| from typing import Dict, List, Optional |
| |
| import torch |
| import torch.optim._functional as F |
| |
| from torch import Tensor |
| |
| __all__: List[str] = [] |
| |
| # Define a TorchScript compatible Functional Adagrad Optimizer |
| # where we use these optimizer in a functional way. |
| # Instead of using the `param.grad` when updating parameters, |
| # we explicitly let the user pass gradients to the `step` function |
| # this is so that we could separate the gradients and parameters |
| # and allow multithreaded trainer to update the parameters |
| # without data traces on accumulating to the same .grad. |
| # NOTE: This should be only used by distributed optimizer internals |
| # and not meant to expose to the user. |
| @torch.jit.script |
| class _FunctionalAdagrad: |
| def __init__( |
| self, |
| params: List[Tensor], |
| lr: float = 1e-2, |
| lr_decay: float = 0.0, |
| weight_decay: float = 0.0, |
| initial_accumulator_value: float = 0.0, |
| warmup_lr_multiplier: float = 1.0, |
| warmup_num_iters: float = 0.0, |
| eps: float = 1e-10, |
| coalesce_grad: bool = True, |
| foreach: bool = False, |
| maximize: bool = False, |
| _allow_empty_param_list: bool = False, |
| ): |
| self.defaults = { |
| "lr": lr, |
| "lr_decay": lr_decay, |
| "eps": eps, |
| "weight_decay": weight_decay, |
| "initial_accumulator_value": initial_accumulator_value, |
| "warmup_lr_multiplier": warmup_lr_multiplier, |
| "warmup_num_iters": warmup_num_iters, |
| } |
| self.coalesce_grad = coalesce_grad |
| self.foreach = foreach |
| self.maximize = maximize |
| self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {}) |
| |
| if len(params) == 0 and not _allow_empty_param_list: |
| raise ValueError("optimizer got an empty parameter list") |
| |
| # NOTE: we only have one param_group and don't allow user to add additional |
| # param group as it's not a common use case. |
| self.param_group = {"params": params} |
| |
| # TODO: no union or any types in TorchScript, make step a scalar tensor instead |
| # This is also needed by if we want to share_memory on the step across processes |
| for p in self.param_group["params"]: |
| self.state[p] = { |
| "sum": torch.full_like(p.data, initial_accumulator_value), |
| "step": torch.tensor(0.0), |
| } |
| |
| def step(self, gradients: List[Optional[Tensor]]): |
| params = self.param_group["params"] |
| params_with_grad = [] |
| grads = [] |
| state_sums = [] |
| state_steps: List[Tensor] = [] |
| |
| if len(params) != len(gradients): |
| raise ValueError( |
| "the gradients passed in does not equal to the size of the parameters!" |
| + f"Params length: {len(params)}. " |
| + f"Gradients length: {len(gradients)}" |
| ) |
| |
| has_sparse_grad = False |
| for param, gradient in zip(self.param_group["params"], gradients): |
| if gradient is not None: |
| if gradient.is_sparse: |
| has_sparse_grad = True |
| params_with_grad.append(param) |
| grads.append(gradient) |
| state = self.state[param] |
| state_sums.append(state["sum"]) |
| state_steps.append(state["step"]) |
| |
| with torch.no_grad(): |
| F.adagrad( |
| params, |
| grads, |
| state_sums, |
| state_steps, |
| lr=self.defaults["lr"], |
| weight_decay=self.defaults["weight_decay"], |
| lr_decay=self.defaults["lr_decay"], |
| eps=self.defaults["eps"], |
| has_sparse_grad=has_sparse_grad, |
| foreach=self.foreach, |
| maximize=self.maximize, |
| ) |