blob: 21ba04fe5518135577ddfff510c2a07b691b6efd [file] [log] [blame]
# Owner(s): ["module: functorch"]
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from functorch.dim import Tensor, Dim, dims, dimlists, stack, DimensionBindError, DimList
from attn_ft import BertSelfAttention as BertSelfAttentionA, Linear
from attn_positional import BertSelfAttention as BertSelfAttentionB
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_CUDA
from unittest import skip, skipIf
import torch
import gc
from functorch._C import dim as _C
try:
from torchvision.models import resnet18
except ImportError:
resnet18 = None
_test_c, _parse_test, _set_pointwise_optimize = _C._test_c, _C._parse_test, _C._set_pointwise_optimize
from contextlib import contextmanager
from time import perf_counter
measure_perf = False
if measure_perf:
from torchdim.magic_trace import magic_trace
else:
@contextmanager
def magic_trace(*args, **kwargs):
yield
@contextmanager
def measure(what):
b = perf_counter()
yield
e = perf_counter()
print(f"{what}: {e - b:.20f} seconds")
def triu(A):
i, j = dims()
a = A[i, j]
zero = torch.tensor(0, dtype=torch.float) # XXX - torch.where is janky...
return torch.where(i <= j, a, zero).order(i, j)
def gpu_time(lmb, name, r=100):
b = torch.cuda.Event(enable_timing=True)
e = torch.cuda.Event(enable_timing=True)
# with magic_trace(name + ".fxt"):
for _ in range(r):
lmb()
b.record()
for _ in range(r):
lmb()
e.record()
e.synchronize()
elapsed = b.elapsed_time(e)
# with torch.profiler.profile(schedule=torch.profiler.schedule(
# wait=0,
# warmup=1,
# active=2), on_trace_ready=tensorboard_trace_handler(name), with_stack=True) as profiler:
# for _ in range(3):
# lmb()
# profiler.step()
print(name, elapsed / r)
return elapsed / r
class TestMin(TestCase):
def setUp(self):
super().setUp()
gc.disable()
gc.collect()
self.interesting = set()
for o in gc.get_objects():
if isinstance(o, (torch.Tensor, Dim, Tensor, DimList)):
self.interesting.add(id(o))
if 'cuda' in self._testMethodName:
self.mem_allocated = torch.cuda.memory_allocated()
def tearDown(self):
interesting = []
for o in gc.get_objects():
if isinstance(o, (torch.Tensor, Dim, Tensor, DimList)) and id(o) not in self.interesting:
interesting.append(o)
extra_memory = 0
if 'cuda' in self._testMethodName:
extra_memory += torch.cuda.memory_allocated() - self.mem_allocated
# nolevels = _n_levels_in_use() == 0
if extra_memory != 0 or len(interesting) != 0:
import refcycle
refcycle.garbage().export_image('garbage.pdf')
gc.collect()
# assert nolevels, f"cleanup failed? {_n_levels_in_use()}"
assert extra_memory == 0, f'extra cuda memory left allocated: {extra_memory}'
assert len(interesting) == 0, \
f'extra torch.Tensor, Dim, or Tensor left allocated: {len(interesting)} objects of types:' \
f' { [type(t) for t in interesting] }'
def test_manual_stuff(self):
A_ = torch.rand(3, 4)
B_ = torch.rand(4, 5)
i, j, k = dims()
A = A_[i, k]
B = B_[k, j]
C = (A.expand(j) * B.expand(i)).sum(k)
self.assertTrue(torch.allclose(C.order(i, j), torch.mm(A_, B_)))
self.assertTrue(torch.allclose(torch.triu(A_, 0), triu(A_)))
D_ = torch.randint(0, 3, (6,))
d = dims()
D = D_[d]
A.index([i], [D]).order(k, d)
def attn(self, batch_size=1, sequence_length=4, hidden_size=6, num_attention_heads=3, linear=Linear, device=None, time=False):
def maybe_to(x):
return x if device is None else x.to(device)
attention_probs_dropout_prob = 0.
A = maybe_to(BertSelfAttentionA(hidden_size, num_attention_heads, attention_probs_dropout_prob, linear=linear))
B = maybe_to(BertSelfAttentionB(hidden_size, num_attention_heads, attention_probs_dropout_prob))
A.load_state_dict(B.state_dict())
hidden_state = maybe_to(torch.rand(batch_size, sequence_length, hidden_size))
b_out = B(hidden_state)
a_out = A(hidden_state)
self.assertTrue(torch.allclose(a_out, b_out)) # why does a simple matmul not do the right thing?
if time:
gpu_time(lambda: B(hidden_state), "positional", r=3)
gpu_time(lambda: A(hidden_state), "first_class", r=3)
for approach in ('relative_key', 'relative_key_query'):
A = maybe_to(BertSelfAttentionA(hidden_size, num_attention_heads,
attention_probs_dropout_prob, approach, sequence_length, linear=linear))
B = maybe_to(BertSelfAttentionB(hidden_size, num_attention_heads,
attention_probs_dropout_prob, approach, sequence_length))
A.load_state_dict(B.state_dict())
hidden_state = maybe_to(torch.rand(batch_size, sequence_length, hidden_size))
b_out = B(hidden_state)
a_out = A(hidden_state)
self.assertTrue(torch.allclose(a_out, b_out))
if time:
gpu_time(lambda: B(hidden_state), "positional", r=3)
gpu_time(lambda: A(hidden_state), "first_class", r=3)
A = maybe_to(BertSelfAttentionA(hidden_size, num_attention_heads,
attention_probs_dropout_prob, None, None, linear=linear))
B = maybe_to(BertSelfAttentionB(hidden_size, num_attention_heads,
attention_probs_dropout_prob, None, None))
A.load_state_dict(B.state_dict())
hidden_state = maybe_to(torch.rand(batch_size, sequence_length, hidden_size))
past_key_value = (maybe_to(torch.rand(batch_size, num_attention_heads,
sequence_length, hidden_size // num_attention_heads)),
maybe_to(torch.rand(batch_size, num_attention_heads,
sequence_length, hidden_size // num_attention_heads)))
b_out = B(hidden_state, past_key_value=past_key_value)
a_out = A(hidden_state, past_key_value=past_key_value)
self.assertTrue(torch.allclose(a_out, b_out))
if time:
gpu_time(lambda: B(hidden_state), "positional", r=3)
gpu_time(lambda: A(hidden_state), "first_class", r=3)
def test_attn(self):
self.attn()
def test_inplace(self):
# some embeddings table
embeddings = torch.zeros(10, 3)
# some sparse updates to the embeddings
indices = torch.arange(2) + 1
values = torch.rand(2, 3)
i, n, f = dims()
embeddings[indices[i], f] += values[i, f]
def test_adapt(self):
def f():
ci, co = dims()
# python 3.11 adapts bytecode after a number of iterations
# check that we still match names correctly
for i in range(10):
f()
@skipIf(not TEST_CUDA, "no CUDA")
def test_attn_cuda(self):
# size from the BERT paper, 90% pretraining of sequence length 128
self.attn(batch_size=256, hidden_size=768, sequence_length=128,
num_attention_heads=12, device='cuda', time=measure_perf, linear=torch.nn.Linear)
def test_stack(self):
i, j, d = dims()
A = torch.rand(4, 5)
r = stack([A[i, j]], d, j)
# a, b = r.unbind(d)
# self.assertTrue(torch.allclose(a.order(i, j), i.expand(j).order(i, j)))
# self.assertTrue(torch.allclose(b.order(i, j), j.expand(i).order(i, j)))
def test_max(self):
ap = torch.rand(2, 3, 2)
i, j, k = dims()
a = ap[i, j, k]
r, i0 = a.max(dim=k)
self.assertTrue(torch.allclose(r.order(i, j), ap.max(2)[0]))
def test_mm(self):
i, j, k, q = dims()
a = torch.rand(3, 4)
b = torch.rand(4, 5)
a_ = a[i, k]
b_ = b[k, j]
q.size = 1
r = (a_.expand(j, q) * b_.expand(i, q)).sum(k).order(q, i, j)
# r = (a_*b_).sum(k).order(q, i, j)
# print(r)
# print(a @ b)
def test_with_dims_split(self):
a = torch.arange(3 * 12).view(3, 12)
i, j, k = dims()
k.size = 4
r = a[i, [j, k]]
x = r.order(i, [j, k])
self.assertTrue(torch.allclose(a, x))
def test_hello(self):
A = torch.rand(3, 4)
B = torch.rand(4, 5)
i, j, k = dims()
# r = A[i]*4
r = (A[i, k] * B[k, j]).sum(k).order(i, j)
assert torch.allclose(r, A @ B)
assert A.sum() == A[i].sum((0, i))
assert A.sum() == A[i].sum((-1, i))
assert torch.allclose(A.sum(), A[i].sum(0, keepdim=True).sum((0, i)))
assert torch.allclose(A[i].std(i, True), A.std(0, True))
assert torch.allclose(A[i, k].max(i)[0].order(k), A.max(0)[0])
assert torch.allclose(A.sort(1)[0], A[i, k].sort(k)[0].order(i, k))
# XXX - chunk changes the size of a dimension, has to take a new dimension...
# assert torch.allclose(A.chunk(2,1)[0], A[i, k].chunk(2, k)[0].order(i, k))
assert torch.allclose(A[i].renorm(1, i, 7).order(i), A.renorm(1, 0, 7))
kk = dims()
# assert torch.allclose( torch.stack([A, A], 1), stack([A[i,k], A[i, k]], kk, k).order(i, kk, k))
k2 = dims()
# r = cat((A[i, k], A[i,k]), k, k2)
# assert torch.allclose(torch.cat([A, A], 1), r.order(i, k2))
# assert k2.size == 2*k.size
assert torch.allclose(A.expand(5, -1, -1), A[i, k].expand(j).order(j, i, k))
z = dims()
C = torch.arange(2)
assert torch.allclose(A[:, 0:2], A[i, k].index(k, C[z]).order(i, z))
o, l = dims()
o.size = 2
r = A[i, k].index(k, (o, l))
assert torch.allclose(r.order(i, o, l), A.view(-1, 2, 2))
rr = r.index((o, l), k)
assert torch.allclose(A, rr.order(i, k))
r = i + k - 1
r2 = torch.arange(3)[:, None] + torch.arange(4)[None, :] - 1
assert torch.allclose(r.order(i, k), r2)
# test with ...
assert torch.allclose(A.T, A[..., k].order(k))
# test with dimlist
a_, b_ = dimlists()
assert torch.allclose(A[i, a_].order(*a_, i), A.T)
# test with one bound dimlist
assert torch.allclose(A[:, a_].order(*a_), A.T)
# test with a dimlist that will end up empty
assert torch.allclose(A[i, b_, k].order(i, k, *b_), A)
# test with too few things
(A[i] + i)
assert torch.allclose((A[i] + i).order(i), A + torch.arange(3)[:, None])
# test with too many elements
try:
A[1, ..., 1, 1]
raise NotImplementedError()
except IndexError:
pass
c, d = dims()
c.size = 2
assert torch.allclose(A[i, [c, d]].order(i, c, d), A.view(3, 2, 2))
assert torch.allclose(A[c + 1, c + 0].order(c), A[torch.arange(2) + 1, torch.arange(2)])
try:
A[..., 3, ...]
raise NotImplementedError()
except DimensionBindError:
pass
C = torch.rand(4, 7)
c_, x, y, z = dims()
a, b, c = C.split((3, 3, 1), dim=1)
s = dims()
ref = C.split((3, 3, 1), dim=1)
t = C[s, c_].split((x, y, z), dim=c_)
for a, b, d in zip(ref, t, (x, y, z)):
assert torch.allclose(a, b.order(s, d))
D = torch.rand(3, 4, 5)
assert torch.allclose(D.transpose(0, 1).flatten(1, 2), D[i, k, j].order((i, j)).order(k))
r = [id(x) for x in torch.rand_like(A[i, k]).dims]
assert id(i) in r and id(k) in r
r = [id(x) for x in torch.nn.functional.dropout(A[i, k]).dims]
assert id(i) in r and id(k) in r
def test_simple(self):
i, j, k = dims()
x = torch.rand(3, 4)
z = x[i, j]
(z + z + z + z)
(z.order(i, j))
def test_mm_fuse(self):
i, j, k = dims()
A = torch.rand(3, 4)
B = torch.rand(4, 5)
C = (A[i, k] * B[k, j]).sum(k).order(i, j)
assert torch.allclose(C, A @ B)
def test_time_mm_fuse(self):
i, j, k = dims()
A = torch.rand(3, 4)
B = torch.rand(4, 5)
for _ in range(10):
r0 = A @ B
for _ in range(10):
a = A[i, k]
b = B[k, j]
r1 = (a * b).sum(k)
with measure('pp'):
for _ in range(10000):
A @ B
# magic_trace_stop_indicator()
with measure('fc'):
for _ in range(10000):
(A[i, k] * B[k, j]).sum(k).order(i, j)
with magic_trace('f.fxt'):
for _ in range(10000):
(A[i, k] * B[k, j]).sum(k).order(i, j)
with magic_trace('p.fxt'):
for _ in range(10000):
A @ B
# magic_trace_stop_indicator()
assert torch.allclose(r1.order(i, j), r0)
def test_compare_dims(self):
i, j = dims()
i.size = 3
j.size = 4
(i < j) # noqa: B015
def test_c(self):
_test_c()
def test_seg(self):
A = torch.rand(3, 4)
i, k = dims()
i.size = 4
k.size = 3
r = i + k - 1
def test_expand(self):
A = torch.rand(3, 4)
i = dims()
assert list(A[i].expand(2, 4).order(i).size()) == [3, 2, 4]
def test_parse(self):
self.assertEqual(("x", None, None, None), _parse_test(1, 0, "x"))
self.assertEqual(("x", None, "y", None), _parse_test(1, 0, "x", c="y"))
self.assertEqual(("x", None, "y", "z"), _parse_test(1, 0, "x", d="z", c="y"))
self.assertEqual(("x", "4", None, None), _parse_test(2, 0, "x", b="4"))
self.assertEqual(("x", "y", "z", "q"), _parse_test(2, 0, "x", "y", "z", "q"))
with self.assertRaises(TypeError):
_parse_test(2, 0, "x", "y", "z", "q", "5")
with self.assertRaises(TypeError):
_parse_test(2, 0, "x", "y", b="y")
with self.assertRaises(TypeError):
_parse_test(2, 0, "x", c="y")
with self.assertRaises(TypeError):
_parse_test(2, 0, "x")
def test_network(self):
if resnet18 is None:
self.skipTest('no torchvision')
rn = resnet18(norm_layer=lambda x: torch.nn.BatchNorm2d(x, track_running_stats=False))
rn.train()
img = torch.rand(1, 1, 2, 3, 224, 224)
imgf = img.view(2, 3, 224, 224)
i, j = dims()
r = rn(img[i, j])
r = r.order(i, j).view(2, 1000)
r2 = rn(imgf)
assert torch.allclose(r2, r, atol=1e-06)
def test_dim_args(self):
a = dimlists()
assert isinstance(a, DimList)
a = dims()
b = dimlists()
assert isinstance(a, Dim)
assert isinstance(b, DimList)
assert str(a) == 'a'
a, b = dims(sizes=[3, 4])
assert a.size == 3
assert b.size == 4
a = dims(sizes=[3])
b = dimlists(sizes=[4])
assert len(b) == 4
a = dims()
b = dimlists(sizes=[[4, 5]])
assert b[0].size == 4
assert b[1].size == 5
def test_diag(self):
i = dims()
A = torch.rand(4, 4)
(A[i, i])
def test_softmax_split(self):
a = torch.rand(16)
g, i = dims(sizes=[2, None])
a2 = a[[i, g], ]
m_b, _ = a2.max(i)
f_b = torch.exp(a2 - m_b)
l_b = f_b.sum(i)
m, _ = m_b.max(g)
c = torch.exp(m_b - m)
f = (c * f_b).order((i, g))
l = (c * l_b).sum(g)
assert torch.allclose(f / l, torch.nn.functional.softmax(a, dim=0))
def test_index(self):
A = torch.rand(3, 4)
B = torch.rand(4, 5)
i, j, k = dims()
o, l = dims()
o.size = 2
r = A[i, k].index(k, [o, l])
assert torch.allclose(r.order(i, o, l), A.view(-1, 2, 2))
rr = r.index([o, l], k)
assert torch.allclose(A, rr.order(i, k))
z = dims()
C = torch.arange(2)
x = A[i, k].index(k, C[z]).order(i, z)
assert torch.allclose(A[:, 0:2], x)
C = torch.rand(3, 4, 5)
ik = dims()
assert torch.allclose(C.index((0, 2), ik).order(ik), C.permute(0, 2, 1).reshape(15, 4))
# failures that came up from monkey patching some operators...
def test_monkey(self):
A = torch.rand(3, 4)
A[0, 0] = 5
x = torch.randn(3, 4, 4, 4, 3)
x_clone1 = x.clone()
ia = torch.tensor([0, 2, 1])
ib = torch.tensor([0, 2, 1])
first_shape = x[:, ia, None, ib, 0].shape
x_clone1[:, ia, None, ib, 0] = torch.randn(first_shape).to(x_clone1)
x = torch.autograd.Variable(torch.tensor([]))
z = torch.autograd.Variable(torch.IntTensor([1, 2, 3]))
a = [z[2], z[0] + 3]
x.new(a)
# self.assertEqual(x.new([z[2], z[0] + 3]).tolist(), [3, 4])
def test_index_placement(self):
A = torch.rand(1, 2, 3, 4)
i, j = dims(sizes=[2, 4])
a = A[:, i + 0, :, j + 0]
r = a.order(i, j)
assert torch.allclose(A.permute(1, 3, 0, 2), r)
def test_order(self):
i, j = dims()
A = torch.rand(3, 4, 5)
assert torch.allclose(A[i].order(1, i), A.permute(2, 0, 1))
def test_mask(self):
a = torch.rand(5)
i, j = dims(sizes=[a.size(0), a.size(0)])
((i >= j) * a[i]).sum(j).order(i)
def test_eq(self):
i, j = dims(sizes=[3, 3])
assert (i == j).sum((i, j)) == 3
def test_dims_with_size(self):
x = dims(3)
assert len(x) == 3 and isinstance(x[0], Dim)
class Foo:
pass
y = Foo()
z, y.x, q = dims(3)
assert str(z) == "z"
assert str(y.x) == "d1"
assert str(q) == "d2"
def test_dir(self):
i, j = dims(sizes=[3, 3])
dir(i <= j)
def test_doc(self):
assert Tensor.clamp.__doc__ == torch.Tensor.clamp.__doc__
def test_embed(self):
embeddings = torch.rand(8, 32)
ids = torch.tensor([1, 0, 3, 4])
# slow but Pythonic
values_ = torch.empty(4, 32)
for batch in range(ids.size(0)):
for feature in range(embeddings.size(1)):
values_[batch, feature] = embeddings[ids[batch], feature]
# with torchdim, single indexing kernel
batch, feature = dims(2)
values = embeddings[ids[batch], feature].order(batch, feature)
assert torch.allclose(values, values_)
def test_functorch(self):
A = torch.rand(3, 4, 5)
B = torch.rand(3, 4, 5)
C = torch.rand(5, 2)
i, j = dims()
AA = torch.mm(A[i], C) # 3, 4, 2
BB = torch.mm(B[j], C) # 3, 4, 2
assert list(torch.mm(AA.T, BB).order(i, j).shape) == [3, 3, 2, 2]
def test_permute_orig(self):
d = dims(1)
t_fc = torch.rand(1, 2, 3, 4)[d]
assert t_fc.permute(dims=(1, 0, 2)).shape == t_fc.permute(1, 0, 2).shape
def test_order_keyword(self):
d = dims(1)
t = torch.rand(3)[d]
self.assertRaises(TypeError, lambda: t.order(wrong=3))
def test_big_split(self):
total = 0
l = []
while total < 6400:
l.append(torch.randint(2, 10, (1,)).item())
total += l[-1]
x = torch.randn(total, 1)
x.split(l, 0)
skip_functorch_only = ['test_time_mm_fuse', 'test_attn_cuda']
class TestMinFunctorchOnly(TestMin):
def setUp(self):
super().setUp()
_set_pointwise_optimize(False)
def tearDown(self):
_set_pointwise_optimize(True)
super().tearDown()
for n in skip_functorch_only:
setattr(TestMinFunctorchOnly, n, skip("skip_functorch_only")(lambda self: None))
if __name__ == '__main__':
run_tests()