self.assertMetadataMatches(m, x)
def test_channels_last(self):
x = torch.empty(2, 3, 4, 5, memory_format=torch.channels_last)
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertTrue(m.is_leaf)
self.assertMetadataMatches(m, x)
def test_channels_last_leaf(self):
x = torch.empty(2, 3, 4, 5, memory_format=torch.channels_last, requires_grad=True)
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertTrue(m.requires_grad)
self.assertTrue(m.is_leaf)
self.assertMetadataMatches(m, x)
def test_channels_last_non_leaf(self):
x = torch.empty(2, 3, 4, 5, memory_format=torch.channels_last, requires_grad=True)
y = x + 2
# sanity
self.assertEqual(x.stride(), y.stride())
self.assertFalse(y.is_leaf)
to_meta = MetaConverter()
m = to_meta(y)
# check the test is actually testing what it claims
self.assertTrue(m.requires_grad)
self.assertFalse(m.is_leaf)
self.assertMetadataMatches(m, y)
# Check that we can autograd with m as input without erroring;
# see https://github.com/pytorch/pytorch/issues/87956
loss = m.sum()
torch.autograd.grad(loss, m)
def test_empty_strided_non_dense_leaf(self):
x = torch.empty_strided((2, 2), (4, 2), requires_grad=True)
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertTrue(m.requires_grad)
self.assertTrue(m.is_leaf)
self.assertMetadataMatches(m, x)
def test_non_leaf_torture(self):
x = torch.empty(20, requires_grad=True)
with torch.no_grad():
x.set_(x.storage(), 10, (2,), (2,))
to_meta = MetaConverter()
m = to_meta(x)
# check the test is actually testing what it claims
self.assertTrue(m.requires_grad)
self.assertTrue(m.is_leaf)
self.assertMetadataMatches(m, x)
# NB: complex stuff is not actually exercised right now because
# we have a blanket exclusion for complex conversion
def test_view_as_real(self):
x = torch.randn(4, dtype=torch.complex64)
y = torch.view_as_real(x)
m = MetaConverter()(y)
self.assertMetadataMatches(m, y)
def test_complex_noncontiguous_bug(self):
x = torch.randn((2, 2, 4, 9), dtype=torch.complex32)[:, 0, :, :]
m = MetaConverter()(x)
self.assertMetadataMatches(m, x)
def test_view_as_complex(self):
x = torch.randn((4, 2), dtype=torch.float32)
y = torch.view_as_complex(x)
m = MetaConverter()(y)
self.assertMetadataMatches(m, y)
def test_view_dtype(self):
x = torch.randn(4, dtype=torch.float32)
y = x.view(dtype=torch.int32)
m = MetaConverter()(y)
self.assertMetadataMatches(m, y)
def test_imag(self):
x = torch.randn(4, dtype=torch.complex64)
y = x.imag
m = MetaConverter()(y)
self.assertMetadataMatches(m, y)
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
def test_weakref(self):
x = torch.randn(4, 4, 4)
m = MetaConverter()
y = m(x)
z = m(x)
self.assertIs(y, z)
self.assertEqual(len(m.tensor_memo), 1)
self.assertEqual(len(m.storage_memo), 1)
del x
self.assertEqual(len(m.tensor_memo), 0)
m.check_for_expired_weak_storages()
self.assertEqual(len(m.storage_memo), 0)
li = []
r = []
for i in range(4):
li.append(torch.rand([i]))
r.append(m(li[-1]))
self.assertEqual(len(m.tensor_memo), 4)
del li
self.assertEqual(len(m.tensor_memo), 0)
m.check_for_expired_weak_storages()
self.assertEqual(len(m.storage_memo), 0)
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
def test_tensor_outlives_converter(self):
m = MetaConverter()
ref = weakref.ref(m)
x = torch.randn([4, 4])
y = m(x)
del m
self.assertIs(ref(), None)
aten = torch.ops.aten
CHECK_STRIDES = {
torch.Tensor.__getitem__,
}
CHECK_ALL_STRIDES = {
aten.unsqueeze.default
}
CHECK_STRIDES_SKIPS = {
aten._conj_physical.default,
aten._fft_c2c.default,
aten._fft_c2r.default,
aten._fft_r2c.default,
aten._linalg_svd.default,
aten.binary_cross_entropy.default,
aten.complex.default,
aten.polar.default,
aten.copysign.Tensor,
aten.div.Tensor_mode,
aten.floor_divide.default,
aten.heaviside.default,
aten.lerp.Scalar,
aten.lerp.Tensor,
aten.logaddexp.default,
aten.logical_and.default,
aten.logical_or.default,
aten.logical_xor.default,
aten.pow.Scalar,
aten.prelu.default,
aten.special_xlog1py.default,
aten.xlogy.Tensor,
# channel_last and channel_last_3d related failures
aten.convolution.default,
# following ops fails if include_storage_offset = True, but these are a bit edge casey
# we should still fix them, leaving them here for tracking.
# aten._reshape_alias.default, # repro with test_dispatch_symbolic_meta_outplace_all_strides_matmul_cuda_float32
# aten.view.default, # repro with test_dispatch_symbolic_meta_outplace_all_strides_unflatten_cuda_float32
}
class CheckStrides(Enum):
NONE = 0
SIGNIFICANT = 1
ALL = 2
def should_check_strides(func):
if func in CHECK_ALL_STRIDES:
return CheckStrides.ALL
if func in CHECK_STRIDES:
return CheckStrides.SIGNIFICANT
if func in CHECK_STRIDES_SKIPS:
return CheckStrides.NONE
if not isinstance(func, torch._ops.OpOverload):
return CheckStrides.NONE
# Prims are expected to model strides correctly
if func.namespace == "prims":
return CheckStrides.SIGNIFICANT
# Check if it's a view, by testing if any of the returns have
# a non-empty alias set
if any(r.alias_info.before_set for r in func._schema.returns if r.alias_info):
return CheckStrides.SIGNIFICANT
# TODO: check for TensorIterator
return CheckStrides.SIGNIFICANT
def assert_ref_meta_equal(test_case, func, meta_rs, rs, msg_callable):
flat_meta_rs, _ = tree_flatten(meta_rs)
flat_rs, _ = tree_flatten(rs)
test_case.assertEqual(len(flat_meta_rs), len(flat_rs))
for i, meta_r, r in zip(range(len(flat_rs)), flat_meta_rs, flat_rs):
def test_assert(cond, msg):
if not cond:
raise RuntimeError(f"output {i}: {msg_callable(msg)}")
if not isinstance(r, torch.Tensor):
continue
test_assert(isinstance(meta_r, torch.Tensor), f"but real {i}th result is Tensor")
test_assert(meta_r.dtype == r.dtype, f"but real dtype was {r.dtype}")
test_assert(meta_r.shape == r.shape, f"but real shape was {r.shape}")
# See https://github.com/pytorch/pytorch/issues/78050
if should_check_strides(func) == CheckStrides.ALL:
same_strides, _ = torch._prims_common.check_all_strides(meta_r, r)
test_assert(same_strides, f"but real stride was {r.stride()}")
elif should_check_strides(func) == CheckStrides.SIGNIFICANT:
same_strides, _ = torch._prims_common.check_significant_strides(meta_r, r)
test_assert(same_strides, f"but real stride was {r.stride()}")
test_assert(
meta_r.storage_offset() == r.storage_offset(),
f"but real storage_offset was {r.storage_offset()}")
test_assert(meta_r.requires_grad == r.requires_grad, f"but real requires_grad was {r.requires_grad}")
test_assert(meta_r.is_conj() == r.is_conj(), f"but real is_conj was {r.is_conj()}")
test_assert(meta_r.is_neg() == r.is_neg(), f"but real is_neg was {r.is_neg()}")
# This environment variable controls whether or not we print expected failure
# lists at the end of a test suite run. The intended usage looks like this:
#
# 1. Run `PYTORCH_COLLECT_EXPECT=1 python test/test_meta.py` on a CUDA build
# of PyTorch that has LAPACK/MAGMA installed. You can filter `-k test_meta`
# or `-k test_dispatch_meta` to only focus on one or another list
# 2. Given the printed skip/xfail list, add them to the corresponding lists;
# torch.* entries go in meta_function and aten.* entries go in meta_dispatch.
# If there are preexisting entries, you need to merge in the entries.
#
# This is somewhat manual but typically you shouldn't need to do this, unless
# you've made a major change (e.g., added a new dtype to PyTorch) and need to
# refresh the lists. If you want to do it from scratch, just clear out the
# preexisting lists before running.
#
# WARNING: Python dict literals will silently ignore duplicate keys
COLLECT_EXPECT = os.getenv('PYTORCH_COLLECT_EXPECT', '0') == '1'
seen_succeeded = {}
seen_failed = {}
failed_reasons = defaultdict(set)
def print_seen():
expected_failures = []
skips = []
def fmt_dtypes(dtypes):
r = ', '.join(sorted(dtype_abbrs[d] for d in dtypes))
return '{' + r + '}'
for op, failed_dtypes in seen_failed.items():
ops = resolve_name(op)
succeeded_dtypes = seen_succeeded.get(op, set())
expected_failures_dtypes = failed_dtypes - succeeded_dtypes
skips_dtypes = failed_dtypes & succeeded_dtypes
reasons = ""
if failed_reasons[op]:
reasons = " # " + ", ".join(sorted(failed_reasons[op]))
if expected_failures_dtypes:
expected_failures.append(f" {ops}: {fmt_dtypes(expected_failures_dtypes)},{reasons}")
if skips_dtypes:
skips.append(f" {ops}: {fmt_dtypes(skips_dtypes)},")
expected_failures.sort()
skips.sort()
nl = '\n'
print(f"""\
expected_failures = {{
{nl.join(expected_failures)}
}}
skips = {{
{nl.join(skips)}
}}
""")
if COLLECT_EXPECT:
atexit.register(print_seen)
# Success forces pass; failure forces fail; skip unconditionally skips testing
TestExpect = Enum("TestExpect", ("SUCCESS", "XFAILURE", "SKIP"))
# unlike print produce strides
def verbose_print(e):
class Lit:
def __init__(self, s):
self.s = s
def __repr__(self):
return self.s
def go(t):
if isinstance(t, torch.Tensor):
return Lit(f"{t} stride={t.stride()}")
else:
return t
return repr(tree_map(go, e))
def run_meta_crossref(
test_case,
test_expect,
func,
args,
kwargs,
*,
dtype,
device_type,
run_symbolic_meta: bool
):
to_meta = MetaConverter()
do_meta = test_expect is not TestExpect.SKIP
if do_meta:
try:
meta_args = tree_map(to_meta, args)
meta_kwargs = tree_map(to_meta, kwargs)
except Exception as e:
raise RuntimeError(
f"failed to convert args to meta; "
f"originally (*{args}, **{kwargs})") from e
try:
rs = func(*args, **kwargs)
except Exception as e:
# A lot of OpInfo for inplace are actually broken because
# they're not tested outside of gradcheck which only checks
# torch.float64 and torch.complex128 (which this second one
# often skipped as well).
raise unittest.SkipTest("Original OpInfo is broken") from e
# TODO: also handle cases where func raise an exception
# For now, only attempt if we managed to convert all tensor types
# (if any of them failed, we're in a mixed device situation and
# this isn't well supported)
if do_meta and to_meta.successful():
# Special cases
if func is torch.tensor_split:
# Use original indices_or_sections, this argument is data dependent
meta_args = (meta_args[0], args[1]) + meta_args[2:]
elif func is torch.Tensor.__getitem__:
# Ensure boolean tensors use original
assert len(args) == 2
flat_args, _ = tree_flatten(args[1])
flat_meta_args, spec = tree_flatten(meta_args[1])
flat_new_args = []
for a, ma in zip(flat_args, flat_meta_args):
flat_new_args.append(a if isinstance(a, torch.Tensor) and a.dtype in [torch.int8, torch.bool] else ma)
meta_args = (meta_args[0], tree_unflatten(flat_new_args, spec))
elif func is torch.ops.aten.repeat_interleave.Tensor:
if kwargs.get("output_size", None) is None:
meta_args = args
elif func is torch.ops.aten.index.Tensor:
# Don't convert boolean tensors to meta as they will have nonzero
# called on them
indices = []
for meta_index, real_index in zip(meta_args[1], args[1]):
if meta_index is not None and meta_index.dtype in [torch.int8, torch.bool]:
indices.append(real_index)
else:
indices.append(meta_index)
meta_args = (meta_args[0], indices)
if kwargs.get("device", None) is not None:
meta_kwargs["device"] = "meta"
try:
# Suppress warnings, this doesn't matter for test_meta.py
# but it does matter if you want to use this decorator
# for cross-ref testing, as some tests may be looking at
# errors
with warnings.catch_warnings():
warnings.simplefilter("ignore")
if run_symbolic_meta:
# Run the decomps and meta kernels registered
# to the python dispatcher instead of the regular dispatcher.
# This should be the same set of kernels
# that fake tensor runs in dynamic shapes mode.
with enable_python_dispatcher():
meta_rs = func(*meta_args, **meta_kwargs)
else:
meta_rs = func(*meta_args, **meta_kwargs)
except Exception as e:
if test_expect is TestExpect.XFAILURE:
return rs
seen_failed.setdefault(func, set()).add(dtype)
if isinstance(e, NotImplementedError):
m = RE_NOT_IMPLEMENTED_MSG.search(e.args[0])
if m:
failed_reasons[func].add(m.group(1))
if COLLECT_EXPECT:
return rs
raise RuntimeError(f"""\
failed to run: {resolve_name(func)}(
*{verbose_print(meta_args)},
**{verbose_print(meta_kwargs)}
)""") from e
else:
try:
delim = ',\n '
assert_ref_meta_equal(test_case, func, meta_rs, rs, lambda msg: f"""\
meta disagrees with real impl:
{resolve_name(func)}(
{delim.join(map(verbose_print, meta_args))},
{delim.join(k + ": " + verbose_print(v) for k, v in meta_kwargs.items())}
) = (
{verbose_print(meta_rs)}
)
{msg}
""")
except Exception:
if test_expect is TestExpect.XFAILURE:
return rs
seen_failed.setdefault(func, set()).add(dtype)
if COLLECT_EXPECT:
return rs
raise
else:
seen_succeeded.setdefault(func, set()).add(dtype)
if test_expect is TestExpect.XFAILURE and not COLLECT_EXPECT:
raise RuntimeError(f"unexpected success {resolve_name(func)} {meta_args} {meta_kwargs}")
return rs
RE_NOT_IMPLEMENTED_MSG = re.compile(r"Could not run '([^']+)' with arguments ")
meta_function_expected_failures = {
torch.Tensor.to_sparse : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.allclose : {f64, f16, c128, c64, bf16, f32},
torch.argwhere : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.combinations : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.corrcoef : {f64, i32, c128, i64, i16, u8, c64, bf16, i8, f32},
torch.cov : {f64, i32, c128, i64, i16, u8, c64, bf16, i8, f32},
torch.functional.istft : {f64, c64, c128, f32},
torch.geqrf : {f64, c64, c128, f32},
torch.linalg.householder_product : {f64, c64, c128, f32},
torch.masked_select : {f64, i32, c128, i64, i16, f16, u8, c64, bf16, b8, i8, f32},
torch.matrix_exp : {f64, c128, c64, bf16, f32},
torch.nonzero : {f64, i32, c128, i64, i16, c32, f16, u8, c64, bf16, b8, i8, f32},
torch.Tensor.nonzero : {f64, i32, c128, i64, i16, c32, f16, u8, c64, bf16, b8, i8, f32},
torch.ormqr : {f64, c64, c128, f32},
torch.Tensor.item : {f64, i32, c128, i64, i16, f16, u8, c32, c64, bf16, b8, i8, f32},
torch.bincount : {i32, i64, u8, i16, i8},
torch.frexp : {f64, f16, bf16, f32},
torch.functional.unique : {f64, i32, i64, u8, i16, f16, bf16, b8, i8, f32},
torch.functional.unique_consecutive : {f64, i32, i64, u8, i16, f16, bf16, b8, i8, f32},
torch.histc : {f64, bf16, f32},
torch.histogram : {f64, f32},
torch.histogramdd : {f64, f32},
torch.kthvalue : {f64, i32, i64, u8, i16, bf16, i8, f32},
torch.median : {f64, i32, i64, u8, i16, bf16, i8, f32},
torch.mode : {f64, i32, i64, f16, u8, i16, bf16, b8, i8, f32},
torch.multinomial : {f64, bf16, f32},
torch.nn.functional.ctc_loss : {f64, f32},
torch.nn.functional.gaussian_nll_loss : {f64, bf16, f32},
torch.nn.functional.max_pool3d : {f64, f32},
torch.nn.functional.max_pool3d_with_indices : {f64, f32},
torch.nn.functional.max_unpool1d : {f64, f32},
torch.nn.functional.max_unpool2d : {f64, f32},
torch.nn.functional.max_unpool3d : {f64, f32},
torch.nn.functional.multi_margin_loss : {f64, f32},
torch.nn.functional.multilabel_margin_loss : {f64, f32},
torch.nn.functional.one_hot : {i64},
torch.nn.functional.pdist : {f64, f32},
torch._segment_reduce : {f64, f16, bf16, f32},
torch.searchsorted : {f64, i32, i64, f16, u8, i16, bf16, i8, f32},
torch.cholesky : {f64, f32, c128, c64},
torch.cholesky_inverse : {f64, f32, c128, c64},
torch.cholesky_solve : {f64, f32, c128, c64},
torch.linalg.eig : {f64, f32, c128, c64},
torch.linalg.eigvals : {f64, f32, c128, c64},
torch.linalg.lstsq : {f64, f32, c128, c64},
}
meta_function_expected_failures_only_outplace = {
torch.nn.functional.rrelu : {f64, bf16, f32},
}
meta_function_expected_failures_conditional = {
torch.repeat_interleave : (lambda dtype, *args, **kwargs: not isinstance(kwargs.get("repeats", None), int)),
}
"""
# This is some sample code for how we could dump these dicts into YAML
# file for easier reading/writing
import yaml
print(yaml.dump(
{resolve_name(k): [dtype_abbrs[d] for d in v]
for k, v in meta_function_expected_failures.items()}, default_flow_style=None))
import sys
sys.exit()
"""
meta_function_skips = {
torch.Tensor.__rmatmul__ : {bf16, c128, f64, f32, f16, c64},
torch.Tensor.matmul : {f64, f32, c128, c64},
torch.functional.atleast_2d : {bf16, i8, c32, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.functional.atleast_3d : {bf16, i8, c32, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.functional.cartesian_prod : {bf16, i8, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.functional.einsum : {bf16, c128, f64, f32, f16, c64},
torch.functional.tensordot : {bf16, i8, i64, u8, c128, f64, i16, f32, i32, c64},
torch.inner : {bf16, i8, i64, u8, c128, f64, i16, f32, i32, c64},
torch.linalg.lu_solve : {c128, c64},
torch.linalg.matrix_norm : {c128, f32, c64, f64},
torch.linalg.matrix_power : {c128, c64},
torch.linalg.matrix_rank : {c128, c64},
torch.linalg.svd : {c128, c64},
torch.matmul : {bf16, c128, f64, f32, f16, c64},
torch.nanquantile : {f64, f32},
torch.narrow : {bf16, i8, i64, u8, c128, b8, f64, i16, i32, f32, f16, c32, c64},
torch.nn.functional.batch_norm : {f64, f32},
torch.nn.functional.binary_cross_entropy : {bf16, f64, f32, f16},
torch.nn.functional.dropout3d : {bf16, f64, f32, f16},
torch.nn.functional.local_response_norm : {bf16, f64, f32, f16},
torch.svd : {c128, c64},
torch.take_along_dim : {bf16, i8, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.vstack : {bf16, i8, c32, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.aminmax : {i8, i64, u8, f64, b8, f32, i32, i16},
torch.diff : {b8},
torch.equal : {bf16, i8, c32, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
torch.nanmean : {bf16, f64, f32, f16, c32, c64, c128},
torch.nn.functional.cross_entropy : {bf16, f64, f32},
torch.nn.functional.interpolate : {bf16, f64, f32, u8},
torch.nn.functional.nll_loss : {bf16, f64, f32},
torch.linalg.pinv : {f64, f32},
torch.linalg.cond : {c128, c64, f32, f64},
torch.linalg.vander: {c128, c64, f32, f64, i16, i32, i64, i8, u8},
torch.linalg.vecdot : {bf16, f64, f32, f16},
torch.empty : {bf16, i8, c32, i64, u8, c128, b8, f64, i16, i32, f32, f16, c64},
# This fails for arguments dispatched to grid_sampler_3d, but succeeds
# for grid_sampler_2d, so we can't just xfail it
torch.nn.functional.grid_sample : {f64, f32},
torch.Tensor.addbmm_: {bf16, c128, c64, f32, f64, i16, i32, i64, i8, u8},
}
meta_function_device_expected_failures = defaultdict(dict)
meta_function_device_expected_failures_only_outplace = defaultdict(dict)
meta_function_device_skips = defaultdict(dict)
meta_function_device_expected_failures['cpu'] = {
torch.native_batch_norm: {bf16},
torch._native_batch_norm_legit: {bf16},
torch.native_layer_norm: {bf16},
}
meta_function_device_expected_failures['cuda'] = {
torch.corrcoef: {bf16, f16}, # aten::_local_scalar_dense
torch.cov: {f16}, # aten::_local_scalar_dense
torch.functional.unique: {f16}, # aten::_unique2, aten::unique_dim
torch.functional.unique_consecutive: {f16}, # aten::unique_consecutive
torch.geqrf: {f32, f64}, # aten::geqrf
torch.histc: {i16, i32, i64, i8}, # aten::histc, aten::histc.out
torch.kthvalue: {f16}, # aten::kthvalue.values
torch.linalg.householder_product: {f32, f64}, # aten::linalg_householder_product, aten::linalg_householder_product.out
torch.matrix_exp: {f16}, # aten::linalg_matrix_exp
torch.median: {f16}, # aten::median, aten::median.dim_values
torch.multinomial: {f16}, # aten::multinomial, aten::multinomial.out
torch.nn.functional.gaussian_nll_loss: {f16}, # aten::_local_scalar_dense
torch.nn.functional.max_pool3d: {bf16, f16}, # aten::max_pool3d_with_indices
torch.nn.functional.max_pool3d_with_indices: {bf16, f16}, # aten::max_pool3d_with_indices
torch.nn.functional.max_unpool1d: {f16}, # aten::max_unpool2d
torch.nn.functional.max_unpool2d: {f16}, # aten::max_unpool2d
torch.nn.functional.max_unpool3d: {f16}, # aten::max_unpool3d
torch.nn.functional.multi_margin_loss: {bf16, f16}, # aten::multi_margin_loss
torch.nn.functional.multilabel_margin_loss: {bf16, f16}, # aten::multilabel_margin_loss_forward
torch.ormqr: {f32, f64}, # aten::ormqr, aten::ormqr.out
}
meta_function_device_expected_failures_only_outplace['cuda'] = {
torch.nn.functional.rrelu: {f16}, # aten::rrelu_with_noise
}
meta_function_device_skips['cpu'] = {
torch.native_batch_norm: {f32, f64},
torch._native_batch_norm_legit: {f32, f64},
}
meta_function_device_skips['cuda'] = {
torch.functional.tensordot: {f16},
torch.inner: {f16},
torch.linalg.matrix_power: {f32, f64},
torch.linalg.matrix_rank: {f32, f64},
torch.linalg.svd: {f32, f64},
torch.nn.functional.cross_entropy: {f16},
torch.nn.functional.interpolate: {f16},
torch.nn.functional.nll_loss: {f16},
torch.svd: {f32, f64},
# This fails for arguments dispatched to grid_sampler_3d, but succeeds
# for grid_sampler_2d, so we can't just xfail it
torch.nn.functional.grid_sample : {f16},
}
# This is a __torch_function__ mode that, when enabled, interposes every
# Torch API call and runs the operator as normal, and then reruns it
# with meta inputs, and then checks that everything about the output agrees.
# Most of the logic deals with faithfully replicating the original tensor
# as a meta tensor, which is nontrivial because there are a lot of subsystems
# that may potentially be exercised.
#
# That being said, this class is a little overkill for what it is doing in
# this test file (since I could have just inlined __torch_function__ on the
# OpInfo call, and OpInfos generally have very regular inputs), but it will be
# useful for more comprehensive testing e.g., as seen in
# https://github.com/pytorch/pytorch/pull/75994 The big benefit is it is
# A LOT more efficient that torch dispatch mode (at the cost of less coverage)
class MetaCrossRefFunctionMode(torch.overrides.TorchFunctionMode):
test_case: TestCase
device_type: str
dtype: torch.dtype
def __init__(self, test_case, *, device, dtype, inplace):
self.test_case = test_case
self.device_type = torch.device(device).type
self.dtype = dtype
self.inplace = inplace
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
if (
torch.jit.is_tracing() or isinstance(func, torch.ScriptMethod) or
# meta converter doesn't work correctly when no_dispatch() is on, so
# skip running the crossref test in this case
torch._C._dispatch_tls_local_exclude_set().has(torch._C.DispatchKey.Python)
):
return func(*args, **kwargs)
if self.dtype in meta_function_skips.get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_function_device_skips[self.device_type].get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_function_expected_failures.get(func, set()):
test_expect = TestExpect.XFAILURE
elif not self.inplace and self.dtype in meta_function_expected_failures_only_outplace.get(func, set()):
test_expect = TestExpect.XFAILURE
elif self.dtype in meta_function_device_expected_failures[self.device_type].get(func, set()):
test_expect = TestExpect.XFAILURE
elif meta_function_expected_failures_conditional.get(func, lambda *_, **__: False)(self.dtype, *args, **kwargs):
test_expect = TestExpect.XFAILURE
elif not self.inplace and \
self.dtype in meta_function_device_expected_failures_only_outplace[self.device_type].get(func, set()):
test_expect = TestExpect.XFAILURE
else:
test_expect = TestExpect.SUCCESS
return run_meta_crossref(
self.test_case, test_expect, func, args,
kwargs, dtype=self.dtype, device_type=self.device_type, run_symbolic_meta=False
)
# these always fail
meta_dispatch_expected_failures = {
aten.allclose.default: {f16, bf16, f32, f64, c64, c128}, # NotImplementedError: 'aten::_local_scalar_dense'
aten.cholesky.default : {c64, c128, f64, f32},
aten.cholesky.out : {c64, c128, f64, f32},
aten.cholesky_inverse.default : {c64, c128, f64, f32},
aten.cholesky_inverse.out : {c64, c128, f64, f32},
aten.cholesky_solve.default : {c64, c128, f64, f32},
aten.cholesky_solve.out : {c64, c128, f64, f32},
aten.geqrf.default : {c64, c128, f64, f32},
aten.linalg_eig.default : {c64, c128, f64, f32},
aten.linalg_householder_product.default : {c64, c128, f64, f32},
aten.linalg_householder_product.out : {c64, c128, f64, f32},
aten.linalg_lstsq.default : {c64, c128, f64, f32},
aten.linalg_matrix_exp.default : {c64, bf16, f32, f64, c128},
aten.masked_select.default : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.masked_select.out : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.nonzero.default : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, c32, b8, i16, u8},
aten.nonzero.out : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, c32, b8, i16, u8},
aten.ormqr.default : {c64, c128, f64, f32},
aten.ormqr.out : {c64, c128, f64, f32},
aten.tensordot.out : {c64, i8, f64, c128, i64, bf16, f32, i32, i16, u8},
aten.to_sparse.default : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.to_sparse.sparse_dim : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten._ctc_loss.default : {f32, f64}, # Shape of second output depends on data.
aten._ctc_loss.Tensor : {f32, f64}, # Shape of second output depends on data.
aten._histogramdd_bin_edges.default : {f32, f64},
aten._histogramdd_from_bin_cts.default : {f32, f64},
aten._histogramdd_from_bin_tensors.default : {f32, f64},
aten._local_scalar_dense.default : {c32, c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten._pdist_forward.default : {f32, f64},
aten._unique2.default : {i8, f64, i64, f16, bf16, f32, i32, b8, i16, u8},
aten.bincount.default : {i64, i8, i32, i16, u8},
aten.equal.default : {c64, f16, i8, f64, c128, i64, bf16, f32, i32, b8, i16, u8},
aten.frexp.Tensor : {bf16, f32, f16, f64},
aten.grid_sampler_3d.default : {f32, f64},
aten.histc.default : {bf16, f32, f64},
aten.histc.out : {bf16, f32, f64},
aten.histogram.bin_ct : {f32, f64},
aten.histogram.bins_tensor : {f32, f64},
aten.kthvalue.default : {i8, f64, i64, bf16, f32, i32, i16, u8},
aten.max_pool3d_with_indices.default : {f32, f64},
aten.max_unpool2d.default : {f32, f64},
aten.max_unpool3d.default : {f32, f64},
aten.median.default : {i8, f64, i64, bf16, f32, i32, i16, u8},
aten.median.dim : {i8, f64, i64, bf16, f32, i32, i16, u8},
aten.mode.default : {f16, i8, f64, i64, bf16, f32, i32, b8, i16, u8},
aten.multi_margin_loss.default : {f32, f64},
aten.multilabel_margin_loss_forward.default : {f32, f64},
aten.multinomial.default : {bf16, f32, f64},
aten.multinomial.out : {bf16, f32, f64},
aten.nll_loss2d_forward.default : {bf16, f32, f64},
aten.rrelu_with_noise.default : {bf16, f32, f64},
aten.searchsorted.Tensor : {f16, i8, f64, i64, bf16, f32, i32, i16, u8},
aten.searchsorted.Tensor_out : {f16, i8, f64, i64, bf16, f32, i32, i16, u8},
aten.segment_reduce.default : {bf16, f32, f16, f64},
aten.unique_consecutive.default : {i8, f64, i64, f16, bf16, f32, i32, b8, i16, u8},
aten.unique_dim.default : {i8, f64, i64, f16, bf16, f32, i32, b8, i16, u8},
aten.upsample_nearest3d.vec : {bf16, f32, f64, u8},
}
# these sometimes pass and sometimes fail
meta_dispatch_skips = {
aten.index.Tensor: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32, c32, c64, c128}, # at::nonzero doesn't have a Meta function
aten._to_copy.default: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32, c32, c64, c128},
aten.aminmax.default: {i64, u8, b8, f32, i8, f64, i16, i32},
aten.linalg_lu_solve.default: {c32, c64, c128},
aten.linalg_lu_solve.out: {c32, c64, c128},
aten.linalg_pinv.atol_rtol_tensor: {f32, f64},
aten.linalg_pinv.atol_rtol_tensor_out: {f32, f64},
aten.empty.memory_format: {b8, bf16, c128, c64, c32, f16, f32, f64, i16, i32, i64, i8, u8},
aten.addbmm_.default: {bf16, c128, c64, f32, f64, i16, i32, i64, i8, u8},
}
# For CompositeImplicitAutograd functions that fail before hitting the Mode
meta_dispatch_early_skips = set({
torch.Tensor.float_power_,
# Errors out in one of the tests, while ProxyTensor passes...
torch.Tensor.cumprod_,
torch.Tensor.cumsum_,
})
meta_inplace_skips = set({
# Errors out in one of the tests, while ProxyTensor passes...
torch.Tensor.cumprod_,
torch.Tensor.cumsum_,
})
meta_dispatch_device_expected_failures = defaultdict(dict)
meta_dispatch_device_skips = defaultdict(dict)
meta_dispatch_device_expected_failures['cpu'] = {
aten.native_batch_norm.default: {bf16},
aten._native_batch_norm_legit.default: {bf16},
aten._native_batch_norm_legit.no_stats: {bf16},
aten.native_layer_norm.default: {bf16},
}
meta_dispatch_device_expected_failures['cuda'] = {
aten._unique2.default: {f16}, # aten::_unique2
aten._use_cudnn_ctc_loss.default: {f32, f64}, # aten::_use_cudnn_ctc_loss
aten._use_cudnn_ctc_loss.Tensor: {f32, f64}, # aten::_use_cudnn_ctc_loss.Tensor
aten.cudnn_grid_sampler.default: {f16, f32, f64}, # aten::cudnn_grid_sampler
aten.geqrf.default: {f32, f64}, # aten::geqrf
aten.grid_sampler_3d.default: {f16}, # aten::grid_sampler_3d
aten.histc.default: {i16, i32, i64, i8}, # aten::histc
aten.histc.out: {i16, i32, i64, i8}, # aten::histc.out
aten.kthvalue.default: {f16}, # aten::kthvalue.values
aten.linalg_eigvalsh.out: {f32, f64}, # aten::linalg_eigvalsh.out
aten.linalg_householder_product.default: {f32, f64}, # aten::linalg_householder_product
aten.linalg_householder_product.out: {f32, f64}, # aten::linalg_householder_product.out
aten.linalg_matrix_exp.default: {f16}, # aten::linalg_matrix_exp
aten.log_sigmoid_forward.default: {bf16, f16, f64, f32},
aten.log_sigmoid_forward.output : {bf16, f16, f64, f32}, # aten::log_sigmoid_forward.output
aten.max_pool3d_with_indices.default: {bf16, f16}, # aten::max_pool3d_with_indices
aten.max_unpool2d.default: {f16}, # aten::max_unpool2d
aten.max_unpool3d.default: {f16}, # aten::max_unpool3d
aten.median.default: {f16}, # aten::median
aten.median.dim: {f16}, # aten::median.dim_values
aten.multi_margin_loss.default: {bf16, f16}, # aten::multi_margin_loss
aten.multilabel_margin_loss_forward.default: {bf16, f16}, # aten::multilabel_margin_loss_forward
aten.multinomial.default: {f16}, # aten::multinomial
aten.multinomial.out: {f16}, # aten::multinomial.out
aten.nll_loss2d_forward.default: {f16}, # aten::nll_loss2d_forward
aten.ormqr.default: {f32, f64}, # aten::ormqr
aten.ormqr.out: {f32, f64}, # aten::ormqr.out
aten.rrelu_with_noise.default: {f16}, # aten::rrelu_with_noise
aten.tensordot.out: {f16}, # aten::tensordot.out
aten.unique_consecutive.default: {f16}, # aten::unique_consecutive
aten.unique_dim.default: {f16}, # aten::unique_dim
aten.upsample_nearest3d.vec: {f16}, # aten::upsample_nearest3d.vec
}
meta_dispatch_device_skips['cpu'] = {
aten._embedding_bag_forward_only.default: {bf16, f16, f32, f64},
aten.native_batch_norm.default: {f32, f64},
aten._native_batch_norm_legit.default: {f32, f64},
aten._native_batch_norm_legit.no_stats: {f32, f64},
}
meta_dispatch_device_skips['cuda'] = {
aten._conj.default: {c32, f16}, # file issue
aten._linalg_svd.default: {c64, c128}, # aten::linalg_eigvalsh.out
aten.cudnn_batch_norm.default: {f32, f64},
aten.log_softmax.int : {c32, c64},
aten.softmax.int : {c32, c64},
aten.softmax.int : {c32, c64},
# ROCm stuff; technically this should be expected failure but it's
# not worth it; these should get unified anyway
aten.miopen_batch_norm.default: {f32},
}
def get_strided_args(args):
def get_strided_variants(t, include_storage_offset=False):
variants = []
# contiguous
variants.append(t)
# transposed
if t.ndim > 1:
perm = list(reversed(range(t.ndim)))
transposed = torch.empty(
t.shape[::-1], device=t.device, dtype=t.dtype, requires_grad=t.requires_grad
).permute(perm).copy_(t)
variants.append(transposed)
# nondense
if t.ndim > 0:
nondense = torch.repeat_interleave(t, 2, dim=-1)[..., ::2]
variants.append(nondense)
# channel_last
if t.ndim == 4:
variants.append(t.contiguous(memory_format=torch.channels_last))
# channel_last_3d
if t.ndim == 5:
variants.append(t.contiguous(memory_format=torch.channels_last_3d))
# storage_offset
if include_storage_offset:
buffer = torch.empty(t.numel() + 1, device=t.device, dtype=t.dtype, requires_grad=t.requires_grad)
buffer = buffer.as_strided(t.shape, t.stride(), storage_offset=1)
buffer.copy_(t)
variants.append(buffer)
return variants
strided_args = []
for arg in args:
if isinstance(arg, torch.Tensor) and not arg.is_sparse_csr and arg.is_contiguous():
strided_arg_variants = get_strided_variants(arg)
else:
strided_arg_variants = [arg]
strided_args.append(strided_arg_variants)
yield from itertools.product(*strided_args)
class MetaCrossRefDispatchMode(torch.utils._python_dispatch.TorchDispatchMode):
test_case: TestCase
device: torch.device
dtype: torch.dtype
def __init__(self, test_case, *, device, dtype, symbolic_meta: bool):
self.test_case = test_case
# save TLS
self.precision = test_case.precision
self.rel_tol = test_case.rel_tol
self.device_type = torch.device(device).type
self.dtype = dtype
self.symbolic_meta = symbolic_meta
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
self.test_case.precision = self.precision
self.test_case.rel_tol = self.rel_tol
if self.dtype in meta_dispatch_skips.get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_dispatch_device_skips[self.device_type].get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_dispatch_expected_failures.get(func, set()):
test_expect = TestExpect.XFAILURE
elif self.dtype in meta_dispatch_device_expected_failures[self.device_type].get(func, set()):
test_expect = TestExpect.XFAILURE
else:
test_expect = TestExpect.SUCCESS
return run_meta_crossref(
self.test_case,
test_expect,
func,
args,
kwargs,
dtype=self.dtype,
device_type=self.device_type,
run_symbolic_meta=self.symbolic_meta,
)
# NB: we're running these tests only on CUDA because there are some
# inconsistencies between CUDA and CPU, and running on CUDA makes it easier
# to ignore the CPU case when inconsistencies arise. Ideally we deal
# with the inconsistencies but this takes time.
class TestMeta(TestCase):
# Copies inputs to inplace operations to avoid inplace modifications
# to leaves requiring gradient
def _get_safe_inplace(self, inplace_variant):
@wraps(inplace_variant)
def _fn(t, *args, **kwargs):
return inplace_variant(t.clone(), *args, **kwargs)
return _fn
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_meta_outplace(self, device, dtype, op):
# run the OpInfo sample inputs, cross-referencing them with the
# meta implementation and check the results are the same. All
# the heavy lifting happens in MetaCrossRefFunctionMode
func = op.get_op()
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
with MetaCrossRefFunctionMode(self, dtype=dtype, device=device, inplace=False):
expected = func(*args, **kwargs)
if isinstance(expected, torch.Tensor) and op.supports_out:
func(*args, **kwargs, out=expected)
# Special test for functions taking "device" kwarg
# The crossref tests that replacing the device with "meta" works
# This part makes sure that *_like functions work well with a "meta"
# Tensor and their original device argument.
if "device" in kwargs and "_like" in op.name:
with torch.random.fork_rng():
torch.manual_seed(123)
ref = func(*args, **kwargs)
# *_like functions take a Tensor as first argument
assert isinstance(args[0], torch.Tensor)
with torch.random.fork_rng():
torch.manual_seed(123)
args[0] = args[0].to(device="meta")
meta = func(*args, **kwargs)
# empty_like is not deterministic
if op.name != "empty_like":
self.assertEqual(ref, meta)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_meta_inplace(self, device, dtype, op):
func = op.get_inplace()
if not func:
self.skipTest("No inplace variable for this op")
if func in meta_inplace_skips:
self.skipTest("Skipped")
func = self._get_safe_inplace(func)
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in samples:
if sample_input.broadcasts_input:
continue
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
with MetaCrossRefFunctionMode(self, dtype=dtype, device=device, inplace=True):
expected = func(*args, **kwargs)
def _run_dispatch_meta_test(self, device, dtype, op, symbolic_meta, inplace, all_stride_variants=False):
if inplace:
func = op.get_inplace()
if not func:
self.skipTest("No inplace variable for this op")
else:
func = op.get_op()
if func in meta_dispatch_early_skips:
self.skipTest("Function is in dispatch early skips")
if inplace:
func = self._get_safe_inplace(func)
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in samples:
if inplace and sample_input.broadcasts_input:
continue
sample_args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
if all_stride_variants and sum(isinstance(arg, torch.Tensor) for arg in sample_args) <= 5:
# test inputs <= 5 tensors to avoid combinatorial explosion
strided_args = get_strided_args(sample_args)
else:
strided_args = [sample_args]
for args in strided_args:
with MetaCrossRefDispatchMode.push(self, dtype=dtype, device=device, symbolic_meta=symbolic_meta):
expected = func(*args, **kwargs)
if not inplace and isinstance(expected, torch.Tensor) and op.supports_out:
func(*args, **kwargs, out=expected)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_dispatch_meta_outplace(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=False, inplace=False)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_dispatch_meta_inplace(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=False, inplace=True)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_dispatch_symbolic_meta_outplace(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=True, inplace=False)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_dispatch_symbolic_meta_inplace(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=True, inplace=True)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
# only test one dtype, as output stride behavior is the same for all dtypes
@ops(op_db, dtypes=OpDTypes.any_common_cpu_cuda_one)
# Only test on CUDA, as CUDA kernel's stride is the reference
@onlyCUDA
def test_dispatch_symbolic_meta_outplace_all_strides(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=True, inplace=False, all_stride_variants=True)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@skipIfCrossRef
@suppress_warnings
# only test one dtype, as output stride behavior is the same for all dtypes
@ops(op_db, dtypes=OpDTypes.any_common_cpu_cuda_one)
# Only test on CUDA, as CUDA kernel's stride is the reference
@onlyCUDA
def test_dispatch_symbolic_meta_inplace_all_strides(self, device, dtype, op):
self._run_dispatch_meta_test(device, dtype, op, symbolic_meta=True, inplace=True, all_stride_variants=True)
def test_empty_quantized(self):
r = torch.empty(2 ** 52, device='meta', dtype=torch.qint8)
self.assertEqual(r.device.type, 'meta')
def test_nan_to_num(self):
t = torch.tensor([float('nan'), float('inf'), -float('inf'), 3.14], device='meta')
r = t.nan_to_num()
self.assertEqual(r.device.type, 'meta')
@onlyCPU
def test_meta_autograd_no_error(self):
lib = torch.library.Library("meta_test", "DEF")
impl_cpu = torch.library.Library("meta_test", "IMPL", "CPU")
impl_meta = torch.library.Library("meta_test", "IMPL", "Meta")
def foo_impl(x):
return x + 1
lib.define("foo(Tensor a) -> Tensor")
impl_meta.impl("foo", foo_impl)
impl_cpu.impl("foo", foo_impl)
a = torch.ones(2, device='meta')
# The point of the test is that this should not error:
# We have a fallthrough kernel registered to the AutogradMeta
# key for custom ops, so it's fine that `foo()` doesn't have
# an autograd kernel.
b = torch.ops.meta_test.foo.default(a)
del impl_meta
del impl_cpu
del lib
def test_huber_loss_backward(self):
inps = [torch.rand(2**52, device='meta') for _ in range(3)]
r = torch.ops.aten.huber_loss_backward(*inps, 0, 1.0)
self.assertEqual(r.device.type, 'meta')
self.assertEqual(r.shape, inps[0].shape)
def test_fill__alias_relationship(self):
inps = torch.rand(2**52, device='meta')
r = torch.ops.aten.fill_(inps, 1.0)
# aten.fill_ returns an aliase
self.assertEqual(id(inps), id(r))
# aten.fill returns a new tensor
r2 = torch.ops.aten.fill(inps, 1.0)
self.assertNotEqual(id(inps), id(r2))
def test_meta__fused_moving_avg_obs_fq_helper(self, device):
from torch.ao.quantization import FusedMovingAvgObsFakeQuantize
to_meta = MetaConverter()
x = torch.randn(5, 5, device=device)
running_min_op = torch.tensor(float("inf"), device=device)
running_max_op = torch.tensor(float("-inf"), device=device)
avg_const = 0.01
scale = torch.tensor([1.0], device=device)
zero_point = torch.tensor([0], dtype=torch.int, device=device)
mod = FusedMovingAvgObsFakeQuantize()
torch.ao.quantization.enable_fake_quant(mod)
torch.ao.quantization.enable_observer(mod)
mod.to(device)
meta_x = to_meta(x)
args = [
x,
mod.observer_enabled,
mod.fake_quant_enabled,
running_min_op,
running_max_op,
scale,
zero_point,
avg_const,
0,
255,
0,
]
meta_args = args.copy()
meta_args[0] = meta_x
kwargss = [
{},
{"per_row_fake_quant": False, "symmetric_quant": False},
{"per_row_fake_quant": False, "symmetric_quant": True},
]
for kwargs in kwargss:
ref_out = aten._fused_moving_avg_obs_fq_helper.default(*args, **kwargs)
meta_out = aten._fused_moving_avg_obs_fq_helper.default(*meta_args, **kwargs)
self.assertEqual(ref_out[0].size(), meta_out[0].size())
self.assertEqual(ref_out[0].stride(), meta_out[0].stride())
self.assertEqual(ref_out[1].size(), meta_out[1].size())
self.assertEqual(ref_out[1].stride(), meta_out[1].stride())
def test_cdist_forward(self, device):
to_meta = MetaConverter()
x1 = torch.rand([3, 2], device=device)
x2 = torch.rand([2, 2], device=device)
p = 2.0
for compute_mode in (None, 1, 2):
ref = aten._cdist_forward.default(x1, x2, p, compute_mode)
res = aten._cdist_forward.default(to_meta(x1), to_meta(x2), p, compute_mode)
self.assertEqual(res.device.type, 'meta')
self.assertEqual(ref.shape, res.shape)
# opinfo test is using aten.fill_, it's not testing aten.fill
@onlyCUDA
def test_fill_stride(self):
to_meta = MetaConverter()
sample_args = [torch.rand(2, 2, 2, 2), 1.0]
for args in get_strided_args(sample_args):
meta_args = to_meta(args)
ref_out = torch.ops.aten.fill(*args)
meta_out = torch.ops.aten.fill(*meta_args)
self.assertEqual(ref_out.size(), meta_out.size())
self.assertEqual(ref_out.stride(), meta_out.stride())
def test_map_location_deserialize(self):
import io
t = torch.rand(10)
b = io.BytesIO()
torch.save(t, b)
b.seek(0)
r = torch.load(b, map_location=torch.device("meta"))
self.assertEqual(r.device.type, 'meta')
self.assertEqual(r.shape, t.shape)
self.assertEqual(r.dtype, t.dtype)
self.assertEqual(r.storage().data_ptr(), 0)
instantiate_device_type_tests(TestMeta, globals())
def print_op_str_if_not_supported(op_str):
op = OperatorName.parse(op_str)
packet = getattr(torch.ops.aten, str(op.name))
overload = getattr(packet, op.overload_name if op.overload_name else "default")
if any(overload in d for d in [meta_dispatch_skips, meta_dispatch_device_skips['cuda']]):
print(f"{overload} # SKIP")
if any(overload in d for d in [meta_dispatch_expected_failures, meta_dispatch_device_expected_failures['cuda']]):
print(overload)
if __name__ == "__main__":
COMPARE_XLA = os.getenv('PYTORCH_COMPARE_XLA', None)
if COMPARE_XLA is not None:
with open(COMPARE_XLA, "r") as f:
d = yaml.load(f, Loader=YamlLoader)
ops = d.get("full_codegen", []) + d.get("supported", []) + d.get("autograd", [])
for op_str in ops:
print_op_str_if_not_supported(op_str)
sys.exit(0)
COMPARE_TEXT = os.getenv('PYTORCH_COMPARE_TEXT', None)
if COMPARE_TEXT is not None:
with open(COMPARE_TEXT, "r") as f:
for op_str in f:
print_op_str_if_not_supported(op_str.strip())
sys.exit(0)
run_tests()