blob: 008008aaedcddcccc8e813bd1b7817f4893fc984 [file] [log] [blame]
# Owner(s): ["module: unknown"]
import os
import tempfile
import torch
from backend import Model, to_custom_backend, get_custom_backend_library_path
from torch.testing._internal.common_utils import TestCase, run_tests
class TestCustomBackend(TestCase):
def setUp(self):
# Load the library containing the custom backend.
self.library_path = get_custom_backend_library_path()
torch.ops.load_library(self.library_path)
# Create an instance of the test Module and lower it for
# the custom backend.
self.model = to_custom_backend(torch.jit.script(Model()))
def test_execute(self):
"""
Test execution using the custom backend.
"""
a = torch.randn(4)
b = torch.randn(4)
# The custom backend is hardcoded to compute f(a, b) = (a + b, a - b).
expected = (a + b, a - b)
out = self.model(a, b)
self.assertTrue(expected[0].allclose(out[0]))
self.assertTrue(expected[1].allclose(out[1]))
def test_save_load(self):
"""
Test that a lowered module can be executed correctly
after saving and loading.
"""
# Test execution before saving and loading to make sure
# the lowered module works in the first place.
self.test_execute()
# Save and load.
f = tempfile.NamedTemporaryFile(delete=False)
try:
f.close()
torch.jit.save(self.model, f.name)
loaded = torch.jit.load(f.name)
finally:
os.unlink(f.name)
self.model = loaded
# Test execution again.
self.test_execute()
if __name__ == "__main__":
run_tests()