blob: 1e44db808b371f88b95d426407937f8365c3e02d [file] [log] [blame]
# Owner(s): ["module: functorch"]
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import OrderedDict
from unittest.case import skipIf
from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import torch.nn.functional as F
from torch import Tensor
import functools
import itertools
import warnings
import unittest
import random
from torch.testing._internal.common_methods_invocations import op_db
from torch.testing._internal.common_cuda import with_tf32_off
from torch.testing._internal.common_device_type import instantiate_device_type_tests, \
OpDTypes
from torch.testing._internal.common_device_type import ops
from torch.testing._internal.common_utils import (
parametrize,
instantiate_parametrized_tests,
subtest,
skipIfRocm,
)
from torch.testing._internal.common_device_type import \
toleranceOverride, tol
from functorch_additional_op_db import additional_op_db
from common_utils import (
get_fallback_and_vmap_exhaustive,
xfail,
skip,
skipOps,
check_vmap_fallback,
tol1,
opsToleranceOverride,
is_batch_norm_training,
generate_vmap_inputs,
compute_quantities_for_vmap_test,
is_valid_inplace_sample_input,
decorate,
DisableVmapFallback,
)
import types
from collections import namedtuple
import contextlib
import functorch
from functorch import vmap, grad, grad_and_value, jvp, vjp, jacfwd
from functorch.experimental import chunk_vmap
from torch._C._functorch import reshape_dim_into, reshape_dim_outof
from torch._functorch.make_functional import functional_init_with_buffers
from torch.testing._internal.autograd_function_db import autograd_function_db
from torch._functorch.vmap import restore_vmap
FALLBACK_REGEX = 'There is a performance drop'
class EnableVmapFallbackWarnings:
def __enter__(self):
self.prev_state = torch._C._debug_only_are_vmap_fallback_warnings_enabled()
torch._C._debug_only_display_vmap_fallback_warnings(True)
def __exit__(self, *ignored):
torch._C._debug_only_display_vmap_fallback_warnings(self.prev_state)
class TestVmapAPI(TestCase):
def test_non_tensor_output_raises(self):
with self.assertRaisesRegex(ValueError, "got type <class 'float'>"):
vmap(lambda x: 3.14)(torch.ones(3))
def multiple_outputs(x):
return x, 3
with self.assertRaisesRegex(ValueError, "got type <class 'int'>"):
vmap(multiple_outputs)(torch.ones(3))
def test_different_map_dim_size_raises(self):
x = torch.randn(2)
y = torch.randn(3)
expected_msg = 'Expected all tensors to have the same size in the mapped dimension'
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(torch.mul)(x, y)
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y))
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(lambda z: z['x'] + z['y'], in_dims=({'x': 0, 'y': 0},))({'x': x, 'y': y})
def test_func_with_no_inputs(self):
expected_msg = 'got no inputs'
def foo():
return torch.randn(3)
def bar(x):
return torch.randn(3)
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(foo)()
with self.assertRaisesRegex(ValueError, expected_msg):
vmap(bar)()
def test_func_with_no_tensors(self):
def foo(x):
return torch.randn(3)
with self.assertRaisesRegex(ValueError, 'at least one Tensor'):
vmap(foo, (None,))(1)
def test_constant_function(self):
output = vmap(lambda x: torch.tensor(3.14))(torch.ones(3))
self.assertEqual(output, torch.tensor([3.14, 3.14, 3.14]))
def test_single_input(self):
x = torch.randn(2, 3)
def square(x):
return x * x
output = vmap(square)(x)
self.assertEqual(output, x * x)
def test_multiple_inputs(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
output = vmap(torch.mul)(x, y)
self.assertEqual(output, x * y)
def test_multiple_outputs(self):
def foo(x):
return x * x, x * x * x
x = torch.randn(3)
outputs = vmap(foo)(x)
self.assertEqual(outputs[0], x * x)
self.assertEqual(outputs[1], x * x * x)
def test_multiple_outputs2(self):
# This is the same thing as
# def returns_tuple_of_tensors(x):
# return x, x
def returns_tuple_of_tensors(x):
return (x, x)
def returns_list_of_two_tensors(x):
return [x, x]
def returns_list_of_one_tensor(x):
return [x]
x = torch.randn(3)
# should not throw
vmap(returns_tuple_of_tensors)(x)
vmap(returns_list_of_two_tensors)(x)
vmap(returns_list_of_one_tensor)(x)
def test_nested_with_same_map_dim(self):
x = torch.randn(2, 3, 5)
y = torch.randn(2, 3, 5)
output = vmap(vmap(torch.mul))(x, y)
self.assertEqual(output, x * y)
output = vmap(vmap(vmap(torch.mul)))(x, y)
self.assertEqual(output, x * y)
def test_nested_with_diag_embed(self):
# diag_embed requires special testing because it is registered with conditional functionalization.
x = torch.randn(3, 3, 5)
output = vmap(vmap(torch.diag_embed))(x)
self.assertEqual(output, torch.diag_embed(x))
def test_nested_with_different_map_dim(self):
x = torch.randn(2, 3)
y = torch.randn(5, 3)
output = vmap(lambda x: vmap(lambda y: x * y)(y))(x)
self.assertEqual(output.shape, (2, 5, 3))
self.assertEqual(output, x.view(2, 1, 3) * y)
z = torch.randn(7, 3)
output = vmap(lambda x: vmap(lambda y: vmap(lambda z: x * y * z)(z))(y))(x)
self.assertEqual(output.shape, (2, 5, 7, 3))
self.assertEqual(output, x.view(2, 1, 1, 3) * y.view(5, 1, 3) * z)
def test_noop_in_inner_vmap(self):
x = torch.randn(3)
y = torch.randn(5)
output = vmap(lambda x: vmap(lambda y: x)(y))(x)
self.assertEqual(output, x.view(3, 1).expand(3, 5))
def test_unsupported_op_err_msg(self):
# Unsupported view op
tensor = torch.randn(2, 3)
msg = (
r"Batching rule not implemented for aten::.+; the "
r"fallback path doesn't work on out= or view ops"
)
# TODO: find a view op
# with self.assertRaisesRegex(RuntimeError, msg):
# vmap(torch.ravel)(tensor)
def out_op(x, y):
return torch.abs(x, out=y)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(out_op)(tensor, tensor)
# Don't support non-tensor returns. This is a limitation of vmap;
# functions that don't return tensors must be special cased
with self.assertRaisesRegex(RuntimeError, 'Batching rule not implemented'):
vmap(torch.equal)(tensor, tensor)
def test_nonzero_out_dims(self):
# Basic test
tensor = torch.randn(2, 3)
result = vmap(lambda x: x, out_dims=1)(tensor)
self.assertEqual(result, tensor.permute(1, 0))
self.assertEqual(result.data_ptr(), tensor.data_ptr())
# Test that the batch dimension gets permuted to dim 2
tensor = torch.randn(2, 3, 5, 7)
result = vmap(lambda x: x, out_dims=2)(tensor)
self.assertEqual(result, tensor.permute(1, 2, 0, 3))
self.assertEqual(result.data_ptr(), tensor.data_ptr())
# negative out_dim
tensor = torch.randn(2, 3, 5, 7)
result = vmap(lambda x: x, out_dims=-1)(tensor)
self.assertEqual(result, tensor.permute(1, 2, 3, 0))
self.assertEqual(result.data_ptr(), tensor.data_ptr())
# check that out_dims works on ALL outputs
tensor = torch.randn(2, 3, 5, 7)
other = torch.randn(2, 3, 5, 7)
result = vmap(lambda x, y: (x, y), out_dims=2)(tensor, other)
self.assertEqual(result, (tensor.permute(1, 2, 0, 3), other.permute(1, 2, 0, 3)))
# use out_dims with the maximum vmap-able tensor dims (64 dims)
ndims = 64
shape = [2] + [1] * (ndims - 1)
expected_shape = [1, 1, 2] + [1] * (ndims - 3)
tensor = torch.randn(shape)
result = vmap(lambda x: x, out_dims=2)(tensor)
self.assertEqual(result.shape, expected_shape)
# test something that is not the identity function
def foo(x, y):
return x, x * y, x * y * y
x = torch.randn(2, 3, 5)
y = torch.randn(2, 3, 5)
result = vmap(foo, out_dims=1)(x, y)
self.assertEqual(
result,
(x.permute(1, 0, 2), (x * y).permute(1, 0, 2), (x * y * y).permute(1, 0, 2)))
def test_multiple_out_dims(self):
def foo(x):
return x, x
def bar(x, y):
return x, x, x, x * y
x = torch.randn(2, 3, 5)
y = torch.randn(2, 3, 5)
result = vmap(foo, out_dims=(0, 1))(x)
self.assertEqual(result, (x, x.permute(1, 0, 2)))
result = vmap(bar, out_dims=(-1, 0, 1, 2))(x, y)
expected = (
x.permute(1, 2, 0),
x,
x.permute(1, 0, 2),
(x * y).permute(1, 2, 0),
)
self.assertEqual(result, expected)
def test_nested_out_dims(self):
y = torch.randn(2, 3, 5, 7)
# Inner vmap has non-zero out_dim
result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y))(y)
self.assertEqual(result.shape, (2, 5, 3, 7))
self.assertEqual(result, y.permute(0, 2, 1, 3))
# all vmaps have non-zero out_dim
result = vmap(lambda y: vmap(lambda x: x, out_dims=1)(y), out_dims=1)(y)
self.assertEqual(result.shape, (5, 2, 3, 7))
self.assertEqual(result, y.permute(2, 0, 1, 3))
# throwing in some negative out_dims
result = vmap(lambda y: vmap(lambda x: x, out_dims=-1)(y), out_dims=-1)(y)
self.assertEqual(result.shape, (5, 7, 3, 2))
self.assertEqual(result, y.permute(2, 3, 1, 0))
# testing fn that isn't the identity
x = torch.randn(2, 3)
y = torch.randn(5, 3)
result = vmap(lambda y: vmap(lambda x: x * y, out_dims=1)(x), out_dims=-1)(y)
self.assertEqual(result.shape, (3, 2, 5))
self.assertEqual(result, (y.view(5, 1, 3) * x).permute(2, 1, 0))
def test_out_dims_edge_case(self):
def foo(x):
return x
# Test that we accept out_dims=(1,) for a function with one output.
tensor = torch.randn(2, 3)
expected = vmap(foo, out_dims=1)(tensor)
result = vmap(foo, out_dims=(1,))(tensor)
self.assertEqual(result, expected)
def test_out_dims_none_tuple(self):
def foo(x):
return x, 'hello world'
tensor = torch.randn(2, 3)
result = vmap(foo, out_dims=(0, None))(tensor)
self.assertEqual(result[1], 'hello world')
self.assertEqual(result[0], tensor)
def foo(x):
x.add_(1)
return None, 'hello world'
result = vmap(foo, out_dims=(None, None))(tensor)
self.assertEqual(result, (None, 'hello world'))
def test_out_dims_none(self):
def foo(x):
return x
tensor = torch.randn(2, 3)
with self.assertRaisesRegex(ValueError, 'can not return a BatchedTensor when out_dim is None'):
vmap(foo, out_dims=None)(tensor)
def foo(x):
x.add_(1)
return 'hello world'
result = vmap(foo, out_dims=None)(tensor)
self.assertEqual(result, 'hello world')
def test_out_dims_normal_tensor(self):
def foo(x):
return torch.arange(3)
tensor = torch.randn(2, 3)
result = vmap(foo)(tensor)
self.assertEqual(result.shape, [2, 3])
result = vmap(foo, out_dims=None)(tensor)
self.assertEqual(result, torch.arange(3))
def test_pytree_returns(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y), [y, (y, y)]
y0, (y1, y2), (y3, (y4, y5)) = vmap(f)(x)
self.assertEqual(y0, x.sin())
self.assertEqual(y0, y1)
self.assertEqual(y2, y1)
self.assertEqual(y2, y3)
self.assertEqual(y4, y3)
self.assertEqual(y5, y4)
def test_pytree_odict_returns(self):
x = torch.randn(2, 3)
def f(t):
y = t.sin()
return OrderedDict([("sin", y), ("cos", t.cos())])
out = vmap(f)(x)
assert isinstance(out, OrderedDict)
expected = f(x)
self.assertEqual(out["sin"], expected["sin"])
self.assertEqual(out["cos"], expected["cos"])
def test_pytree_returns_outdims(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y)
y0, (y1, y2) = vmap(f, out_dims=(0, (0, 1)))(x)
self.assertEqual(y0, x.sin())
self.assertEqual(y1, x.sin())
self.assertEqual(y2, x.sin().t())
def test_pytree_returns_broadcast_simple(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y)
y0, (y1, y2) = vmap(f, out_dims=1)(x)
self.assertEqual(y0, x.sin().t())
self.assertEqual(y1, y0)
self.assertEqual(y2, y0)
def test_pytree_returns_broadcast_nested(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y)
y0, (y1, y2) = vmap(f, out_dims=(0, 1))(x)
self.assertEqual(y0, x.sin())
self.assertEqual(y1, y0.t())
self.assertEqual(y2, y0.t())
def test_out_dims_must_be_int_or_collection_of_int_err_msg(self):
msg = 'must be an int, None or a python collection of ints'
tensor = torch.randn(2, 3)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims='lol')(tensor)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims=('lol',))(tensor)
def test_out_dims_and_num_outputs_mismatch_err_msg(self):
msg = 'not compatible'
x = torch.randn(2, 3, 5)
# Too many out_dims
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims=(0, 0))(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: (x, x, x), out_dims=(0, 0, 0, 0))(x)
# Too few out_dims
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: (x, x), out_dims=(0,))(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: (x, x, x), out_dims=(0, 0))(x)
def test_out_dim_out_of_bounds_err_msg(self):
# TODO(rzou): This error message isn't that great. It comes straight
# from maybe_wrap_dim. Consider doing a try-catch-(add some context) to
# the error message in the future in C++
msg = 'Dimension out of range'
x = torch.randn(2, 3, 5)
with self.assertRaisesRegex(IndexError, msg):
vmap(lambda x: x, out_dims=3)(x)
with self.assertRaisesRegex(IndexError, msg):
vmap(lambda x: x, out_dims=-4)(x)
def test_non_zero_in_dims(self):
tensor = torch.randn(2, 3, 5)
# Implicit out_dims = 0; vmap will move the batch dim to the front.
output = vmap(lambda x: x, (1,))(tensor)
self.assertEqual(output, tensor.permute(1, 0, 2))
self.assertEqual(output.data_ptr(), tensor.data_ptr())
x = torch.randn(2, 3)
y = torch.randn(3, 2)
output = vmap(torch.mul, (0, 1))(x, y)
self.assertEqual(output, x * y.t())
output = vmap(torch.mul, (1, 0))(x, y)
self.assertEqual(output, x.t() * y)
def test_none_in_dims(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
# None in_dim for a Tensor means we don't map over it
output = vmap(torch.mul, (0, None))(x, y)
self.assertEqual(output.shape, (2, 2, 3))
self.assertEqual(output, x.view(2, 1, 3) * y)
# None in_dim for non-tensor arguments
output = vmap(torch.mul, (0, None))(x, 2)
self.assertEqual(output, x * 2)
def test_nested_non_default_in_dims(self):
x = torch.rand(5, 2, 3)
y = torch.rand(3, 5, 2)
result = vmap(vmap(vmap(torch.mul), (1, 0)), (1, 2))(x, y)
self.assertEqual(result, x.permute(1, 2, 0) * y.permute(2, 0, 1))
def test_nested_negative_in_dims(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
output = vmap(torch.mul, (-1, -1))(x, y)
self.assertEqual(output.shape, (3, 2))
self.assertEqual(output, (x * y).permute(1, 0))
def test_non_default_in_dims_out_dims(self):
x = torch.randn(2, 3, 5)
# Same in_dim as out_dim, vmap over identity
result = vmap(lambda x: x, in_dims=1, out_dims=1)(x)
self.assertEqual(result, x)
self.assertEqual(result.data_ptr(), x.data_ptr())
# Different in_dim from out_dim, vmap over identity
result = vmap(lambda x: x, in_dims=2, out_dims=1)(x)
self.assertEqual(result.shape, (2, 5, 3))
self.assertEqual(result, x.transpose(1, 2))
self.assertEqual(result.data_ptr(), x.data_ptr())
def foo(x):
return x * 2
# Same in_dim as out_dim, vmap over operation
result = vmap(foo, in_dims=1, out_dims=1)(x)
self.assertEqual(result, x * 2)
# Different in_dim as out_dim, vmap over operation
result = vmap(foo, in_dims=2, out_dims=1)(x)
self.assertEqual(result.shape, (2, 5, 3))
self.assertEqual(result, (x * 2).transpose(1, 2))
# Basic nested test.
result = vmap(vmap(foo, 1, 1), 1, 1)(x)
self.assertEqual(result, x * 2)
def test_item_throws(self):
def f(x):
return x.item()
with self.assertRaisesRegex(RuntimeError, r'item\(\) on a Tensor'):
vmap(f)(torch.randn(3))
def test_data_dependent_control_flow_throws(self):
def f(x):
if x:
return x
return 0
with self.assertRaisesRegex(RuntimeError, r'data-dependent control flow'):
vmap(f)(torch.randn(3))
def test_accepts_nested_inputs(self):
x = torch.randn(2, 3)
y = torch.randn(2, 3)
# Single layer of nesting
out = vmap(lambda z: z[0] + z[1])((x, y))
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=(0,))((x, y))
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))((x, y))
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1])([x, y])
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=(0,))([x, y])
self.assertEqual(out, x + y)
out = vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, y])
self.assertEqual(out, x + y)
out = vmap(lambda z: z['x'] + z['y'])({'x': x, 'y': y})
self.assertEqual(out, x + y)
out = vmap(lambda z: z['x'] + z['y'], in_dims=(0,))({'x': x, 'y': y})
self.assertEqual(out, x + y)
out = vmap(lambda z: z['x'] + z['y'], in_dims=({'x': 0, 'y': 0},))({'x': x, 'y': y})
self.assertEqual(out, x + y)
# Multiple layers of nesting
out_fn = vmap(lambda z: z['x'][0] + z['x'][1][0] + z['y'][0] + z['y'][1])
out = out_fn({'x': [x, (x,)], 'y': [y, y]})
self.assertEqual(out, x + x + y + y)
def test_in_dims_wrong_type_err_msg(self):
x = torch.randn(3)
y = torch.randn(3)
msg = r'expected `in_dims` to be int or a \(potentially nested\) tuple'
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, [0, 0])(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, set({0}))(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, 'lol')(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=[0, 0])([x, y])
# The following should not throw
vmap(torch.mul, (0, 0))(x, y)
def test_not_enough_in_dims_err_msg(self):
x = torch.randn(3)
y = torch.randn(3)
msg = r'in_dims is not compatible with the structure of `inputs`'
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, (0,))(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.mul, (0, 0, 0))(x, y)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=([0],))([x, y])
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=((0, 0),))([x, y])
# The following should not throw
vmap(torch.mul, (0, 0))(x, y)
def test_integer_in_dim_but_not_tensor_input_err_msg(self):
def foo(xy):
return xy[0] * xy[1]
def bar(x, yz):
return x * yz[0] * yz[1]
x = torch.randn(2, 3)
# the following are errors in jax (and will always be errors)
msg = 'Got in_dim=0 for an input but the input is of type'
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.sum)(x, 0)
with self.assertRaisesRegex(ValueError, msg):
vmap(torch.sum, (0, 0))(x, 0)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=([0, 0],))([x, 1])
# The following should not throw
vmap(torch.sum, (0, None))(x, 0)
def test_in_dim_not_in_tensor_err_msg(self):
def foo(x):
return x * x
x = torch.randn(2, 3)
y = torch.randn(2, 3)
msg = r'Got in_dim=-?\w for some input, but that input is a Tensor of dimensionality \w'
with self.assertRaisesRegex(ValueError, msg):
vmap(foo)(torch.randn([]))
with self.assertRaisesRegex(ValueError, msg):
vmap(foo, in_dims=(0,))(torch.randn([]))
with self.assertRaisesRegex(ValueError, msg):
vmap(foo, in_dims=(-3,))(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(foo, in_dims=(2,))(y)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda z: z[0] + z[1], in_dims=([3, 0],))([x, y])
# the following should not throw
vmap(foo, in_dims=(0,))(torch.randn(2, 3))
vmap(foo, in_dims=(1,))(torch.randn(2, 3))
def test_fallback_does_not_warn_by_default(self):
op = torch._test_functorch_fallback
x = torch.randn(11)
y = torch.randn(11)
with warnings.catch_warnings(record=True) as wa:
torch.vmap(op)(x, y)
# The single warning here is the "vmap is experimental"
# warning, not a warning from the vmap fallback path.
self.assertEqual(len(wa), 1)
@unittest.expectedFailure
def test_fallback_warns_when_warnings_are_enabled(self):
# NB: One day we will implement a batching rule for torch.atan2.
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = torch._test_functorch_fallback
x = torch.randn(11)
y = torch.randn(11)
with warnings.catch_warnings(record=True) as wa:
with EnableVmapFallbackWarnings():
torch.vmap(op)(x, y)
self.assertEqual(len(wa), 2)
self.assertRegex(str(wa[-1].message), FALLBACK_REGEX)
def _assert_uses_vmap_fallback(self, vmap_args, inputs):
return
# with warnings.catch_warnings(record=True) as wa:
# with EnableVmapFallbackWarnings():
# result = vmap(*vmap_args)(*inputs)
# self.assertEqual(len(wa), 2)
# self.assertRegex(str(wa[-1].message), FALLBACK_REGEX)
def test_fallback_zero_dim(self):
op = torch._test_functorch_fallback
x = torch.randn(11)
y = torch.randn(11)
self._assert_uses_vmap_fallback((op,), (x, y))
B0, B1 = 0, 3
x = torch.randn(B0, 11)
y = torch.randn(11)
msg = 'The fallback path does not support vmap over dims of size 0'
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (0, None))(x, y)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (None, 0))(y, x)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(x, x)
x = torch.randn(B0, B1, 11)
y = torch.randn(B1, 11)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (0, None))(x, y)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, (None, 0))(y, x)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(x, x)
def test_fallback_warning(self):
# We use a dummy function _test_functorch_fallback
# defined in prim_native_functions.cpp for this
op = torch._test_functorch_fallback
x = torch.randn(5, 7, 11)
y = torch.randn(5, 7, 11)
self._assert_uses_vmap_fallback((op,), (x, y))
x = torch.randn(7, 11, 5)
y = torch.randn(5, 7, 11)
result = vmap(op, (2, 0))(x, y)
self.assertEqual(result, op(x.permute(2, 0, 1), y))
# nested vmap
x = torch.randn(7, 11, 5)
y = torch.randn(5, 7, 11)
result = vmap(vmap(op), (2, 0))(x, y)
self.assertEqual(result, op(x.permute(2, 0, 1), y))
# big batch size (total 10000)
x = torch.randn(100, 10, 10, 5)
y = torch.randn(100, 10, 10)
result = vmap(vmap(vmap(op)))(x, y)
self.assertEqual(result, op(x, y.view(100, 10, 10, 1)))
# TODO: No clue what is wrong here.
@unittest.skip
def test_fallback_masked_fill(self):
# NB: One day we will implement a batching rule for masked_fill
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
def run_test(batch_size):
B0 = batch_size
x = torch.randn(B0, 7, 11, 13)
dim = 0
index = torch.tensor([0, 4, 2])
values = torch.randn(B0, 3, 13)
self._assert_uses_vmap_fallback((torch.index_add, (0, None, None, 0)), (x, dim, index, values))
result = vmap(torch.index_add, (0, None, None, 0))(x, dim, index, values)
expected = torch.index_add(
x, dim + 1, index, values.view(B0, 3, 1, 13))
self.assertEqual(result, expected)
run_test(batch_size=5)
run_test(batch_size=1237)
def test_fallback_multiple_returns(self):
# NB: One day we will implement a batching rule for torch.var_mean
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
B0, B1, B2 = 2, 3, 1237
tensor = torch.randn(B0, 10)
self._assert_uses_vmap_fallback((torch.var_mean,), (tensor,))
# fallback correctness on torch.var_mean
result = vmap(torch.var_mean)(tensor)
expected = torch.var_mean(tensor, dim=1)
self.assertEqual(result, expected)
# nested vmap
tensor = torch.randn(B0, B1, 10)
result = vmap(vmap(torch.var_mean))(tensor)
expected = torch.var_mean(tensor, dim=2)
self.assertEqual(result, expected)
# big batch size, nested vmap
tensor = torch.randn(B0, B1, B2, 10)
result = vmap(vmap(vmap(torch.var_mean)))(tensor)
expected = torch.var_mean(tensor, dim=3)
self.assertEqual(result, expected)
def test_inplace_fallback_unary(self):
# Test the in-place fallback on an in-place method that takes no
# additional Tensor arguments. This is the simplest case of the fallback.
# NB: One day we will implement a batching rule for acos_.
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = Tensor.acos_
B0, B1, B2 = 2, 3, 10000
x = torch.randn(B0, 5)
self._assert_uses_vmap_fallback((op,), (x,))
# Single vmap
x_orig = torch.rand(B0, 5)
x = x_orig.clone()
result = vmap(op)(x)
self.assertTrue(result is x)
self.assertEqual(result, x_orig.acos())
# Single vmap + different out_dim produces a view(!)
x_orig = torch.rand(B0, 5)
x = x_orig.clone()
result = vmap(op, out_dims=(1,))(x)
self.assertTrue(result._base is x)
self.assertEqual(result, x_orig.t().acos())
# Nested vmap
x_orig = torch.randn(B0, B1, 5)
x = x_orig.clone()
result = vmap(vmap(op))(x)
self.assertTrue(result is x)
self.assertEqual(result, x_orig.acos())
# Nested vmap, large batch size
x_orig = torch.randn(B0, B1, B2, 5)
x = x_orig.clone()
result = vmap(vmap(vmap(op)))(x)
self.assertTrue(result is x)
self.assertEqual(result, x_orig.acos())
def test_inplace_fallback_nary_same_levels(self):
# NB: One day we will implement a batching rule for atan2_
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = Tensor.atan2_
outplace_op = torch.atan2
x = torch.randn(5, 7, 11)
y = torch.randn(5, 7, 11)
self._assert_uses_vmap_fallback((op,), (x, y))
# Single vmap
B0 = 5
x_orig = torch.randn(7, 11, B0)
x = x_orig.clone()
y = torch.randn(B0, 7, 11)
vmap(op, (2, 0))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.movedim(0, 2)))
# Nested vmap
B0, B1 = 5, 7
x_orig = torch.randn(B1, 11, B0)
x = x_orig.clone()
y = torch.randn(B0, B1, 11)
vmap(vmap(op), (2, 0))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.movedim([0, 1], [2, 0])))
# big batch size (total 10000)
B0, B1, B2 = 100, 10, 10
x_orig = torch.randn(B0, B1, B2, 5)
x = x_orig.clone()
y = torch.randn(B0, B1, B2)
vmap(vmap(vmap(op)))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.view(B0, B1, B2, 1)))
# ("Fallback isInplaceVmapCompatible check is broken")
@unittest.expectedFailure
def test_inplace_fallback_nary_different_levels(self):
# NB: One day we will implement a batching rule for atan2_
# If/when we do, this test should be replaced to test the fallback
# path on another operator to avoid bitrot.
op = Tensor.atan2_
outplace_op = torch.atan2
B0, B1 = 2, 3
x = torch.rand(B0, 7)
y = torch.rand(7)
self._assert_uses_vmap_fallback((op, (0, None)), (x, y))
# op(left, right): All of the levels in right are found in left
x_orig = torch.rand(B0, 7)
x = x_orig.clone()
y = torch.rand(7)
vmap(op, in_dims=(0, None))(x, y)
self.assertEqual(x, outplace_op(x_orig, y))
x_orig = torch.rand(B0, B1, 7)
x = x_orig.clone()
y = torch.rand(B0, 7)
vmap(vmap(op, in_dims=(0, None)))(x, y)
self.assertEqual(x, outplace_op(x_orig, y.view(B0, 1, 7)))
# op(left, right): Some of the levels in right are not found in left
msg = r'vmap: aten::atan2_\(self, \*extra_args\) is not possible'
x = torch.rand(7)
y = torch.rand(B0, 7)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(x, y)
x = torch.rand(B1, 7)
y = torch.rand(B0, 7)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 0))(x, y)
x = torch.rand(B1, 7)
y = torch.rand(7, B0)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=(0, None)), in_dims=(None, 1))(x, y)
x = torch.rand(B0, 7)
y = torch.rand(B0, B1, 7)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=(None, 0)))(x, y)
def test_backward_unsupported_interaction(self):
x = torch.randn(3, requires_grad=True)
y = torch.randn(5)
grad = torch.randn_like(x)
err_msg = r'backward\(\) called inside a functorch transform'
def backward_on_vmapped_tensor(x):
x.sum().backward()
# FIXME
return self.skipTest("error: element 0 of tensors does not require grad and does not have a grad_fn")
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(backward_on_vmapped_tensor)(x)
def backward_with_vmapped_grad(x, grad):
x.backward(grad)
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(backward_with_vmapped_grad)(x, grad)
def completely_unrelated_backward(y):
x.sum().backward()
return y
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(completely_unrelated_backward)(y)
@unittest.expectedFailure
def test_grad_unsupported_interaction(self):
input_tensor = torch.randn(3, requires_grad=True)
err_msg = 'autograd.grad.* called inside torch.vmap'
captured = torch.randn(3, requires_grad=True)
def output_to_grad_is_vmapped(input_tensor):
output = (captured * input_tensor).sum()
return torch.autograd.grad([output], [captured])[0]
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(output_to_grad_is_vmapped)(input_tensor)
output = (input_tensor ** 2).sum()
def input_to_grad_is_vmapped(input_tensor):
return torch.autograd.grad([output], [input_tensor])[0]
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(input_to_grad_is_vmapped)(input_tensor)
def test_batched_gradient_basic(self):
N = 3
x = torch.randn(N, requires_grad=True)
y = torch.randn(N)
def vjp_mul(v):
return torch.autograd.grad([x * y], [x], grad_outputs=[v])[0]
batched_v = torch.eye(N)
jacobian = vmap(vjp_mul)(batched_v)
self.assertEqual(jacobian, torch.diagflat(y))
def test_functools_partial(self):
x = torch.randn(3)
y = torch.randn(2, 3)
result = vmap(functools.partial(torch.mul, x))(y)
self.assertEqual(result, x * y)
def test_nn_module(self):
tensor = torch.randn(2, 3)
model = torch.nn.Linear(3, 3, bias=False)
result = vmap(model)(tensor)
self.assertEqual(result, model(tensor))
def test_fallback_with_undefined_grad(self):
B0 = 7
x = torch.randn(2, 3, 4, 5, requires_grad=True)
weight = torch.randn(3, 3, 1, 1)
v = torch.randn(B0, 2, 3, 4, 5)
def get_vjp(v):
result = torch.nn.functional.conv2d(x, weight)
grad_x, = torch.autograd.grad(result, x, v)
return grad_x
# Runs vmap(get_vjp)(v), which should not error out.
# The backward formula for convolution returns an undefined
# Tensor for grad_bias because the original bias does not exist.
#
# In the future we'll probably add a batching rule for convolution
# backward. When this happens, we should modify this test to use a
# different op (and/or create and use a dummy operator) to avoid bitrot.
self._assert_uses_vmap_fallback([get_vjp], [v])
def test_reshape_dim_into(self):
x = torch.randn(2, 3, 5, 7)
y = reshape_dim_into(0, 0, x)
self.assertEqual(y, x.reshape(6, 5, 7))
y = reshape_dim_into(0, 1, x)
self.assertEqual(y, x.movedim(0, 1).reshape(3, 2 * 5, 7))
y = reshape_dim_into(0, 2, x)
self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7))
y = reshape_dim_into(1, 2, x)
self.assertEqual(y, x.movedim(1, 2).reshape(2, 5, 3 * 7))
y = reshape_dim_into(0, -2, x)
self.assertEqual(y, x.movedim(0, 1).reshape(3, 2 * 5, 7))
y = reshape_dim_into(0, -1, x)
self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7))
y = reshape_dim_into(-4, -1, x)
self.assertEqual(y, x.movedim(0, 2).reshape(3, 5, 2 * 7))
def test_reshape_dim_outof(self):
x = torch.randn(12, 12, 12).permute(2, 1, 0)
y = reshape_dim_outof(0, 2, x)
self.assertEqual(y, x.reshape(2, 6, 12, 12))
y = reshape_dim_outof(1, 4, x)
self.assertEqual(y, x.reshape(12, 4, 3, 12))
y = reshape_dim_outof(2, 6, x)
self.assertEqual(y, x.reshape(12, 12, 6, 2))
y = reshape_dim_outof(-1, 6, x)
self.assertEqual(y, x.reshape(12, 12, 6, 2))
# Case: `0` sized dim.
x = torch.randn(12, 12, 0)
y = reshape_dim_outof(-1, 6, x)
self.assertEqual(y.shape, torch.Size((12, 12, 6, 0)))
def test_batch_rule_does_not_need_to_handle_no_batched_input(self):
def f(x, y):
res = torch.dot(y, torch.ones(2))
return x + res
x = torch.randn(7, 5)
y = torch.randn(3, 2)
out = vmap(vmap(f, in_dims=(0, None)), in_dims=(None, 0))(x, y)
expected = torch.mv(y, torch.ones(2)).view(3, 1, 1) + x
self.assertEqual(out, expected)
def test_decomposition_under_python_dispatcher(self):
# This test will raise an error if the vmap fallback gets invoked.
# Here we test that decomps registered to FuncTorchBatchedDecomposition
# are respected by the Python Dispatcher.
t = torch.ones(3, 3) * 5
with DisableVmapFallback():
with torch._dispatch.python.enable_python_dispatcher():
o = torch.vmap(torch.square)(t)
self.assertEqual(o, torch.square(t))
def _test_vmap_autocast(self, device):
if torch.device(device).type == "cpu":
amp_dtype = torch.bfloat16
else:
amp_dtype = torch.float16
a_float32 = torch.rand(4, 2, 3, device=device)
b_float32 = torch.rand(4, 3, 2, device=device)
c_float32 = torch.rand(4, 2, 2, device=device)
d_float32 = torch.rand(4, 3, 2, device=device)
# Case 1, autocast inside vmapped function
def func1(x, y, z, w):
with torch.autocast(dtype=amp_dtype, device_type=device):
e_float16 = torch.matmul(x, y)
assert e_float16.dtype == amp_dtype, e_float16.dtype
f_float16 = torch.matmul(z, e_float16)
assert f_float16.dtype == amp_dtype, f_float16.dtype
return torch.matmul(w, f_float16.float())
expected = func1(a_float32, b_float32, c_float32, d_float32)
out = vmap(func1)(a_float32, b_float32, c_float32, d_float32)
assert expected.allclose(out)
# Case 2, autocast decorator inside vmapped function
@torch.autocast(dtype=amp_dtype, device_type=device)
def func2(x, y, z, w):
e_float16 = torch.matmul(x, y)
assert e_float16.dtype == amp_dtype, e_float16.dtype
f_float16 = torch.matmul(z, e_float16)
assert f_float16.dtype == amp_dtype, f_float16.dtype
return torch.matmul(w, f_float16)
expected = func2(a_float32, b_float32, c_float32, d_float32)
out = vmap(func2)(a_float32, b_float32, c_float32, d_float32)
assert expected.allclose(out)
# Case 3, autocast is outside vmapped function
def func3(x, y, z, w):
e_float16 = torch.matmul(x, y)
assert e_float16.dtype == amp_dtype, e_float16.dtype
f_float16 = torch.matmul(z, e_float16)
assert f_float16.dtype == amp_dtype, f_float16.dtype
return torch.matmul(w, f_float16)
with torch.autocast(dtype=amp_dtype, device_type=device):
expected = func3(a_float32, b_float32, c_float32, d_float32)
out = vmap(func3)(a_float32, b_float32, c_float32, d_float32)
assert expected.allclose(out)
@unittest.skip("Somehow, vmap and autocast do not work on CPU")
def test_vmap_autocast_cpu(self):
self._test_vmap_autocast("cpu")
@skipIf(not torch.cuda.is_available(), "CUDA is unavailable")
def test_vmap_autocast_cuda(self):
self._test_vmap_autocast("cuda")
def test_restore_vmap_pytree_input_output(self):
def f(x, y):
output0 = x[0] + x[1]
output1 = y
return {'a': output0, 'b': output1}
B = 2
x0 = torch.randn(B, 3)
x1 = torch.randn(B)
y = torch.randn(4, B)
out, out_dims = restore_vmap(f, ((0, 0), 1), B, 'error')((x0, x1), y)
expected = vmap(f, in_dims=((0, 0), 1), out_dims={'a': 0, 'b': 1})((x0, x1), y)
self.assertEqual(out, expected)
self.assertEqual(out_dims, {'a': 0, 'b': 1})
def test_restore_vmap_no_vmapped_inputs(self):
def f(x, y, z):
return x, y * z, z
B = 2
# Mix of tensor and non-tensor inputs
x = torch.randn(3)
y = torch.randn(4)
z = 5
out, out_dims = restore_vmap(f, (None, None, None), B, 'error')(x, y, z)
self.assertEqual(out, f(x, y, z))
self.assertEqual(out_dims, (None, None, None))
def test_restore_vmap_unexpanded_outputs(self):
def f(x, y):
# Mix of tensor and non-tensor outputs
return 3 * y, y.sum(), None
B = 2
x = torch.randn(B, 3)
y = torch.randn(4)
out, out_dims = restore_vmap(f, (0, None), B, 'error')(x, y)
self.assertEqual(out, f(None, y))
self.assertEqual(out_dims, (None, None, None))
def test_data_attribute(self):
def foo(x):
y = x.data
return x
with self.assertRaisesRegex(RuntimeError, "accessing `data` under vmap transform"):
torch.func.vmap(foo)(torch.randn(3, 3))
def foo(x):
x.data = torch.ones(3, 3)
return x
with self.assertRaisesRegex(RuntimeError, "mutating directly with `.data` under vmap"):
torch.func.vmap(foo)(torch.randn(3, 3))
def slice_inputs(inputs, bdims, i):
result = []
for inp, bdim in zip(inputs, bdims):
if bdim is None:
result.append(inp)
else:
result.append(inp.select(bdim, i))
return tuple(result)
def reference_vmap(op, inputs, in_dims=0, out_dims=0):
if isinstance(in_dims, int):
in_dims = (in_dims,) * len(inputs)
bdim_sizes = [inp.size(dim) for inp, dim in zip(inputs, in_dims) if dim is not None]
assert all(bdim_size == bdim_sizes[0] for bdim_size in bdim_sizes)
bdim_size = bdim_sizes[0]
results = tuple(op(*slice_inputs(inputs, in_dims, i)) for i in range(bdim_size))
assert len(results) > 0
op_has_single_return = not isinstance(results[0], tuple)
if op_has_single_return:
assert all(isinstance(result, torch.Tensor) for result in results)
if isinstance(out_dims, int):
out_dims = (out_dims,) * 1
return torch.stack(results, dim=out_dims[0])
assert all(isinstance(result, tuple) for result in results)
num_returns = len(results[0])
assert all(len(result) == num_returns for result in results)
if isinstance(out_dims, int):
out_dims = (out_dims,) * num_returns
return tuple(torch.stack(result_shards, out_dim)
for result_shards, out_dim in zip(zip(*results), out_dims))
class TensorFactory:
@staticmethod
def rand(size, device='cpu', dtype=torch.float):
return torch.rand(size, device=device, dtype=dtype)
@staticmethod
def randn(size, device='cpu', dtype=torch.float):
return torch.randn(size, device=device, dtype=dtype)
@staticmethod
def randp1(size, device='cpu', dtype=torch.float):
return torch.rand(size, device=device, dtype=dtype) + 1
# Tests vmap(op, in_dims, out_dims)(*inputs) by comparing the output to a
# (slow) sequential map+stack fallback.
#
# check_view: Test if the first returned output is a view of the first input
# check_propagates_grad: Test if the operation propagates gradients.
def _vmap_test(self, op, inputs, in_dims=0, out_dims=0,
check_view=False, check_propagates_grad=True):
result = vmap(op, in_dims, out_dims)(*inputs)
reference_result = reference_vmap(op, inputs, in_dims, out_dims)
self.assertEqual(result, reference_result)
op_has_single_return = not isinstance(result, tuple)
if check_view:
result_as_tuple = (result,) if op_has_single_return else result
for output in result_as_tuple:
input0_base = inputs[0] if inputs[0]._base is None else inputs[0]._base
self.assertTrue(output._base is input0_base,
msg="result was not a view of the first input!")
if not check_propagates_grad:
return
# Assuming input[0] is a floating-point tensor. Check if the vmap
# operation propagates the requires_grad flag to the zeroth output.
# Some vmap operators are implemented in a way that assumes that
# they are composite with respect to autograd. If the operator ever is
# changed to not be composite with respect to autograd, then the
# following check should fail.
inputs_clone = list(inputs)
inputs_clone[0] = inputs[0].clone().requires_grad_()
result = vmap(op, in_dims, out_dims)(*inputs_clone)
result_as_tuple = (result,) if op_has_single_return else result
self.assertTrue(result[0].requires_grad)
def should_allow_vmap_fallback_usage(fn):
return getattr(fn, '_allow_vmap_fallback_usage', False)
def allowVmapFallbackUsage(fn):
fn._allow_vmap_fallback_usage = True
return fn
# All tests of TestVmapBase check that the slow vmap fallback is never invoked.
# This is so that we can incrementally add batching rules for operators to
# replace the slow vmap fallback path for said operators. To skip this check,
# please use the allowVmapFallbackUsage decorator.
#
# NB: Don't add tests to TestVmapBase directly, unless you want them to run
# on every subclass of TestVmapBase. Add them to e.g. TestVmapOperators.
#
# NB: TestVmapBase is a nested class. This prevents test runners from picking
# it up and running it.
class Namespace:
class TestVmapBase(TestCase):
def __init__(self, method_name='runTest'):
super().__init__(method_name)
test_method = getattr(self, method_name, None)
if test_method is None:
return
if not should_allow_vmap_fallback_usage(test_method):
setattr(self, method_name,
self._wrap_method_with_vmap_fallback_check(test_method))
def _wrap_method_with_vmap_fallback_check(self, method):
# msg = (
# 'Expected the test to not invoke the vmap fallback path, i.e., '
# 'all of the operators being tested in this test should have batching '
# 'rules implemented. If you are intentionally testing something to '
# 'do with the fallback path, use allowVmapFallbackUsage. Otherwise, '
# 'please make sure that batching rules are implemented for the '
# 'operator(s) being tested.'
# )
@functools.wraps(method)
def wrapper(self, *args, **kwargs):
with warnings.catch_warnings(record=True):
warnings.simplefilter('always')
with EnableVmapFallbackWarnings():
method(*args, **kwargs)
# for captured_warning in wa:
# self.assertNotRegex(str(captured_warning.message), FALLBACK_REGEX, msg)
return types.MethodType(wrapper, self)
@allowVmapFallbackUsage
def test_vmap_fallback_check_ok(self):
# One day we'll implement a batching rule for torch.var_mean.
# When that happens, please change the example to use an
# operator that doesn't have a batching rule implemented.
op_using_fallback = torch.var_mean
vmap(op_using_fallback)(torch.rand(3))
@unittest.expectedFailure
def test_vmap_fallback_check(self):
@self._wrap_method_with_vmap_fallback_check
def no_fallback(self):
pass
# One day we'll implement a batching rule for torch.var_mean.
# When that happens, please change the example to use an
# operator that doesn't have a batching rule implemented.
op_using_fallback = torch.var_mean
@self._wrap_method_with_vmap_fallback_check
def uses_fallback(self):
vmap(op_using_fallback)(torch.rand(3))
no_fallback(self)
with self.assertRaises(AssertionError):
uses_fallback(self)
def _make_case(op, input_getter=TensorFactory.randn):
return (op, input_getter)
class TestVmapOperators(Namespace.TestVmapBase):
def _vmap_test(self, *args, **kwargs):
return _vmap_test(self, *args, **kwargs)
def _vmap_view_test(self, *args, **kwargs):
self._vmap_test(*args, **kwargs, check_view=True)
def _test_unary(self, op, getter, device, *args, **kwargs):
test = functools.partial(self._vmap_test, *args, **kwargs)
B0, B1 = 7, 11
# Single vmap, various in_dims / out_dims
test(op, [getter([B0, 3], device)])
test(op, [getter([2, 5, B0, 3], device)], in_dims=2)
test(op, [getter([2, 5, B0, 3], device)], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [getter([B0, B1], device)])
test(vmap(op), [getter([B1, 2, 5, B0, 3], device)], in_dims=2)
test(vmap(op, in_dims=2), [getter([2, 5, B0, B1, 3], device)],
in_dims=2, out_dims=2)
@parametrize("case", [
(torch.abs, TensorFactory.randn),
(torch.acos, TensorFactory.rand),
(torch.asin, TensorFactory.rand),
(torch.atan, TensorFactory.rand),
(torch.ceil, TensorFactory.randn),
(torch.cos, TensorFactory.rand),
(torch.cosh, TensorFactory.rand),
(torch.digamma, TensorFactory.rand),
(torch.exp, TensorFactory.randn),
(torch.expm1, TensorFactory.randn),
(torch.floor, TensorFactory.randn),
(torch.frac, TensorFactory.randn),
(torch.lgamma, TensorFactory.rand),
(torch.log, TensorFactory.randp1),
(torch.log10, TensorFactory.randp1),
(torch.log1p, TensorFactory.randp1),
(torch.log2, TensorFactory.randp1),
(torch.neg, TensorFactory.randn),
(torch.reciprocal, TensorFactory.randp1),
(torch.relu, TensorFactory.randn),
(torch.round, TensorFactory.randn),
(torch.rsqrt, TensorFactory.randp1),
(torch.sigmoid, TensorFactory.randn),
(torch.sign, TensorFactory.randn),
(torch.sin, TensorFactory.rand),
(torch.sinh, TensorFactory.rand),
(torch.sqrt, TensorFactory.rand),
(torch.tan, TensorFactory.rand),
(torch.tanh, TensorFactory.rand),
(torch.trunc, TensorFactory.randn),
], name_fn=lambda x: x[0].__name__)
def test_unary_pointwise(self, case):
op, getter = case
self._test_unary(op, getter, 'cpu')
# test in-place
method = getattr(Tensor, f'{op.__name__ + "_"}')
self._test_unary(method, getter, 'cpu', check_propagates_grad=False)
def test_clone(self):
# Some basic tests
self._test_unary(lambda x: x.clone(), TensorFactory.randn, 'cpu')
self._test_unary(lambda x: x.clone(memory_format=torch.preserve_format),
TensorFactory.randn, 'cpu')
self._test_unary(lambda x: x.clone(memory_format=torch.contiguous_format),
TensorFactory.randn, 'cpu')
# Test that the per-examples are contiguous when using torch.contiguous_format
def clone_contiguous(x):
return x.clone(memory_format=torch.contiguous_format)
B0, B1 = 3, 5
x = torch.randn(2, B0, 7)
y = vmap(clone_contiguous, in_dims=1, out_dims=1)(x)
self.assertTrue(y.movedim(1, 0).is_contiguous())
self.assertTrue(y[:, 0, :].is_contiguous())
x = torch.randn(2, B0, 7, B1)
y = vmap(vmap(clone_contiguous, in_dims=2), in_dims=1)(x)
self.assertTrue(y.is_contiguous())
self.assertTrue(y[0][0].is_contiguous())
msg = r'only supported with memory_format torch.preserve_format or torch.contiguous_format'
with self.assertRaisesRegex(RuntimeError, msg):
vmap(lambda x: x.clone(memory_format=torch.channels_last))(torch.randn(B0))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(lambda x: x.clone(memory_format=torch.channels_last_3d))(torch.randn(B0))
def test_weird_matmul_case(self):
# Check that this doesn't crash.
# https://github.com/pytorch/functorch/issues/417
x = torch.randn(5, 2, 2, 2)
y = torch.randn(5, 7, 2)
vmap(vmap(torch.matmul, in_dims=(None, 0)))(x, y)
@parametrize("case",
(
(torch.clamp_min_, TensorFactory.randn),
(torch.clamp_max_, TensorFactory.randn),
), name_fn=lambda x: x[0].__name__)
def test_clamp_inplace_variant(self, case):
test = self._vmap_test
def get_number(getter):
return getter([]).item()
op, getter = case
device = 'cpu'
B0, B1 = 7, 11
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3], device), getter([B0, 3], device)), check_propagates_grad=False)
test(op, (getter([B0], device), getter([B0], device)), check_propagates_grad=False)
test(op, (getter([2, B0, 3], device), getter([2, B0, 3], device)), in_dims=(1, 1), check_propagates_grad=False)
test(op, (getter([B0, 2, 3], device), getter([2, B0, 3], device)),
in_dims=(0, 1), out_dims=1, check_propagates_grad=False)
test(op, (getter([B0, 2, 3], device), getter([1, 1], device)), in_dims=(0, None), check_propagates_grad=False)
test(op, (getter([B0, 3], device), getter([B0, 3], device)), in_dims=(0, 0), check_propagates_grad=False)
# Nested vmap: op(Tensor, Tensor)
test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 1, 3], device)), check_propagates_grad=False)
# Python number overload: op(Tensor, Number)
number = get_number(getter)
self._test_unary(lambda t: op(t, number), getter, device, check_propagates_grad=False)
@parametrize('case', [
subtest(_make_case(torch.clamp_min), name='clamp_min'),
subtest(_make_case(torch.clamp_max), name='clamp_max'),
])
def test_clamp_variant(self, case):
test = self._vmap_test
def get_number(getter):
return getter([]).item()
op, getter = case
device = 'cpu'
B0, B1 = 7, 11
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3], device), getter([B0, 3], device)))
test(op, (getter([B0], device), getter([B0, 2, 3], device)))
test(op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1))
test(op, (getter([B0], device), getter([2, B0, 3], device)),
in_dims=(0, 1), out_dims=1)
test(op, (getter([B0], device), getter([2, 3], device)), in_dims=(0, None))
test(op, (getter([2, 3], device), getter([B0, 3], device)), in_dims=(None, 0))
# Nested vmap: op(Tensor, Tensor)
test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 3], device)))
test(vmap(op, in_dims=(None, 0)),
(getter([B0, 2, 3], device), getter([B1, 3], device)), in_dims=(0, None))
# Python number overload: op(Tensor, Number)
number = get_number(getter)
self._test_unary(lambda t: op(t, number), getter, device)
def test_copy_(self):
x = torch.randn(3)
y = torch.randn(3)
vmap(Tensor.copy_)(x, y)
self.assertEqual(x, y)
x = torch.randn(3)
y = torch.randn(3, 2)
vmap(Tensor.copy_, in_dims=(1, None))(y, x)
self.assertEqual(y, x.expand(2, 3).t())
x = torch.randn(3)
y = torch.randn(2, 3)
with self.assertRaisesRegex(RuntimeError, 'inplace'):
vmap(Tensor.copy_, in_dims=(None, 0))(x, y)
def test_silu_backward(self):
test = self._vmap_test
device = 'cpu'
getter = TensorFactory.randp1
B0 = 7
op = torch.ops.aten.silu_backward
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3], device), getter([B0, 3], device)))
test(op, (getter([], device), getter([B0], device)), in_dims=(None, 0))
test(op, (getter([2, B0], device), getter([2], device)), in_dims=(1, None))
@parametrize('case', [
subtest(_make_case(torch.add), name='add'),
subtest(_make_case(lambda x, y: x + y), name='add_dunder'),
subtest(_make_case(torch.sub), name='sub'),
subtest(_make_case(lambda x, y: x - y), name='sub_dunder'),
subtest(_make_case(torch.mul), name='mul'),
subtest(_make_case(lambda x, y: x * y), name='mul_dunder'),
subtest(_make_case(torch.div, input_getter=TensorFactory.randp1), name='div'),
subtest(_make_case(lambda x, y: x / y, input_getter=TensorFactory.randp1), name='div_dunder'),
subtest(_make_case(torch.pow, input_getter=TensorFactory.randp1), name='pow'),
subtest(_make_case(lambda x, y: x ** y, input_getter=TensorFactory.randp1), name='pow_dunder'),
])
def test_arithmetic(self, case):
test = self._vmap_test
def get_number(getter):
return getter([]).item()
op, getter = case
device = 'cpu'
B0, B1 = 7, 11
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3], device), getter([B0, 3], device)))
test(op, (getter([B0], device), getter([B0, 2, 3], device)))
test(op, (getter([B0], device), getter([2, B0, 3], device)), in_dims=(0, 1))
test(op, (getter([B0], device), getter([2, B0, 3], device)),
in_dims=(0, 1), out_dims=1)
test(op, (getter([B0], device), getter([2, 3], device)), in_dims=(0, None))
test(op, (getter([2, 3], device), getter([B0, 3], device)), in_dims=(0, None))
# Nested vmap: op(Tensor, Tensor)
test(vmap(op), (getter([B0, B1, 2, 3], device), getter([B0, B1, 3], device)))
test(vmap(op, in_dims=(None, 0)),
(getter([B0, 2, 3], device), getter([B1, 3], device)), in_dims=(0, None))
# Python number overload: op(Tensor, Number) (and vice-versa)
number = get_number(getter)
self._test_unary(lambda t: op(t, number), getter, device)
number = get_number(getter)
self._test_unary(lambda t: op(number, t), getter, device)
# Type promotion: op(Logical Scalar Tensor, Logical Scalar Tensor)
test(op, (getter([B0], device), getter([B0], device, dtype=torch.double)))
test(op, (getter([B0], device, dtype=torch.double), getter([B0], device)))
test(op, (getter([B0], device), getter([B0], device)))
# Type promotion: op(Tensor, Logical Scalar Tensor) (and vice-versa)
test(op, (getter([B0, 2], device), getter([B0], device, torch.double)))
test(op, (getter([B0], device, torch.double), getter([B0, 2], device)))
if not torch.cuda.is_available():
return
# TODO(rzou): fix the following
# # Test cross-device scalars
# number = get_number(getter)
# self._test_unary(lambda t: op(t, number), getter, device='cuda')
# self._test_unary(lambda t: op(number, t), getter, device='cuda')
# self._test_unary(lambda t: op(t, torch.tensor(number)), getter, device='cuda')
def test_as_strided(self):
def _test(sizes, strides, offset, tensor, lambd):
# bdim at dim 0 test
result = vmap(lambda t: t.as_strided(sizes, strides, offset))(tensor)
expected = vmap(lambd)(tensor)
self.assertTrue(result._base is expected._base)
self.assertEqual(result, expected)
# bdim at dim -1 test
tensor = tensor.movedim(0, -1)
result = vmap(lambda t: t.as_strided(sizes, strides, offset), -1)(tensor)
expected = vmap(lambd, -1)(tensor)
self.assertTrue(result._base is expected._base)
self.assertEqual(result, expected)
# single vmap test
B0 = 5
# Each Tensor has shape [B0, 2, 3]; the expressions below
# are just to get tensors of different strides that have shape [B0, 2, 3]
tensors = [
# contiguous
torch.randn(B0, 2, 3),
# non-contiguous
torch.randn(B0, 3, 2).transpose(1, 2),
torch.randn(3, 2, B0).movedim(-1, 0).transpose(1, 2),
# non-zero storage offset
torch.randn(2, B0, 2, 3)[1],
torch.randn(2, 2, B0, 3)[1].movedim(1, 0),
# non-contiguous strides, zero storage offset
torch.randn(B0, 2, 4, 3, 7)[:, :, 0, :, 0],
torch.randn(2, 4, B0, 3, 7).movedim(2, 0)[:, :, 0, :, 0],
# non-contiguous strides, non-zero storage offset
torch.randn(B0, 2, 4, 3, 7)[:, :, 2, :, 1],
torch.randn(2, 4, 3, 7, B0).movedim(-1, 0)[:, :, 2, :, 1],
]
for x in tensors:
S0, S1 = x.stride()[1:]
offset = x.storage_offset()
# Broadcast
_test([5, 5, 2, 3], [0, 0, S0, S1], offset, x, lambda x: x.expand(5, 5, 2, 3))
# transpose
_test([3, 2], [S1, S0], offset, x, lambda x: x.transpose(0, 1))
# select
_test([2], [S0], offset + S1, x, lambda x: x[:, 1])
# diagonal
_test([2], [S0 + S1], offset, x, lambda x: x.diagonal())
# strided slice
_test([2], [S1 * 2], offset, x, lambda x: x[0, ::2])
# Nested vmap test
B1 = 7
x = torch.randn(B1, B0, 2, 3)
S0, S1 = x.stride()[2:]
result = vmap(vmap(lambda t: t.as_strided([5, 5, 2, 3], [0, 0, S0, S1])), in_dims=1)(x)
expected = vmap(vmap(lambda t: t.expand(5, 5, 2, 3)), in_dims=1)(x)
self.assertTrue(result._base is expected._base)
self.assertEqual(result, expected)
# Check that mal-formatted size/strides doesn't crash
with self.assertRaisesRegex(RuntimeError, 'size and stride must have the same length'):
x = torch.randn(B0, 2, 3).transpose(0, 1)
vmap(lambda x: x.as_strided([1, 1, 1], [1, 1]))(x)
# All the Sanity check #1{a,b,c} cases check that
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# doesn't index memory that is out of bounds of xs[i]. This condition
# is important to the correctness of the as_strided batching rule
# (see NOTE: [When will the as_strided_batching_rule fail?])
# Sanity check #1a: The maximum indexable location of
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# is less than or equal to the maximum indexable location of xs[i].
msg = 'This is not supported inside of vmap'
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, 3)
vmap(lambda x: x.as_strided([3], [1], 1))(x)
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, 3, 5)
vmap(lambda x: x.as_strided([4, 4], [4, 1], 0))(x)
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, B1, 3, 5)
vmap(vmap(lambda x: x.as_strided([4, 4], [4, 1], 0)))(x)
# Sanity check #1b: The min indexable location of
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# is greater than or equal to the min indexable location of xs[i].
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(2, B0, 3)[1]
vmap(lambda x: x.as_strided([3], [1], B0 * 3 - 1))(x)
# Sanity check #1c:
# xs[i] is a zero-dim tensor, but
# xs[i].as_strided(sizes, strides, offset + xs[i].offset() - xs.offset())
# is not
with self.assertRaisesRegex(RuntimeError, msg):
x = torch.randn(B0, 0, 3)
vmap(lambda x: x.as_strided([3], [1]))(x)
def test_nll_loss(self):
test = self._vmap_test
op = F.nll_loss
B = 3
y = torch.randn(B, 2, 5)
t = torch.randint(0, 5, (B, 2))
test(op, (y, t))
test(functools.partial(op, reduction='sum'), (y, t))
test(functools.partial(op, reduction='none'), (y, t))
y = torch.randn(B, 2, 5)
t = torch.randint(0, 5, (2,))
test(op, (y, t), in_dims=(0, None))
test(functools.partial(op, reduction='sum'), (y, t), in_dims=(0, None))
test(functools.partial(op, reduction='none'), (y, t), in_dims=(0, None))
def test_adaptive_avg_pool2d(self):
test = self._vmap_test
op = functools.partial(F.adaptive_avg_pool2d, output_size=(3, 3))
x = torch.randn(3, 5, 7, 9, 11)
test(op, (x,))
test(op, (x,), in_dims=(1,))
test(op, (x,), in_dims=(4,))
def test_bmm(self):
op = torch.bmm
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = ""
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 3, 3, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 2, 3, 5), torch.rand(2, 5, 3)), in_dims=(0, None))
test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 3, 5), torch.rand(2, 5, 3)),
in_dims=(1, None))
# right arg is vmapped
test(op, (torch.rand(2, 5, 3), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0))
test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5, 3), torch.rand(B1, B0, 2, 3, 5)),
in_dims=(None, 1))
# both args are vmapped
test(op, (torch.rand(B0, 2, 3, 5), torch.rand(B0, 2, 5, 3)))
test(vmap(op), (torch.rand(B1, B0, 2, 3, 5), torch.rand(B0, B1, 2, 5, 3)), in_dims=(1, 0))
test(vmap(op, in_dims=(0, None)),
(torch.rand(B1, 2, 3, 5), torch.rand(B0, 2, 5, 3)), in_dims=(None, 0))
def test_cat(self):
test = self._vmap_test
B0, B1 = 5, 7
# Quick hack b/c vmap can't accept a list of tensors as an argument
def get_op(dim):
def op(*tensors):
return torch.cat(tensors, dim=dim)
return op
test(get_op(0), (torch.rand(B0, 2), torch.rand(B0, 3)))
test(get_op(0), (torch.rand(B0, 0), torch.rand(B0, 0)))
test(get_op(0), (torch.rand(2), torch.rand(B0, 0)), in_dims=(None, 0))
test(get_op(1), (torch.rand(2, 5), torch.rand(B0, 0), torch.rand(2, 3)), in_dims=(None, 0, None))
test(get_op(1), (torch.rand(B0, 2, 3), torch.rand(B0, 0)))
test(get_op(1), (torch.rand(B0, 2, 3, 4), torch.rand(0)), in_dims=(0, None))
test(get_op(0), (torch.rand(0), torch.rand(B0, 2), torch.rand(B0, 0)), in_dims=(None, 0, 0))
test(get_op(0), (torch.rand(2), torch.rand(B0, 3)), in_dims=(None, 0))
test(get_op(0), (torch.rand(2, 17), torch.rand(3, 17, B0)), in_dims=(None, 2))
test(get_op(-1), (torch.rand(17, 2), torch.rand(17, 3, B0)), in_dims=(None, 2))
test(vmap(get_op(0), in_dims=(0, None)),
(torch.rand(B1, 2), torch.rand(B0, 3)), in_dims=(None, 0))
test(vmap(get_op(0), in_dims=(0, 0)),
(torch.rand(B1, 2), torch.rand(B0, B1, 3)), in_dims=(None, 0))
def test_unsafe_view(self):
# Unsafe view isn't exposed, so we get at it via
# vmap(grad(matmul))
test = functools.partial(self._vmap_test, check_propagates_grad=False)
B = 2
x = torch.randn(B, 2, 3, 3)
y = torch.randn(B, 3, 3)
def baz(x, y):
return (x @ y).sum()
test(functorch.grad(baz), (x, y))
def test_conj(self):
op = torch.conj
def run_test(dtype):
def get(shape):
return torch.randn(shape, dtype=dtype)
B0, B1 = 7, 11
test = self._vmap_test
# Single vmap, various in_dims / out_dims
test(op, [get([B0, 3])])
test(op, [get([2, 5, B0, 3])], in_dims=2)
test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [get([B0, B1])])
test(vmap(op), [get([B1, 2, 5, B0, 3])], in_dims=2)
test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])],
in_dims=2, out_dims=2)
# correctness tests
run_test(torch.float)
run_test(torch.cfloat)
# check that torch.conj on a non-complex tensor returns the same tensor
real_tensor = torch.randn(3)
result = vmap(op)(real_tensor)
self.assertEqual(result.data_ptr(), real_tensor.data_ptr())
def test_contiguous(self):
op = Tensor.contiguous
self._test_unary(op, TensorFactory.randn, 'cpu')
# check that contiguous returns the original tensor if the per-examples
# are already contiguous
B0 = 3
x = torch.randn(B0, 2, 5, 7)
x = x.movedim(0, 2)
result = vmap(Tensor.contiguous, in_dims=2, out_dims=2)(x)
self.assertTrue(result is x)
msg = 'NYI: querying is_contiguous inside of vmap for memory_format'
tensor = torch.randn(B0, 3)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(op, memory_format=torch.channels_last))(tensor)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(op, memory_format=torch.channels_last_3d))(tensor)
def test_stride(self):
B0 = 3
x = torch.randn(B0, 2, 5, 7)
def foo(x):
assert x.stride() == (7 * 5, 7, 1)
return x
vmap(foo)(x)
x = torch.randn(2, B0, 5, 7).movedim(1, 0)
def bar(x):
assert x.stride() == (7 * 5 * B0, 7, 1)
return x
vmap(bar)(x)
def test_chunk(self):
test = self._vmap_view_test
op = torch.chunk
B0, B1, B2 = 7, 11, 13
# tests for torch.split(self, split_size: int, dim)
test(op, (torch.rand(B0, 2, 1024), 15, -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), 9, 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 4, 0),
in_dims=(2, None, None))
test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),), in_dims=2)
def test_clamp(self):
clamp_cases = (
(lambda t: t.clamp(min=-0.5), TensorFactory.randn),
(lambda t: t.clamp(max=0.5), TensorFactory.randn),
(lambda t: t.clamp(min=-0.5, max=0.5), TensorFactory.randn),
(lambda t: t.clamp_min(min=-0.5), TensorFactory.randn),
(lambda t: t.clamp_max(max=0.5), TensorFactory.randn),
)
for op, getter in clamp_cases:
self._test_unary(op, getter, 'cpu')
def test_comparison_ops(self):
test = functools.partial(self._vmap_test, check_propagates_grad=False)
getter = TensorFactory.randn
B0, B1 = 7, 11
ops = (
torch.eq, lambda x, y: x == y,
torch.gt, lambda x, y: x > y,
torch.ge, lambda x, y: x >= y,
torch.le, lambda x, y: x <= y,
torch.lt, lambda x, y: x < y,
torch.ne, lambda x, y: x != y,
)
for op in ops:
# Single vmap: op(Tensor, Tensor)
test(op, (getter([B0, 3]), getter([B0, 3])))
test(op, (getter([B0]), getter([B0, 2, 3])))
test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1))
test(op, (getter([B0]), getter([2, B0, 3])), in_dims=(0, 1), out_dims=1)
test(op, (getter([B0]), getter([2, 3])), in_dims=(0, None))
test(op, (getter([2, 3]), getter([B0, 3])), in_dims=(0, None))
# Nested vmap: op(Tensor, Tensor)
test(vmap(op), (getter([B0, B1, 2, 3]), getter([B0, B1, 3])))
test(vmap(op, in_dims=(None, 0)),
(getter([B0, 2, 3]), getter([B1, 3])), in_dims=(0, None))
# test number as inputs
number = getter([]).item()
self._test_unary(lambda t: op(t, number), getter, 'cpu', check_propagates_grad=False)
def test_cross_batch_size_three(self):
# Let's test corner case when batch_size is 3 and cross' dim argument is not specified
# According to the cross API, dim will be assigned to the first dim with value 3
# In this test we ensure that found dim is not batch dim.
op = torch.cross
test = self._vmap_test
B0 = B1 = 3
test(op, (torch.rand(B0, 2, 3), torch.rand(B0, 2, 3)))
test(vmap(op, in_dims=(0, None)), (torch.rand(B0, B1, 2, 3), torch.rand(B0, B1, 2, 3)),
in_dims=(None, 1))
def test_diagonal(self):
tensor = torch.randn(3, 5, 7, 11, 13)
test = self._vmap_view_test
op = torch.diagonal
test(op, (tensor, 1, 0, 1), in_dims=(0, None, None, None))
test(op, (tensor, 0, 2, -1), in_dims=(0, None, None, None))
test(op, (tensor, 2, 1, 2), in_dims=(1, None, None, None))
test(op, (tensor, 0, -2, -1), in_dims=(1, None, None, None), out_dims=1)
test(vmap(lambda t: op(t, 0, 0, -1)), (tensor,), in_dims=1, out_dims=1)
test(vmap(vmap(lambda t: op(t, 0, 0, 1), in_dims=1), in_dims=3),
(tensor,), in_dims=1, out_dims=1)
def test_dot(self):
op = torch.dot
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = ""
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 5), torch.rand(5)), in_dims=(0, None))
test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 5), torch.rand(5)),
in_dims=(1, None))
# right arg is vmapped
test(op, (torch.rand(5), torch.rand(B0, 5)), in_dims=(None, 0))
test(vmap(op, in_dims=(None, 0)), (torch.rand(5), torch.rand(B1, B0, 5)),
in_dims=(None, 1))
# both args are vmapped
test(op, (torch.rand(B0, 5), torch.rand(B0, 5)))
test(vmap(op), (torch.rand(B1, B0, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0))
test(vmap(op, in_dims=(0, None)),
(torch.rand(B1, 5), torch.rand(B0, 5)), in_dims=(None, 0))
def test_expand_as(self):
op = torch.Tensor.expand_as
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 1, 5), torch.rand(B0, 2, 3, 5)))
test(op, (torch.rand(B0, 1, 5), torch.rand(2, 3, 5)), in_dims=(0, None))
test(op, (torch.rand(1, 5), torch.rand(B0, 2, 3, 5)), in_dims=(None, 0))
test(vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B0, B1, 2, 3, 5)))
test(vmap(op), (torch.rand(B0, B1, 1, 5), torch.rand(B1, B0, 2, 3, 5)), in_dims=(0, 1))
test(vmap(op), (torch.rand(B0, B1), torch.rand(B1, 2, 3, 5)), in_dims=(0, None))
test(vmap(vmap(op)), (torch.rand(B0, B1, B2), torch.rand(B0, B1, B2, 2, 3, 5)))
def test_fill_and_zero_inplace(self):
test = functools.partial(self._vmap_test, check_propagates_grad=False)
B0, B1 = 7, 11
ops = (
lambda t: t.fill_(0.1),
lambda t: t.fill_(torch.tensor(0.2)),
lambda t: t.zero_(),
)
for op in ops:
# Single vmap, various in_dims / out_dims
test(op, [TensorFactory.randn([B0, 3])])
test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2)
test(op, [TensorFactory.randn([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [TensorFactory.randn([B0, B1])])
test(vmap(op), [TensorFactory.randn([B1, 2, 5, B0, 3])], in_dims=2)
test(vmap(op, in_dims=2), [TensorFactory.randn([2, 5, B0, B1, 3])],
in_dims=2, out_dims=2)
# test when value is a batched tensor for fill_ operator
B0, B1 = 3, 5
test(Tensor.fill_, [TensorFactory.randn([B0, B1]), TensorFactory.randn(B0)])
with self.assertRaisesRegex(RuntimeError,
""):
# Runtime Error is thrown when the tensor being written to isn't being vmapped over
vmap(Tensor.fill_, (None, 0))(TensorFactory.randn([B0, B1]),
TensorFactory.randn([B0]))
def _test_complex_views(self, op, dtypes):
test = self._vmap_view_test
def run_test(op, dtype):
def get(shape):
return torch.randn(shape, dtype=dtype)
B0, B1 = 7, 11
# Single vmap, various in_dims / out_dims
test(op, [get([B0, 3])])
test(op, [get([3, B0])], in_dims=1)
test(op, [get([2, 5, B0, 3])], in_dims=2)
test(op, [get([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [get([B0, B1])])
test(vmap(op), [get([B1, 2, 5, 3, B0])], in_dims=4)
test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3])],
in_dims=2, out_dims=2)
for dtype in dtypes:
run_test(op, dtype)
def test_real(self):
self._test_complex_views(torch.real, dtypes=[torch.cfloat, torch.cdouble])
def test_imag(self):
self._test_complex_views(torch.imag, dtypes=[torch.cfloat, torch.cdouble])
def test_view_as_real(self):
self._test_complex_views(torch.view_as_real, dtypes=[torch.cfloat, torch.cdouble])
def test_view_as_complex(self):
def run_test(dtype):
def get(shape):
return torch.randn(shape, dtype=dtype)
op = torch.view_as_complex
test = self._vmap_view_test
B0, B1 = 7, 11
# Single vmap, various in_dims / out_dims
test(op, [get([B0, 3, 2])])
test(op, [get([2, 5, B0, 3, 2])], in_dims=2)
test(op, [get([2, 5, B0, 3, 2])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(op), [get([B0, B1, 2])])
test(vmap(op), [get([B1, 2, 5, B0, 3, 2])], in_dims=2)
test(vmap(op, in_dims=2), [get([2, 5, B0, B1, 3, 2])],
in_dims=2, out_dims=2)
# Interesting case #1: Batch dim directly before dim of size 2
test(op, [get([3, B0, 2])], in_dims=1)
test(vmap(op, in_dims=1), [get([3, B1, B0, 2])], in_dims=2)
# Interesting case #2: Batch dim at end of tensor, success cases
# view_as_complex requires that the dim with size 2 have stride 1
# in order for the view to function propertly
test(op, [get([B0, 2]).transpose(0, 1)], in_dims=1)
test(vmap(op, in_dims=1), [get([B0, B1, 2]).movedim(1, 2)])
test(vmap(op, in_dims=2), [get([B0, 3, B1, 2]).movedim(2, 3)])
# Interesting case #3: Batch dim at end of tensor, failure cases
msg = "Tensor must have a last dimension with stride 1"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=1)(get([2, B0]))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op, in_dims=1), in_dims=1)(get([2, B0, B1]))
# Invalid input: no dimension of size 2
msg = 'Input tensor must have one or more dimensions'
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(get([B0]))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(vmap(op))(get([B0, B1]))
# Invalid input: Batch dim has size 2, but the logical last dim does
# not have size 2
msg = 'Tensor must have a last dimension of size 2'
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=1)(get([3, 2]))
for dtype in [torch.float, torch.double]:
run_test(dtype)
def test_is_complex(self):
ctensor = torch.randn(3, dtype=torch.cfloat)
tensor = torch.randn(3)
def foo(x):
if x.is_complex():
return torch.tensor(1)
else:
return torch.tensor(0)
self.assertEqual(vmap(foo)(ctensor), torch.tensor([1, 1, 1]))
self.assertEqual(vmap(foo)(tensor), torch.tensor([0, 0, 0]))
def test_is_floating_point(self):
float_tensor = torch.tensor([1., 2., 3.])
long_tensor = torch.tensor([1, 2, 3])
def foo(x):
if x.is_floating_point():
return torch.tensor(1)
else:
return torch.tensor(0)
self.assertEqual(vmap(foo)(float_tensor), torch.tensor([1, 1, 1]))
self.assertEqual(vmap(foo)(long_tensor), torch.tensor([0, 0, 0]))
def test_is_contiguous(self):
def foo(x):
if x.is_contiguous():
return torch.tensor(1.)
else:
return torch.tensor(0.)
B0, B1 = 3, 5
# Single batch dim
contig = torch.randn(B0, 2, 7)
self.assertEqual(vmap(foo)(contig), torch.ones(B0))
noncontig = torch.randn(2, B0, 7)
self.assertEqual(vmap(foo, in_dims=1)(noncontig), torch.zeros(B0))
noncontig = torch.randn(2, B0, 7).movedim(1, 0)
self.assertEqual(vmap(foo)(noncontig), torch.zeros(B0))
noncontig = torch.randn(2, 7, B0)
self.assertEqual(vmap(foo, in_dims=2)(noncontig), torch.zeros(B0))
# Multiple batch dims
contig = torch.randn(B0, B1, 3)
self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1))
contig = torch.randn(B1, B0, 3)
self.assertEqual(vmap(vmap(foo), in_dims=1)(contig), torch.ones(B0, B1))
contig = torch.randn(B1, B0, 3).movedim(0, 1)
self.assertEqual(vmap(vmap(foo))(contig), torch.ones(B0, B1))
noncontig = torch.randn(B0, 3, B1)
self.assertEqual(vmap(vmap(foo, in_dims=1))(noncontig), torch.zeros(B0, B1))
# is_contiguous on empty tensor is True
def bar(x):
assert x.is_contiguous()
return x
vmap(bar)(torch.randn(B0, 0, 3))
vmap(bar, in_dims=1)(torch.randn(0, B0, 3))
vmap(bar)(torch.randn(B0, 0, 3).transpose(-1, -2))
# is_contiguous with other memory formats
def baz(x, memory_format):
x.is_contiguous(memory_format=memory_format)
return x
msg = 'NYI: querying is_contiguous inside of vmap for memory_format'
tensor = torch.randn(B0, 2, 7, 3)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(baz, memory_format=torch.channels_last))(tensor)
with self.assertRaisesRegex(RuntimeError, msg):
vmap(functools.partial(baz, memory_format=torch.channels_last_3d))(tensor)
def test_unsqueeze(self):
op = torch.unsqueeze
test = self._vmap_view_test
B0, B1 = 7, 11
# unsqueeze dim 0
test(op, (torch.rand(B0, 2, 5), 0), in_dims=(0, None))
test(op, (torch.rand(2, B0, 5), 0), in_dims=(1, None))
# unsqueeze last dim (positive)
test(op, (torch.rand(B0, 2, 5), 2), in_dims=(0, None))
test(op, (torch.rand(2, B0, 5), 2), in_dims=(1, None))
# unsqueeze last dim (negative)
test(op, (torch.rand(B0, 2, 5), -1), in_dims=(0, None))
test(op, (torch.rand(2, B0, 5), -1), in_dims=(1, None))
# nested vmaps
def unsqueeze_0(x):
return torch.unsqueeze(x, 0)
def unsqueeze_last(x):
return torch.unsqueeze(x, -1)
# bdims in canonical order
test(vmap(unsqueeze_0), (torch.rand(B0, B1, 2), ))
test(vmap(unsqueeze_last), (torch.rand(B0, B1, 2),))
# wild bdims
test(vmap(unsqueeze_0), (torch.rand(B1, 2, B0),), in_dims=2)
test(vmap(unsqueeze_0, in_dims=1), (torch.rand(2, B1, B0),), in_dims=2)
test(vmap(unsqueeze_last), (torch.rand(B1, 2, B0),), in_dims=2)
test(vmap(unsqueeze_last, in_dims=1), (torch.rand(2, B1, B0),), in_dims=2)
def test_movedim(self):
op = torch.movedim
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
# movedim(tensor, int, int) variant
test(op, (torch.rand(B0, 2, 5), 0, 1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 5), 0, 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 2, B0, 5), 0, 1), in_dims=(2, None, None))
test(vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)),
(torch.rand(B1, 2, B0, 5, B2), 0, 1), in_dims=(2, None, None))
# movedim(tensor, intlist, intlist) variant
test(op, (torch.rand(B0, 2, 3, 5), [1, 0], [0, 2]), in_dims=(0, None, None))
test(op, (torch.rand(2, 3, B0, 5), [1, 0], [0, 2]), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)),
(torch.rand(B1, 2, B0, 5), [0, 1], [1, 0]), in_dims=(2, None, None))
test(vmap(vmap(op, in_dims=(2, None, None)), in_dims=(0, None, None)),
(torch.rand(B1, 2, B0, 5, B2), [0, 1], [1, 0]), in_dims=(2, None, None))
def test_mm(self):
op = torch.mm
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = "Shape mismatch"
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(5, 2)), in_dims=(0, None))
test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 5), torch.rand(5, 2)),
in_dims=(1, None))
# right arg is vmapped
test(op, (torch.rand(2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0))
test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5), torch.rand(B1, B0, 5, 2)),
in_dims=(None, 1))
# both args are vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5, 2)))
test(vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5, 2)), in_dims=(1, 0))
test(vmap(op, in_dims=(0, None)),
(torch.rand(B1, 2, 5), torch.rand(B0, 5, 2)), in_dims=(None, 0))
def test_mv(self):
op = torch.mv
test = self._vmap_test
B0, B1 = 7, 11
# shape mismatch
msg = ""
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op)(torch.randn(B0, 2, 2, 2), torch.randn(B0, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(0, None))(torch.randn(B0, 2, 2), torch.randn(2, 2))
with self.assertRaisesRegex(RuntimeError, msg):
vmap(op, in_dims=(None, 0))(torch.randn(2, 2), torch.randn(B0, 2, 2))
# left arg is vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(5)), in_dims=(0, None))
test(vmap(op, in_dims=(0, None)), (torch.rand(B1, B0, 2, 5), torch.rand(5)),
in_dims=(1, None))
# right arg is vmapped
test(op, (torch.rand(2, 5), torch.rand(B0, 5)), in_dims=(None, 0))
test(vmap(op, in_dims=(None, 0)), (torch.rand(2, 5), torch.rand(B1, B0, 5)),
in_dims=(None, 1))
# both args are vmapped
test(op, (torch.rand(B0, 2, 5), torch.rand(B0, 5)))
test(vmap(op), (torch.rand(B1, B0, 2, 5), torch.rand(B0, B1, 5)), in_dims=(1, 0))
test(vmap(op, in_dims=(0, None)),
(torch.rand(B1, 2, 5), torch.rand(B0, 5)), in_dims=(None, 0))
def test_narrow(self):
op = torch.narrow
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5), -1, 1, 3), in_dims=(0, None, None, None))
test(op, (torch.rand(2, B0, 5), 1, 1, 3), in_dims=(1, None, None, None))
test(vmap(op, in_dims=(0, None, None, None)),
(torch.rand(B1, 2, B0, 5), 1, 0, 0), in_dims=(2, None, None, None))
test(vmap(vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None)),
(torch.rand(B1, 2, B0, 5, B2), -1, 2, 3), in_dims=(2, None, None, None))
def test_new_empty(self):
# Empty is non-deterministic so we just check that the shape of the
# output tensor is what we expect and that the vmap fallback isn't used.
op = Tensor.new_empty
B0, B1 = 7, 11
result = vmap(lambda x: op(x, [2, 3]))(torch.randn(B0))
self.assertEqual(result.shape, [B0, 2, 3])
result = vmap(lambda x: op(x, []))(torch.randn(B0))
self.assertEqual(result.shape, [B0])
result = vmap(vmap(lambda x: op(x, [2, 3])))(torch.randn(B0, B1))
self.assertEqual(result.shape, [B0, B1, 2, 3])
def test_new_empty_strided(self):
# Empty is non-deterministic so we just check that the size and shape
# of the output are what we expect and that the vmap fallback isn't used
B0, B1 = 7, 11
def _test_single_vmap(size, stride, B0):
x = torch.randn(B0)
result = vmap(lambda x: x.new_empty_strided(size, stride))(x)
S = torch.empty_strided(size, stride).storage().size()
self.assertEqual(result.shape, [B0] + size)
self.assertEqual(result.stride(), [S] + stride)
def _test_double_vmap(size, stride, B0, B1):
x = torch.randn(B0, B1)
result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)))(x)
S = torch.empty_strided(size, stride).storage().size()
self.assertEqual(result.shape, [B0, B1] + size)
self.assertEqual(result.stride(), [B1 * S, S] + stride)
x = torch.randn(B1, B0)
result = vmap(vmap(lambda x: x.new_empty_strided(size, stride)), in_dims=1)(x)
S = x.new_empty_strided(size, stride).storage().size()
self.assertEqual(result.shape, [B0, B1] + size)
self.assertEqual(result.stride(), [B1 * S, S] + stride)
# contiguous case
_test_single_vmap([2, 3, 5], [3 * 5, 5, 1], B0)
_test_double_vmap([2, 3, 5], [3 * 5, 5, 1], B0, B1)
# expanded
_test_single_vmap([2, 3, 5], [0, 5, 1], B0)
_test_double_vmap([2, 3, 5], [0, 5, 1], B0, B1)
# some of these cases are pretty strange, just verifying that if
# empty_strided allows them then BatchedTensor.new_empty_strided
# can as well
for shape in [[2, 3, 4], [0, 2, 0]]:
for strides in [[12, 4, 1], [2, 4, 6], [0, 0, 0]]:
_test_single_vmap(shape, strides, B0)
_test_double_vmap(shape, strides, B0, B1)
def test_new_zeros(self):
op = Tensor.new_zeros
test = functools.partial(self._vmap_test, check_propagates_grad=False)
B0, B1 = 7, 11
test(lambda x: op(x, 2, 3), (torch.rand(B0),))
test(lambda x: op(x, []), (torch.rand(B0),))
test(vmap(lambda x: op(x, 3, 5)), (torch.rand(B0, B1),))
def test_select(self):
op = torch.select
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5), 0, 0), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 5), 1, 1), in_dims=(1, None, None))
test(vmap(lambda t: op(t, 1, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(lambda t: op(t, 1, 1), in_dims=1)), (torch.rand(B1, 2, B0, B2, 5),), in_dims=2)
def test_roll_no_dims(self):
op = torch.roll
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5), 2), in_dims=(0, None))
test(op, (torch.rand(2, B0, 5), 3), in_dims=(1, None))
test(vmap(lambda t: op(t, 3)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(lambda t: op(t, 3), in_dims=1)), (torch.rand(B1, 2, B0, B2, 5),), in_dims=2)
def test_stack(self):
test = self._vmap_test
B0, B1 = 5, 7
# Quick hack b/c vmap can't accept a list of tensors as an argument
def get_op(dim):
def op(*tensors):
return torch.stack(tensors, dim=dim)
return op
test(get_op(0), (torch.rand(B0, 3), torch.rand(B0, 3)))
test(get_op(0), (torch.rand(3), torch.rand(B0, 3)), in_dims=(None, 0))
test(get_op(0), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2))
test(get_op(-1), (torch.rand(2, 17), torch.rand(2, 17, B0)), in_dims=(None, 2))
test(vmap(get_op(0), in_dims=(0, None)),
(torch.rand(B1, 2), torch.rand(B0, 2)), in_dims=(None, 0))
test(vmap(get_op(0), in_dims=(0, 0)),
(torch.rand(B1, 2), torch.rand(B0, B1, 2)), in_dims=(None, 0))
def test_slice(self):
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(lambda t: t[0:1], (torch.rand(B0, 3, 5),))
test(lambda t: t[:, 1:3], (torch.rand(3, 5, B0),), in_dims=2)
test(vmap(lambda t: t[:, 0:1], in_dims=2), (torch.rand(3, 5, B0, B1),), in_dims=2)
test(vmap(vmap(lambda t: t[0:1], in_dims=2), in_dims=2),
(torch.rand(3, 5, B0, B1, B2),), in_dims=2)
def test_squeeze(self):
def verify_behavior(op, min_ndim=1):
test = self._vmap_view_test
B0, B1 = 1, 11
# These tests cannot be used with an operator that requires more
# than 1 dimension after batching.
if min_ndim <= 1:
test(op, (torch.rand(B0),))
test(op, (torch.rand(B1),))
test(vmap(op), (torch.rand(B0, B1, 1),))
test(vmap(op), (torch.rand(B1, 1, B0),), in_dims=2)
test(op, (torch.rand(B0, 3, 5),))
test(op, (torch.rand(1, B0, 5),), in_dims=1)
test(op, (torch.rand(B0, 0, 1, 5, 1),))
test(op, (torch.rand(B0, 1, 1, 1, 1),))
test(vmap(op), (torch.rand(B0, B1, 1, 3, 4),))
test(vmap(op), (torch.rand(B1, 1, B0, 4, 5),), in_dims=2)
verify_behavior(torch.squeeze)
verify_behavior(lambda x: torch.squeeze(x, dim=0), min_ndim=1)
verify_behavior(lambda x: torch.squeeze(x, dim=1), min_ndim=2)
verify_behavior(lambda x: torch.squeeze(x, dim=-1), min_ndim=2)
verify_behavior(lambda x: torch.squeeze(x, dim=-2), min_ndim=3)
msg = ""
try:
torch.squeeze(torch.rand(10), dim=1)
except IndexError as err:
msg = str(err)
with self.assertRaises(RuntimeError, msg=msg):
vmap(lambda x: torch.squeeze(x, dim=1))(torch.rand(10))
def _test_mean_sum_dim(self, op):
test = self._vmap_test
B0, B1 = 5, 7
# Single vmap, various in_dims / out_dims
test(lambda x: op(x, 0), [torch.randn([B0])])
test(lambda x: op(x, -1), [torch.randn([B0])])
test(lambda x: op(x, 0), [torch.randn([B0, 3])])
test(lambda x: op(x, -1), [torch.randn([2, 5, B0, 3])], in_dims=2)
test(lambda x: op(x, 2), [torch.randn([2, 5, B0, 3])], in_dims=2, out_dims=2)
# Doubly nested vmap
test(vmap(lambda x: op(x, 0)), [torch.randn([B0, B1])])
test(vmap(lambda x: op(x, -1)), [torch.randn([B0, B1])])
test(vmap(lambda x: op(x, -2)), [torch.randn([B1, 2, 5, B0, 3])], in_dims=2)
test(vmap(lambda x: op(x, 2), in_dims=2), [torch.randn([2, 5, B0, B1, 3])],
in_dims=2, out_dims=2)
def test_sum_dim(self):
self._test_mean_sum_dim(torch.sum)
def test_mean_dim(self):
self._test_mean_sum_dim(torch.mean)
def test_argmax_dim(self):
def test(f, args):
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(f, args, {}):
self.assertEqual(loop_out, batched_out)
B0 = 5
test(lambda x: torch.argmax(x), [torch.randn(B0)])
test(lambda x: torch.argmax(x), [torch.randn(B0, 2, 3)])
test(lambda x: torch.argmax(x, 0), [torch.randn(B0, 2, 3)])
test(lambda x: torch.argmax(x, -1), [torch.randn(B0, 2, 3)])
test(lambda x: torch.argmax(x, 2), [torch.randn(B0, 2, 3)])
def _test_sum_mean(self, op):
test = self._vmap_test
B0, B1 = 5, 7
# Single vmap, various in_dims / out_dims
test(op, [torch.randn([B0])])
test(op, [torch.randn([B0, 3])])
test(op, [torch.randn([2, 5, B0, 3])], in_dims=2)
test(op, [torch.randn([2, 5, B0, 3])], in_dims=2)
# Doubly nested vmap
test(vmap(op), [torch.randn([B0, B1])])
test(vmap(op), [torch.randn([B1, 2, 5, B0, 3])])
test(vmap(op), [torch.randn([2, 5, B0, B1, 3])], in_dims=2)
def test_sum(self):
self._test_sum_mean(torch.sum)
def test_mean(self):
self._test_sum_mean(torch.mean)
def test_repeat(self):
test = self._vmap_test
B0 = 7
op = Tensor.repeat
test(lambda x: op(x, (2, 3)), (torch.rand(B0, 1, 1),))
test(lambda x: op(x, (2, 3)), (torch.rand(1, B0, 1),), in_dims=1)
def test_slogdet(self):
test = functools.partial(self._vmap_test, check_propagates_grad=False)
B0 = 7
op = torch.linalg.slogdet
test(op, (torch.rand(B0, 1, 1),))
test(op, (torch.rand(B0, 2, 2),))
test(op, (torch.rand(B0, 3, 2, 2),))
test(op, (torch.rand(3, 2, 2, B0),), in_dims=3)
def test_reshape(self):
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
op = torch.reshape
test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None), check_view=True)
test(op, (torch.rand(2, B0, 5), [1, 1, 10]), in_dims=(1, None), check_view=False)
test(vmap(lambda t: t.reshape([-1])), (torch.rand(B0, B1, 2, 5),), check_view=True)
test(vmap(vmap(lambda t: t.reshape([-1]), in_dims=2), in_dims=1),
(torch.rand(3, B1, 2, B2, 5, B0),), in_dims=5, check_view=False)
def test_reshape_as(self):
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
op = torch.Tensor.reshape_as
test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)), check_view=True)
test(op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0), check_view=True)
test(op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None), check_view=True)
test(op, (torch.rand(2, B0, 5), torch.rand(1, 1, 10)), in_dims=(1, None), check_view=False)
test(vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)), check_view=True)
test(vmap(vmap(op, in_dims=(2, None)), in_dims=(1, None)),
(torch.rand(3, B1, 2, B2, 5, B0), torch.rand(B0, 3 * 2 * 5)),
in_dims=(5, 0), check_view=False)
def test_result_type(self):
def scalar_tensor_with_dtype(op):
def wrapped(*args, **kwargs):
dtype = op(*args, **kwargs)
return torch.ones([], dtype=dtype)
return wrapped
test = self._vmap_test
op = scalar_tensor_with_dtype(torch.result_type)
B0 = 2
test(op, (torch.randn(B0), torch.randn(B0, dtype=torch.float64)),
check_propagates_grad=False)
test(op, (torch.randn(B0), torch.randint(10, [B0], dtype=torch.int64)),
check_propagates_grad=False)
test(lambda x: op(x, 1), (torch.randn(B0),), check_propagates_grad=False)
test(lambda x: op(x, 1.6), (torch.randn(B0),), check_propagates_grad=False)
test(lambda x: op(x, torch.tensor(1)), (torch.randn(B0),),
check_propagates_grad=False)
test(lambda x: op(x, torch.tensor(1.6, dtype=torch.double)),
(torch.randn(B0),), check_propagates_grad=False)
test(op, (torch.randn(B0, 2), torch.randn(B0, 2, dtype=torch.float64)),
check_propagates_grad=False)
test(op, (torch.randn(B0, 2), torch.randint(10, [B0, 2], dtype=torch.int64)),
check_propagates_grad=False)
test(lambda x: op(x, 1), (torch.randn(B0, 2),), check_propagates_grad=False)
test(lambda x: op(x, 1.6), (torch.randn(B0, 2),), check_propagates_grad=False)
test(lambda x: op(x, torch.tensor(1)), (torch.randn(B0, 2),),
check_propagates_grad=False)
test(lambda x: op(x, torch.tensor(1.6, dtype=torch.double)),
(torch.randn(B0, 2),), check_propagates_grad=False)
test(op, (torch.randn(B0, 2), torch.randn(B0, dtype=torch.float64)),
check_propagates_grad=False)
test(op, (torch.randn(B0, 2), torch.randint(10, [B0], dtype=torch.int64)),
check_propagates_grad=False)
def test_tensor_split(self):
test = self._vmap_view_test
op = torch.tensor_split
B0, B1, B2 = 7, 11, 13
# tests for torch.tensor_split(self, indices_or_sections: int, dim)
test(op, (torch.rand(B0, 2, 1024), 5, -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), 150, 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 256, 0),
in_dims=(2, None, None))
test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),), in_dims=2)
# tests for torch.tensor_split(self, indices_or_sections: List[int], dim)
test(op, (torch.rand(B0, 2, 1024), [50, 100, 378, 890], -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), [50, 100, 212, 345, 0, 378, 890], 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), [50, 100, 212, 345, 0, 378, 890], 0),
in_dims=(2, None, None))
test(vmap(vmap(lambda t: op(t, [4, 8, 9, 34, 29], 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),), in_dims=2)
def test_split(self):
test = self._vmap_view_test
op = torch.split
B0, B1, B2 = 7, 11, 13
# tests for torch.split(self, split_size: int, dim)
test(op, (torch.rand(B0, 2, 1024), 101, -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), 130, 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), 256, 0),
in_dims=(2, None, None))
test(vmap(vmap(lambda t: op(t, 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),), in_dims=2)
# tests for torch.split(self, split_size: List[int], dim)
test(op, (torch.rand(B0, 2, 1024), [1, 1020, 3], -1), in_dims=(0, None, None))
test(op, (torch.rand(2, B0, 1024), [100] * 10 + [24], 1), in_dims=(1, None, None))
test(vmap(op, in_dims=(0, None, None)), (torch.rand(B1, 1023, B0, 5), [256] * 3 + [255], 0),
in_dims=(2, None, None))
test(vmap(vmap(lambda t: op(t, [4] * 8 + [8] * 4, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 64, B2),), in_dims=2)
def test_trace(self):
op = torch.trace
test = self._vmap_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5),))
test(op, (torch.rand(2, B0, 5),), in_dims=1)
test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)
def test_transpose(self):
op = torch.transpose
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(lambda x: op(x, 0, 1), (torch.rand(B0, 2, 5),))
test(lambda x: op(x, -1, -2), (torch.rand(B0, 2, 5),))
test(lambda x: op(x, 3, 1), (torch.rand(B0, 2, 5, 4, 6),))
test(lambda x: op(x, 1, 0), (torch.rand(2, B0, 5),), in_dims=1)
test(vmap(lambda x: op(x, 0, 1)), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(lambda x: op(x, 0, 1), in_dims=2)),
(torch.rand(B1, 2, B0, 5, B2),), in_dims=2)
# Special case: scalar tensor
for dim1, dim2 in itertools.product([0, -1], [0, -1]):
x = torch.rand(B0)
result = vmap(lambda x: op(x, dim1, dim2))(x)
self.assertTrue(result is x)
def test_t(self):
op = torch.t
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 5),))
test(op, (torch.rand(2, B0, 5),), in_dims=1)
test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 5, B2),), in_dims=2)
def test_T_numpy(self):
def op(t):
return t.T
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 3, 5),))
test(op, (torch.rand(2, B0, 3, 5),), in_dims=1)
test(vmap(op), (torch.rand(B1, 2, B0, 5),), in_dims=2)
test(vmap(op), (torch.rand(B1, 2, B0, 3, 5),), in_dims=2)
test(vmap(vmap(op, in_dims=2)), (torch.rand(B1, 2, B0, 3, B2, 5),), in_dims=2)
def test_to(self):
test = self._vmap_test
B0, B1 = 7, 11
test(lambda t: t.to('cpu'), (torch.rand(B0),))
test(lambda t: t.to(torch.double), (torch.rand(B0),))
test(lambda t, o: t.to(o), (torch.rand(B0), torch.randn(B0, dtype=torch.float64)))
test(lambda t, o: t.to(o),
(torch.rand(B0), torch.randn(B0, dtype=torch.float64)),
in_dims=(0, None))
test(vmap(lambda t: t.to(torch.double)), (torch.rand(B0, B1, 3),))
# also test some casting methods
test(lambda t: t.double(), (torch.rand(B0),))
test(lambda t: t.float(), (torch.rand(B0),))
test(lambda t: t.int(), (torch.rand(B0),), check_propagates_grad=False)
test(lambda t: t.long(), (torch.rand(B0),), check_propagates_grad=False)
def test_unfold(self):
op = torch.Tensor.unfold
test = self._vmap_view_test
B0, B1, B2 = 3, 2, 5
test(op, (torch.rand(B0, 7, 11), 0, 2, 1), in_dims=(0, None, None, None))
test(op, (torch.rand(7, B0, 11), 1, 4, 2), in_dims=(1, None, None, None))
test(vmap(op, in_dims=(0, None, None, None)),
(torch.rand(B1, 7, B0, 11), 1, 5, 1), in_dims=(2, None, None, None))
test(vmap(vmap(op, in_dims=(2, None, None, None)), in_dims=(0, None, None, None)),
(torch.rand(B1, 7, B0, 11, B2), -1, 2, 4), in_dims=(2, None, None, None))
def test_unbind(self):
test = self._vmap_view_test
op = torch.unbind
B0, B1, B2 = 7, 11, 13
test(op, (torch.rand(B0, 2, 1024), -1), in_dims=(0, None))
test(op, (torch.rand(B0, 2, 0),))
test(op, (torch.rand(2, B0, 7), 0), in_dims=(1, None))
test(vmap(op, in_dims=(0, None)), (torch.rand(B1, 1023, B0, 5), 1),
in_dims=(2, None))
test(vmap(vmap(lambda t: op(t, dim=1), in_dims=2)),
(torch.rand(B1, 2, B0, 32, B2),), in_dims=2)
def test_view(self):
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
op = torch.Tensor.view
# We should error out if the view would produce an incorrect result
with self.assertRaises(RuntimeError):
vmap(op, in_dims=(1, None))(torch.rand(2, B0, 5), [10])
test(op, (torch.rand(B0, 2 * 5), [2, 5]), in_dims=(0, None))
test(op, (torch.rand(B0, 4, 5), [1, 2, 1, 10]), in_dims=(0, None))
test(vmap(lambda t: t.view([-1])), (torch.rand(B0, B1, 2, 5, 3),))
test(vmap(vmap(lambda t: t.reshape([-1])), in_dims=1),
(torch.rand(B2, B0, B1, 3, 2, 5),), in_dims=1)
def test_view_as(self):
test = self._vmap_view_test
B0, B1, B2 = 7, 11, 13
op = torch.Tensor.view_as
# We should error out if the view would produce an incorrect result
with self.assertRaises(RuntimeError):
vmap(op, in_dims=(1, 0))(torch.rand(2, B0, 5), torch.rand(B0, 10))
test(op, (torch.rand(B0, 2 * 5), torch.rand(B0, 2, 5)))
test(op, (torch.rand(2 * 5), torch.rand(B0, 2, 5)), in_dims=(None, 0))
test(op, (torch.rand(B0, 2 * 5), torch.rand(2, 5)), in_dims=(0, None))
test(op, (torch.rand(B0, 4, 5), torch.rand(2, 1, 1, 10)), in_dims=(0, None))
test(vmap(op), (torch.rand(B0, B1, 2, 5), torch.randn(B0, B1, 10)))
test(vmap(vmap(op, in_dims=(0, None)), in_dims=(0, None)),
(torch.rand(B1, B2, B0, 3, 2, 5), torch.rand(B0, 3 * 2 * 5)),
in_dims=(2, 0))
def test_conv2d(self):
conv_setups = [
(torch.nn.Conv1d, torch.conv1d, [2, 4, 15]),
(torch.nn.Conv2d, torch.conv2d, [2, 4, 15, 20]),
(torch.nn.Conv3d, torch.conv3d, [2, 4, 15, 20, 25]),
# (torch.nn.ConvTranspose2d, torch.conv_transpose2d, [2, 4, 15, 20])
]
for conv_mod, conv_fn, inp_shape in conv_setups:
mod = conv_mod(4, 8, kernel_size=3)
arg_values = [torch.randn(inp_shape), mod.weight, mod.bias]
kwarg_values = {}
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(conv_fn, arg_values, kwarg_values):
self.assertEqual(loop_out, batched_out)
arg_values = [torch.randn(inp_shape), mod.weight, None]
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(conv_fn, arg_values, kwarg_values):
self.assertEqual(loop_out, batched_out)
mod2 = conv_mod(4, 8, kernel_size=3, groups=2, stride=3, padding=1, dilation=2)
arg_values = [torch.randn(inp_shape), mod2.weight, mod2.bias]
kwarg_values = dict(groups=2, stride=3, padding=1, dilation=2)
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(conv_fn, arg_values, kwarg_values):
self.assertEqual(loop_out, batched_out)
arg_values = [torch.randn(inp_shape), mod2.weight, None]
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(conv_fn, arg_values, kwarg_values):
self.assertEqual(loop_out, batched_out)
def test_one_hot(self):
sample_inputs = [
(torch.randint(0, 3, []), 3),
(torch.randint(0, 3, [2, 3, 4]), 4),
]
for args in sample_inputs:
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(F.one_hot, args, {}):
self.assertEqual(loop_out, batched_out)
def test_conj_bit(self):
x = torch.tensor([1 + 1j, 2 + 1j])
def foo(x):
assert not x.is_conj()
y = x.conj()
assert y.is_conj()
return y
res = vmap(foo)(x)
self.assertEqual(res, x.conj())
def test_mode_key(self):
def vmap_f(x):
return x + torch.randn(())
def naive_f(x, shape):
return x + torch.randn(shape)
torch.manual_seed(0)
out1 = vmap(vmap(vmap_f, randomness='different'), randomness='different')(torch.ones(2, 3))
torch.manual_seed(0)
out2 = naive_f(torch.ones(2, 3), (2, 3))
self.assertEqual(out1, out2)
torch.manual_seed(0)
out1 = vmap(vmap(vmap_f, randomness='different'), randomness='different')(torch.ones(2, 3, 4))
torch.manual_seed(0)
out2 = naive_f(torch.ones(2, 3, 4), (2, 3, 1))
self.assertEqual(out1, out2)
self.assertTrue(torch.randn(()).dim() == 0)
@parametrize('in_dim', [0, 1, 2])
@parametrize('out_dim', [0, 1, 2])
@parametrize('randomness', ['error', 'same'])
def test_chunk_vmap(self, in_dim, out_dim, randomness):
x = torch.randn(4, 5, 6)
def f(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return y
rs = torch.get_rng_state()
expected = vmap(f, in_dims=in_dim, out_dims=out_dim, randomness=randomness)(x)
for chunks in [1, 2, 3, 4, 7, 10, 16]:
torch.set_rng_state(rs)
output = chunk_vmap(
f, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunks=chunks
)(x)
self.assertEqual(output, expected)
@parametrize('in_dim', [0, 1, 2])
@parametrize('out_dim', [0, 1, 2])
@parametrize('randomness', ['error', 'same'])
def test_vmap_chunksize(self, in_dim, out_dim, randomness):
x = torch.randn(4, 5, 6)
y = torch.randn_like(x)
# fn: Single Input/Single Output
def f(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return y
f_args = (x,)
f_kwargs = {'in_dims': in_dim, 'out_dims': out_dim, 'randomness': randomness}
# fn: Nested Input/Single Output
def f1(pair):
x, y = pair
z = x.sin() + y.cos()
if randomness != "error":
z = z + torch.rand_like(z)
return z
f1_args = ((x, y),)
f1_kwargs = {'in_dims': ((in_dim,) * 2,), 'out_dims': out_dim, 'randomness': randomness}
# fn: Single Input/Nested Output
def f2(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return {'out': y, 'out1': y + 2}
f2_args = (x,)
f2_kwargs = {'in_dims': in_dim, 'out_dims': out_dim, 'randomness': randomness}
# fn: Nested Input/Nested Output (first tensor is not vmapped).
def f3(inp_dict):
x = inp_dict['inp']
y = inp_dict['inp1']
z = x.sin() + y.cos()
if randomness != "error":
z = z + torch.rand_like(z)
return {'z': z, 'tuple': (z, z + 1)}
f3_args = ({'inp': x.index_select(in_dim, torch.tensor([0])).squeeze(in_dim), 'inp1': y},)
f3_kwargs = {'in_dims': ({'inp': None, 'inp1': in_dim},), 'out_dims': out_dim, 'randomness': randomness}
# fn: Nested Input/Nested Output (first argument is not a Tensor).
def f4(inp_dict):
x = inp_dict['inp']
y = inp_dict['inp1']
z = x + y.cos()
if randomness != "error":
z = z + torch.rand_like(z)
return {'z': z, 'tuple': (z, z + 1)}
f4_args = ({'inp': 2., 'inp1': y},)
f4_kwargs = {'in_dims': ({'inp': None, 'inp1': in_dim},), 'out_dims': out_dim, 'randomness': randomness}
fns_and_args = ((f, f_args, f_kwargs), (f1, f1_args, f1_kwargs), (f2, f2_args, f2_kwargs),
(f3, f3_args, f3_kwargs), (f4, f4_args, f4_kwargs))
for fn, args, kwargs in fns_and_args:
rs = torch.get_rng_state()
expected_vmap = vmap(fn, **kwargs)(*args)
for chunk_size in (1, 2, 3, 4, 7, 10, 16, 100):
torch.set_rng_state(rs)
output = vmap(
fn, chunk_size=chunk_size, **kwargs
)(*args)
self.assertEqual(output, expected_vmap)
@parametrize('in_dim', [0, 1])
@parametrize('out_dim', [0, 1])
@parametrize('randomness', ['error', 'same'])
def test_vmap_chunksize_error(self, in_dim, out_dim, randomness):
x = torch.randn(4, 5, 6)
def f(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return y
# Incorrect `chunk_size`
for chunk_size in (-1, 0):
with self.assertRaisesRegex(ValueError, "vmap: chunk_size should be None or greater than 0."):
vmap(
f, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunk_size=chunk_size
)(x)
# Incorrect `out_dims`
msg = "out_dims is not compatible with the structure of `outputs`"
with self.assertRaisesRegex(ValueError, msg):
vmap(
f, in_dims=in_dim, out_dims=(out_dim, out_dim), randomness=randomness, chunk_size=2
)(x)
@parametrize('in_dim', [0, 1])
@parametrize('out_dim', [0, 1])
@parametrize('randomness', ['error', 'same'])
def test_vmap_chunksize_composition(self, in_dim, out_dim, randomness):
x = torch.randn(4, 5, 6)
y = torch.randn_like(x)
# fn: Single Input/Single Output
def f(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return y
f_args = (x,)
# fn: Nested Input/Single Output
def f1(pair):
x, y = pair
z = x.sin() + y.cos()
if randomness != "error":
z = z + torch.rand_like(z)
return z
f1_args = ((x, y),)
# fn: Single Input/Nested Output
def f2(x):
y = x.sin()
if randomness != "error":
y = y + torch.rand_like(x)
return {'out': y, 'out1': y + 2}
f2_args = (x,)
# fn: Nested Input/Nested Output
def f3(inp_dict):
x = inp_dict['inp']
y = inp_dict['inp1']
z = x.sin() + y.cos()
if randomness != "error":
z = z + torch.rand_like(z)
return {'z': z, 'tuple': (z, z + 1)}
f3_args = ({'inp': x, 'inp1': y},)
for fn, args in ((f, f_args), (f1, f1_args), (f2, f2_args), (f3, f3_args)):
rs = torch.get_rng_state()
expected = vmap(vmap(fn, in_dims=in_dim, out_dims=out_dim, randomness=randomness),
in_dims=in_dim, out_dims=out_dim, randomness=randomness)(*args)
for chunk_size in (1, 2, 3, 4, 7, 10, 16, 100):
torch.set_rng_state(rs)
actual = vmap(vmap(
fn, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunk_size=chunk_size
), in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunk_size=chunk_size)(*args)
self.assertEqual(actual, expected)
instantiate_parametrized_tests(TestVmapOperators)
def construct_v(output, batch_size, contig=False):
if contig:
return torch.randn(batch_size, *output.shape,
dtype=output.dtype, device=output.device)
result = torch.randn(*output.shape, batch_size,
dtype=output.dtype, device=output.device)
return result.movedim(-1, 0)
def as_tuple(x):
if isinstance(x, tuple):
return x
elif isinstance(x, list):
return tuple(x)
else:
return x,
def differentiable(args):
return tuple(arg for arg in as_tuple(args)
if isinstance(arg, torch.Tensor) and arg.requires_grad)
def _get_rand_no_zeros(*args, **kwargs):
requires_grad = kwargs.get('requires_grad', False)
kwargs_without_requires_grad = kwargs.copy()
kwargs_without_requires_grad['requires_grad'] = False
result = torch.rand(*args, **kwargs_without_requires_grad)
return result.clamp_min_(0.1).requires_grad_(requires_grad)
class TestVmapBatchedGradient(Namespace.TestVmapBase):
def _vmap_test(self, *args, **kwargs):
return _vmap_test(self, *args, **kwargs)
# Tests batched gradient computation of outputs = op(*args, **kwargs)
# by comparing it to a sequential map+stack fallback.
#
# output_process_fn: a function that maps the outputs to the part
# that should be differentiated.
# batch_size: the batch dim size for the batched grad
def _batched_grad_test(self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3):
if kwargs is None:
kwargs = {}
outputs = op(*args, **kwargs)
outputs = differentiable(output_process_fn(outputs))
for contig in [True, False]:
batched_vectors = tuple(construct_v(out, batch_size, contig)
for out in outputs)
def vector_jacobian_product(*vectors):
return torch.autograd.grad(outputs, differentiable(args), vectors,
retain_graph=True)
self._vmap_test(vector_jacobian_product, batched_vectors,
check_propagates_grad=False)
# Tests batched second grad computation of outputs = op(*args, **kwargs).
# by comparing it to a sequential map+stack fallback.
#
# output_process_fn: a function that maps the outputs to the part
# that should be differentiated.
# batch_size: the batch dim size for the batched grad
#
# NB: we only test computing batched gradients in the second gradient
# computation. One specific use case that does this is computing the hessian
# matrix of a scalar-valued function; this is useful in Bayesian Logistic
# Regression.
# It might be useful to have a test that computes batched first gradients and
# then uses those to compute batched second gradients in the future.
def _batched_grad_grad_test(self, op, args, kwargs=None, output_process_fn=lambda x: x, batch_size=3):
if kwargs is None:
kwargs = {}
outputs = op(*args, **kwargs)
outputs = differentiable(output_process_fn(outputs))
ones = tuple(torch.ones_like(out) for out in outputs)
# Same thing as summing together all of the outputs and calling .backward()
first_grads = torch.autograd.grad(outputs, differentiable(args), ones,
create_graph=True)
first_grads = differentiable(first_grads)
self.assertNotEqual(
len(first_grads), 0, "None of the first grads depend on the input!")
for contig in [True, False]:
batched_vectors = tuple(construct_v(grad, batch_size, contig)
for grad in first_grads)
def vector_hessian_product(*vectors):
outputs = torch.autograd.grad(first_grads, differentiable(args), vectors,
retain_graph=True, allow_unused=True)
outputs = tuple(out for out in outputs if out is not None)
assert len(outputs) > 0
return outputs
self._vmap_test(vector_hessian_product, batched_vectors,
check_propagates_grad=False)
def _test_arithmetic(self, op, device, test_grad_grad=True):
x = torch.randn(2, 3, requires_grad=True, device=device)
y = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
scalar = 3.14
self._batched_grad_test(op, (x, y))
self._batched_grad_test(op, (scalar, y))
self._batched_grad_test(op, (x, scalar))
if test_grad_grad:
self._batched_grad_grad_test(op, (x, y))
def test_add(self, device):
self._test_arithmetic(torch.add, device, test_grad_grad=False)
self._test_arithmetic(lambda x, y: x + y, device, test_grad_grad=False)
def test_sub(self, device):
self._test_arithmetic(torch.sub, device, test_grad_grad=False)
self._test_arithmetic(lambda x, y: x - y, device, test_grad_grad=False)
def test_mul(self, device):
self._test_arithmetic(torch.mul, device)
self._test_arithmetic(lambda x, y: x * y, device)
def test_div(self, device):
self._test_arithmetic(torch.div, device)
self._test_arithmetic(lambda x, y: x / y, device)
def test_binary_cross_entropy(self, device):
x = F.sigmoid(torch.randn(3, 2, device=device, requires_grad=True))
target = torch.rand(3, 2, device=device)
op = functools.partial(F.binary_cross_entropy, target=target)
self._batched_grad_test(op, (x,), {})
self._batched_grad_grad_test(op, (x,), {})
def test_log_softmax(self, device):
op = functools.partial(torch.log_softmax, dim=-1)
x = torch.randn(3, 2, device=device, requires_grad=True)
self._batched_grad_test(op, (x,), {})
self._batched_grad_grad_test(op, (x,), {})
def test_expand(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
def op(x):
return x.expand(5, 5, 2, 3)
self._batched_grad_test(op, (x,))
@allowVmapFallbackUsage
def test_index(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
index = torch.tensor([[0, 0], [1, 1]], device=device)
def op(x):
y = x * x
return y[index]
self._batched_grad_test(op, (x,))
self._batched_grad_grad_test(op, (x,))
def test_lgamma(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(Tensor.lgamma, (x,))
self._batched_grad_grad_test(Tensor.lgamma, (x,))
def test_log(self, device):
x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
self._batched_grad_test(torch.log, (x,))
self._batched_grad_grad_test(torch.log, (x,))
def test_logsumexp(self, device):
x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
def op(x):
return torch.logsumexp(x, -1)
self._batched_grad_test(op, (x,))
self._batched_grad_grad_test(op, (x,))
def test_log1p(self, device):
x = _get_rand_no_zeros(2, 3, device=device, requires_grad=True)
self._batched_grad_test(torch.log1p, (x,))
self._batched_grad_grad_test(torch.log1p, (x,))
@allowVmapFallbackUsage
def test_max(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(torch.max, (x,))
@allowVmapFallbackUsage
def test_median(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(torch.median, (x,))
@allowVmapFallbackUsage
def test_min(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(torch.min, (x,))
def test_permute(self, device):
x = torch.randn(2, 3, 5, requires_grad=True, device=device)
def op(x):
return x.permute(2, 0, 1)
self._batched_grad_test(op, (x,))
def test_reshape(self, device):
x = torch.randn(2, 3, 5, requires_grad=True, device=device)
def op(x):
return x.reshape([2 * 3, 5])
self._batched_grad_test(op, (x,))
def test_sigmoid(self, device):
x = torch.randn(2, 3, requires_grad=True, device=device)
self._batched_grad_test(Tensor.sigmoid, (x,))
self._batched_grad_grad_test(Tensor.sigmoid, (x,))
def test_stack(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
y = torch.randn(2, 3, device=device, requires_grad=True)
def op(x, y):
return torch.stack([x, y])
self._batched_grad_test(op, (x, y))
def test_select(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x[1], (x,))
self._batched_grad_test(lambda x: x.select(1, 2), (x,))
self._batched_grad_test(lambda x: x.select(-1, 0), (x,))
def test_slice(self, device):
x = torch.randn(2, 3, 5, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x[0:1], (x,))
self._batched_grad_test(lambda x: x[:, 1:3], (x,))
self._batched_grad_test(lambda x: x[..., 1:3], (x,))
def test_trace(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
self._batched_grad_test(Tensor.trace, (x,))
x = torch.randn(3, 2, 2, device=device)
def sum_grad_trace(x):
return grad(torch.trace)(x).sum()
output = vmap(grad(sum_grad_trace))(x)
self.assertEqual(output, torch.zeros_like(output))
def test_where(self, device):
x = torch.randn(3, 2, device=device)
y = torch.ones(3, 2, device=device)
def f(x, y):
return torch.where(x > 0, x, y)
# Check that there is no runtime error, exactness tests are done with opinfo
vmap(f)(x, y)
x = torch.randint(0, 2, size=(4, 3), dtype=torch.float)
def f(t):
return torch.where(t)
with self.assertRaisesRegex(RuntimeError, r"Attempted to vmap over aten::where"):
vmap(f)(x)
def test_threshold(self, device):
x = torch.randn(2, 3, device=device, requires_grad=True)
self._batched_grad_test(lambda x: F.threshold(x, 0.5, 0.0), (x,))
@allowVmapFallbackUsage
def test_inplace_view(self, device):
leaf = torch.randn(4, 5, requires_grad=True)
def func(leaf):
# Make sure the function is non-trivially twice differentiable
base = leaf * leaf
view = base[0]
view.cos_()
return view
self._batched_grad_test(func, (leaf,), {})
self._batched_grad_grad_test(func, (leaf,), {})
@allowVmapFallbackUsage
def test_inplace_manyview(self, device):
leaf = torch.randn(4, 4, 5, requires_grad=True)
def func(leaf):
# Make sure the function is non-trivially twice differentiable
base = leaf * leaf
view = base.transpose(0, 2)
view = view[1]
view = view.diagonal()
view = view[::2]
view.cos_()
return view
self._batched_grad_test(func, (leaf,), {})
self._batched_grad_grad_test(func, (leaf,), {})
def test_diagonal(self, device):
x = torch.randn(4, 5, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x.diagonal(1, 0, 1), (x,))
x = torch.randn(3, 4, 5, device=device, requires_grad=True)
self._batched_grad_test(lambda x: x.diagonal(0, -1, -2), (x,))
@allowVmapFallbackUsage
def test_unrelated_output(self, device):
B0 = 3
x = torch.randn([], requires_grad=True)
y = torch.randn([], requires_grad=True)
gy = torch.randn(B0, requires_grad=True)
def vjp(v):
res, = torch.autograd.grad(y, x, v, allow_unused=True)
return torch.zeros_like(x) if res is None else res
result = vmap(vjp)(gy)
self.assertEqual(result, torch.zeros(B0, *x.shape, device=device))
@allowVmapFallbackUsage
def test_unrelated_output_multiple_grad(self, device):
B0 = 3
x = torch.randn([], requires_grad=True)
y = torch.randn([], requires_grad=True)
gy = torch.randn(B0, requires_grad=True)
def vjp(v):
res, = torch.autograd.grad(y, x, v, allow_unused=True)
return torch.zeros_like(x) if res is None else res
_ = vjp(gy[0])
result = vmap(vjp)(gy)
self.assertEqual(result, torch.zeros(B0, *x.shape, device=device))
def discover_variants(opinfo):
aliases = []
inplace_variants = []
if opinfo.inplace_variant:
inplace_variants.append(opinfo.inplace_variant)
aliases.append(opinfo.op)
for alias in opinfo.aliases:
aliases.append(alias.op)
if alias.inplace_variant:
inplace_variants.append(alias.inplace_variant)
return aliases, inplace_variants
class TestVmapOperatorsOpInfo(TestCase):
def vmap_outplace_test(self, func, args, kwargs, in_dims, check_shape_only=False,
postprocess_fn=None):
for vmap_out, loop_out in compute_quantities_for_vmap_test(func, args, kwargs, in_dims):
if postprocess_fn is not None:
loop_out = postprocess_fn(loop_out)
vmap_out = postprocess_fn(vmap_out)
if check_shape_only:
self.assertEqual(vmap_out.shape, loop_out.shape)
continue
self.assertEqual(vmap_out, loop_out)
def vmap_inplace_test(self, func, args, kwargs, in_dims, postprocess_fn=None):
# NB: This test assumes that the first argument is being modified.
# This is OK because it's what every other OpInfo-based test assumes,
# but it is going to need a more robust solution eventually.
if in_dims[0] is None:
# Check that we correctly raise an error when vmap is impossible
# on the in-place operation
with self.assertRaises(RuntimeError):
for _ in compute_quantities_for_vmap_test(
func, args, kwargs, in_dims, compute_loop_out=False, clone_inputs=True):
pass
return
for vmap_out, loop_out in compute_quantities_for_vmap_test(
func, args, kwargs, in_dims, clone_inputs=True):
if postprocess_fn is not None:
loop_out = postprocess_fn(loop_out)
vmap_out = postprocess_fn(vmap_out)
self.assertEqual(vmap_out, loop_out)
def opinfo_vmap_test(self, device, dtype, op, check_has_batch_rule,
skip_inplace=(), postprocess_fn=None):
def test():
# Error inputs check
if op.error_inputs_func is not None:
error_inputs = op.error_inputs(device)
for error_input in error_inputs:
sample_input = error_input.sample_input
args = (sample_input.input,) + tuple(sample_input.args)
kwargs = sample_input.kwargs
for args, in_dims, _ in generate_vmap_inputs(args, {}):
with self.assertRaises(Exception):
vmap(op, in_dims)(*args, **kwargs)
# Sample inputs check
sample_inputs_op = {
# Take too long with reference inputs
"special.chebyshev_polynomial_t",
"special.chebyshev_polynomial_u",
"special.chebyshev_polynomial_v",
"special.chebyshev_polynomial_w",
"special.hermite_polynomial_he",
"special.laguerre_polynomial_l",
"special.legendre_polynomial_p",
"special.shifted_chebyshev_polynomial_t",
"special.shifted_chebyshev_polynomial_u",
"special.shifted_chebyshev_polynomial_v",
"special.shifted_chebyshev_polynomial_w",
}
if op.name in sample_inputs_op:
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
else:
sample_inputs_itr = op.reference_inputs(device, dtype, requires_grad=False)
aliases, inplace_aliases = discover_variants(op)
check_shape_only = op.name in ('empty_like', 'new_empty')
for sample_input in sample_inputs_itr:
args = (sample_input.input,) + sample_input.args
if not any(isinstance(arg, torch.Tensor) for arg in args):
# Atleast one tensor required for vmap.
continue
kwargs = sample_input.kwargs
is_batch_norm_and_training = is_batch_norm_training(op.name, kwargs)
for args, in_dims, _ in generate_vmap_inputs(
args, {}, is_batch_norm_and_training=is_batch_norm_and_training):
for func in aliases:
self.vmap_outplace_test(func, args, kwargs, in_dims, check_shape_only, postprocess_fn)
if op.name in skip_inplace:
continue
if not is_valid_inplace_sample_input(sample_input, op, op.inplace_variant):
continue
for func in inplace_aliases:
self.vmap_inplace_test(func, args, kwargs, in_dims, postprocess_fn)
if check_has_batch_rule:
check_vmap_fallback(self, test, op)
else:
test()
vmap_fail = {
# -------------------- ALLOWED FAILURES --------------------------------
# These are things that we either cannot fix or are not actually problems
xfail('resize_'),
xfail('resize_as_'),
xfail('to_sparse'),
xfail('__getitem__'), # dynamic mask
xfail('index_put'), # dynamic mask
xfail('nn.functional.dropout'), # works, can't check against for loop because of randomness inconsistency
xfail('nn.functional.scaled_dot_product_attention'), # randomness
xfail('nn.functional.multi_head_attention_forward'), # randomness
xfail('masked_select'), # dynamic op
xfail('nonzero'), # dynamic op
xfail('unique', ''), # dynamic op
xfail('unique_consecutive', ''), # dynamic op
xfail('allclose'), # returns a boolean
xfail('uniform'), # randomness is tested separately
xfail('rand_like'), # randomness is tested separately
xfail('randint_like'), # randomness is tested separately
xfail('randn_like'), # randomness is tested separately
xfail('bernoulli', ''), # randomness is tested separately
xfail('normal', ''), # randomness is tested separately
xfail('normal', 'number_mean'), # randomness is tested separately
xfail('multinomial', ''), # randomness
xfail('nn.functional.embedding', ''), # we only support some cases
xfail('nn.functional.rrelu'), # randomness
xfail('nn.functional.dropout2d', ''), # randomness
xfail('nn.functional.dropout3d', ''), # randomness
xfail('nn.functional.alpha_dropout', ''), # randomness
xfail('nn.functional.feature_alpha_dropout', 'with_train'), # randomness
xfail('as_strided'), # Our test runner can't handle this; manual test exists
xfail('as_strided_scatter'), # no batching rule implemented, default doesnt work
skip('new_empty_strided'), # empty tensor data is garbage so it's hard to make comparisons with it
xfail('nn.functional.fractional_max_pool3d'), # randomness
xfail('nn.functional.fractional_max_pool2d'), # randomness
xfail('pca_lowrank', ''), # random operation
xfail('svd_lowrank', ''), # random operation
xfail('sparse.sampled_addmm'), # sparse
xfail('sparse.mm', 'reduce'), # sparse
xfail("NumpyCubeNotComposableAutogradFunction"), # Not composable autograd.Function
skip('_softmax_backward_data'),
skip('linalg.eigh', ''), # not unique, see test_linalg_eigh for manual test
skip('to'), # RuntimeError: required rank 4 tensor to use channels_last format
# ----------------------------------------------------------------------
# ---------------------------- BUGS ------------------------------------
# entries in here don't work and need to be fixed.
# Each one of these is a bug
xfail('clamp_min', ''), # Exception not raised on error input
xfail('clamp_max', ''), # Exception not raised on error input
xfail('view_as_complex'), # RuntimeError: Tensor must have a last dimension with stride 1
xfail('tensor_split'), # data_ptr
xfail('histogramdd'), # expected Tensor as element 0 in argument 0, but got tuple
xfail('nn.functional.gaussian_nll_loss'), # data-dependent control flow error
xfail('nn.functional.embedding_bag'), # embedding renorm vmap inplace incompatible
xfail('narrow'), # Batching rule not implemented for aten::narrow.Tensor
# required rank 4 tensor to use channels_last format
xfail('bfloat16'),
xfail('bool'),
xfail('byte'),
xfail('char'),
xfail('double'),
xfail('float'),
xfail('half'),
xfail('int'),
xfail('long'),
xfail('short'),
xfail('cdouble'),
xfail('cfloat'),
xfail('jiterator_binary', device_type='cuda'), # NYI: querying is_contiguous inside of vmap
xfail('jiterator_binary_return_by_ref', device_type='cuda'), # NYI: querying is_contiguous inside of vmap
xfail('jiterator_4inputs_with_extra_args', device_type='cuda'), # NYI: querying is_contiguous inside of vmap
xfail('equal', ''), # TypeError: object of type 'bool' has no len(); likely testrunner problem
xfail('jiterator_unary', device_type='cuda'), # NYI: querying is_contiguous inside of vmap
xfail('jiterator_2inputs_2outputs', device_type='cuda'), # NYI: querying is_contiguous inside of vmap
# ---------------------------------------------------------------------
# TypeError: expected Tensor as element 0 in argument 0, but got NotImplementedType
xfail('__rsub__'),
# RuntimeError: Batching rule not implemented for aten::moveaxis.int;
# the fallback path doesn't work on out= or view ops.
xfail('movedim'),
# RuntimeError: NYI: querying is_contiguous inside of vmap for
# memory_format other than torch.contiguous_format
xfail('contiguous'),
# RuntimeError: NYI: Tensor.clone(memory_format) inside vmap is only supported
# with memory_format torch.preserve_format or torch.contiguous_format (got ChannelsLast)
xfail('clone'),
# RuntimeError: When vmap-ing torch.nn.functional.one_hot,
# please provide an explicit positive num_classes argument.
xfail('nn.functional.one_hot'),
# RuntimeError: Expected all tensors to be on the same device,
# but found at least two devices, cuda:0 and cpu!
xfail('eq', device_type='cuda'),
xfail('ge', device_type='cuda'),
xfail('gt', device_type='cuda'),
xfail('le', device_type='cuda'),
xfail('lt', device_type='cuda'),
xfail('ne', device_type='cuda'),
}
@with_tf32_off # https://github.com/pytorch/pytorch/issues/86798
@ops(op_db + additional_op_db + autograd_function_db, dtypes=OpDTypes.any_one)
@opsToleranceOverride('TestVmapOperatorsOpInfo', 'test_vmap_exhaustive', (
tol1('linalg.det',
{torch.float32: tol(atol=1e-04, rtol=1e-04)}, device_type='cuda'),
# The following is often flaky, but just on windows.
# We should investigate if it's actually a problem or not.
tol1('nn.functional.conv_transpose3d',
{torch.float32: tol(atol=1e-04, rtol=1e-02)}, device_type='cuda'),
))
@toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04),
torch.complex64: tol(atol=1e-04, rtol=1e-04)})
@skipOps('TestVmapOperatorsOpInfo', 'test_vmap_exhaustive', vmap_fail.union({
# RuntimeError: Batch norm got a batched tensor as input while the running_mean or running_var,
# which will be updated in place, were not batched.
xfail('native_batch_norm'),
xfail('_native_batch_norm_legit'),
xfail('tril'), # Exception not raised on error input
xfail('triu'), # Exception not raised on error input
xfail('as_strided', 'partial_views'),
# https://github.com/pytorch/pytorch/issues/96560
decorate('nn.functional.batch_norm', decorator=skipIfRocm),
decorate('nn.functional.instance_norm', decorator=skipIfRocm),
decorate('nn.functional.layer_norm', decorator=skipIfRocm),
# RuntimeError: output with shape [4, 4] doesn't match the broadcast shape [1, 4, 4]
xfail('addcdiv'),
xfail('addcmul'),
xfail('clamp'),
# TypeError: expected Tensor as element 0 in argument 0, but got float
xfail('item'),
}))
def test_vmap_exhaustive(self, device, dtype, op):
# needs to be fixed
inplace_failure_list = (
)
self.opinfo_vmap_test(device, dtype, op, check_has_batch_rule=False,
skip_inplace=inplace_failure_list)
@with_tf32_off
@ops(op_db + additional_op_db + autograd_function_db, dtypes=OpDTypes.any_one)
@opsToleranceOverride('TestVmapOperatorsOpInfo', 'test_op_has_batch_rule', (
tol1('linalg.det',
{torch.float32: tol(atol=1e-04, rtol=1e-04)}, device_type='cuda'),
))
@toleranceOverride({torch.float32: tol(atol=1e-04, rtol=1e-04), torch.complex64: tol(atol=1e-04, rtol=1e-04)})
@skipOps('TestVmapOperatorsOpInfo', 'test_op_has_batch_rule', vmap_fail.union({
xfail('as_strided', 'partial_views'),
skip('to'), # RuntimeError: required rank 4 tensor to use channels_last format
xfail('fill'),
# Batch norm got a batched tensor as input while the running_mean or running_var,
# which will be updated in place, were not batched.
xfail('native_batch_norm'),
xfail('_native_batch_norm_legit'),
xfail('histogram'),
xfail('scatter_reduce', 'sum'),
xfail('scatter_reduce', 'mean'),
xfail('scatter_reduce', 'amax'),
xfail('scatter_reduce', 'amin'),
# `index_put` OpInfo in pytorch/pytorch has
# masked index as input which is not supported
xfail('index_put', ''),
xfail('isin'),
xfail('lu_unpack'),
xfail('masked_fill'),
xfail('masked_scatter'),
xfail('masked_select'),
xfail('nanquantile'),
xfail('ormqr'),
xfail('put'),
xfail('quantile'),
xfail('renorm'),
xfail('resize_as_'),
xfail('take'),
xfail('tensor_split'),
xfail('to_sparse'),
# TypeError: expected Tensor as element 0 in argument 0, but got float
xfail('item'),
xfail('tril'), # Exception not raised on error input
xfail('triu'), # Exception not raised on error input
xfail('__getitem__', ''),
xfail('count_nonzero'),
xfail('nn.functional.dropout'), # works, can't check against for loop because of randomness inconsistency
xfail('nn.functional.scaled_dot_product_attention'), # randomness
xfail('nn.functional.multi_head_attention_forward'), # randomness
xfail('resize_'),
xfail('view_as_complex'),
xfail('matrix_exp'),
xfail('fft.ihfft2'),
xfail('fft.ihfftn'),
xfail('allclose'),
xfail('argwhere'),
xfail('unique_consecutive'),
xfail('unique'),
xfail('nn.functional.ctc_loss'),
xfail('nn.functional.gaussian_nll_loss'),
xfail('histc'),
xfail('as_strided'),
xfail('istft'),
xfail('nonzero'),
xfail('nn.functional.fractional_max_pool2d'),
xfail('stft'),
xfail('isclose'),
xfail('nn.functional.fractional_max_pool3d'),
xfail('nn.functional.bilinear'),
xfail('nn.functional.embedding_bag'),
xfail('linalg.tensorsolve'),
xfail('bernoulli', ''),
xfail('nn.functional.feature_alpha_dropout', 'with_train'),
xfail('native_dropout_backward'),
xfail('nn.functional.kl_div', ''),
xfail('multinomial', ''),
xfail('pca_lowrank', ''),
xfail('normal', ''),
xfail('nn.functional.dropout2d', ''),
xfail('normal', 'number_mean'),
xfail('svd_lowrank', ''),
xfail('diagflat', ''),
xfail('special.log_ndtr'),
xfail('narrow'), # Batching rule not implemented for aten::narrow.Tensor
xfail('nn.functional.triplet_margin_loss', ''),
xfail('nn.functional.pdist', ''),
xfail('scatter_reduce', 'sum'),
xfail('scatter_reduce', 'amax'),
xfail('nn.functional.max_unpool1d', 'grad'),
xfail('nn.functional.multi_margin_loss', ''),
xfail('scatter_reduce', 'prod'),
xfail('nn.functional.multilabel_margin_loss', ''),
xfail('scatter_reduce', 'amin'),
xfail('nn.functional.max_unpool3d', 'grad'),
xfail('nn.functional.max_unpool2d', ''),
xfail('nn.functional.max_unpool2d', 'grad'),
xfail('nn.functional.margin_ranking_loss', ''),
xfail('nn.functional.max_unpool1d', ''),
xfail('nn.functional.soft_margin_loss', ''),
xfail('scatter_reduce', 'mean'),
xfail('nn.functional.max_unpool3d', ''),
xfail('linalg.ldl_solve', '', device_type='cpu'),
xfail('chalf', ''),
xfail('clamp_max', ''),
xfail('jiterator_binary_return_by_ref', device_type='cuda'),
xfail('jiterator_unary', device_type='cuda'),
xfail('jiterator_2inputs_2outputs', device_type='cuda'),
xfail('special.airy_ai'),
xfail('clamp_min', ''),
xfail('sparse.sampled_addmm'),
xfail('sparse.mm', 'reduce'),
xfail('special.chebyshev_polynomial_u'),
xfail('_segment_reduce', 'offsets'),
xfail('index_reduce', ''),
xfail('special.laguerre_polynomial_l'),
xfail('special.hermite_polynomial_h'),
xfail('jiterator_binary', device_type='cuda'),
xfail('jiterator_4inputs_with_extra_args', device_type='cuda'),
xfail('_segment_reduce', 'lengths'),
xfail('lu_solve', ''),
xfail('special.hermite_polynomial_he'),
xfail('nn.functional.dropout3d', ''),
xfail('special.chebyshev_polynomial_t'),
xfail('as_strided_scatter', ''),
xfail('equal', ''),
xfail('linalg.lu', ''),
skip('linalg.ldl_solve', ''),
skip('_softmax_backward_data'),
# https://github.com/pytorch/pytorch/issues/96560
decorate('nn.functional.batch_norm', decorator=skipIfRocm),
decorate('nn.functional.instance_norm', decorator=skipIfRocm),
decorate('nn.functional.layer_norm', decorator=skipIfRocm),
# One or more of the overload doesn't have a Batch rule.
xfail('bincount'),
# RuntimeError: Expected all tensors to be on the same device,
# but found at least two devices, cuda:0 and cpu!
xfail('ge', device_type='cuda'),
xfail('_upsample_bilinear2d_aa'),
xfail('argsort'), # aten::argsort.stable hit the vmap fallback which is currently disabled
xfail('searchsorted'), # aten::searchsorted.Scalar hit the vmap fallback which is currently disabled
}))
def test_op_has_batch_rule(self, device, dtype, op):
# needs to be fixed
inplace_failures = (
'abs',
'acos',
'acosh',
'addbmm',
'addcdiv',
'addcmul',
'addmm',
'addmv',
'addr',
'asin',
'asinh',
'atan2',
'atan',
'atanh',
'baddbmm',
'clamp',
'conj_physical',
'cumprod',
'cumsum',
'div',
'div',
'floor_divide',
'fmod',
'gcd',
'heaviside',
'hypot',
'igamma',
'igammac',
'index_add',
'index_copy',
'lcm',
'ldexp',
'lerp',
'neg',
'nextafter',
'polygamma',
'pow',
'remainder',
'scatter_add',
'scatter',
'square',
'sub',
'trunc',
'xlogy',
)
self.opinfo_vmap_test(device, dtype, op, check_has_batch_rule=True,
skip_inplace=inplace_failures)
def test_linalg_svd(self, device):
# linalg_svd returns a tuple of three tensors, (U, S, Vh).
# Given the same input, it may return different tensors,
# because svd isn't unique. To test that the svd is correct, we multiply
# U @ diag(S) @ Vh and check that that the output from vmap matches the
# output from a for-loop.
def compute_A(out):
U, S, Vh = out
m = U.shape[-1]
n = Vh.shape[-2]
diag_S = S.new_zeros(*S.shape[:-1], m, n)
diag_S.diagonal(offset=0, dim1=-2, dim2=-1).copy_(S)
return U @ diag_S @ Vh
opinfos = [op for op in op_db if op.name == 'linalg.svd']
assert len(opinfos) > 0
for op in opinfos:
self.opinfo_vmap_test(device, torch.float, op, check_has_batch_rule=True,
postprocess_fn=compute_A)
def test_linalg_eigh(self, device):
# linalg_svd returns two tensors, (Q, L).
# Given the same input, it may return different tensors,
# because the eig decomposition isn't unique.
# To test that eigh is correct, we multiply
# Q @ diag(L) @ Qh and check that that the output from vmap matches the
# output from a for-loop.
def compute_A(out):
L, Q = out
n = Q.shape[-1]
diag_L = L.new_zeros(*L.shape[:-1], n, n)
diag_L.diagonal(offset=0, dim1=-2, dim2=-1).copy_(L)
Qh = Q.transpose(-2, -1).conj()
return Q @ diag_L @ Qh
opinfos = [op for op in op_db if op.name == 'linalg.eigh']
assert len(opinfos) > 0
for op in opinfos:
self.opinfo_vmap_test(device, torch.float, op, check_has_batch_rule=False,
postprocess_fn=compute_A)
def test_slogdet(self, device):
# There's no OpInfo for this
def test():
B = 2
x = torch.randn(B, 5, 5, device=device)
self.vmap_outplace_test(torch.slogdet, (x,), {}, (0,))
check_vmap_fallback(self, test, torch.slogdet)
def test_index_fill(self, device):
# There's no OpInfo for these tests
B = 2
def test1():
# negative dim
x = torch.randn(B, 5, 5, device=device)
dim = -2
index = torch.tensor([[2, 3], [0, 4]], device=device)
value = 5.0
self.vmap_outplace_test(torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None))
def test2():
# self batched, self logical rank 1, index logical rank 1
x = torch.zeros(B, 3, device=device)
dim = 0
index = torch.tensor([[0], [1]], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(torch.index_fill, (x, dim, index, value), {}, (0, None, 0, None))
def test3():
# self batched, self logical rank 1, index logical rank 0
x = torch.zeros(B, 3, device=device)
dim = 0
index = torch.tensor([0, 1], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(torch.index_fill, (x, dim, index, value), {}, (0, None, 0, None))
def test4():
# self not batched, self logical rank 0, index logical rank 1
x = torch.zeros([], device=device)
dim = 0
index = torch.tensor([[0], [0]], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None))
def test5():
# self not batched, self logical rank 0, index logical rank 0
x = torch.zeros([], device=device)
dim = 0
index = torch.tensor([0, 0], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None))
def test6():
# self not batched, self logical rank 0, index logical rank 1
x = torch.zeros(3, device=device)
dim = 0
index = torch.tensor([[0], [1]], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None))
def test7():
# self not batched, self logical rank 0, index logical rank 0
x = torch.zeros(3, device=device)
dim = 0
index = torch.tensor([0, 1], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(torch.index_fill, (x, dim, index, value), {}, (None, None, 0, None))
def test8():
# self batched, self logical rank > 1, index logical rank 0
x = torch.zeros(B, 3, 3, device=device)
dim = 0
index = torch.tensor([0, 1], device=device)
for value in (1.0, torch.rand((), device=device)):
self.vmap_outplace_test(torch.index_fill, (x, dim, index, value), {}, (0, None, 0, None))
for test in (test1, test2, test3, test4, test5, test6, test7, test8):
check_vmap_fallback(self, test, torch.index_fill)
def test_fill__Tensor(self, device):
# There's no OpInfo for fill_.Tensor, so here's an extra test for it.
def test():
B = 2
args = (torch.randn(B, 3, device=device), torch.randn(B))
self.vmap_inplace_test(Tensor.fill_, args, {}, (0, 0))
args = (torch.randn(3, B, device=device), torch.randn(B))
self.vmap_inplace_test(Tensor.fill_, args, {}, (-1, 0))
args = (torch.randn(3, device=device), torch.randn(B))
self.vmap_inplace_test(Tensor.fill_, args, {}, (None, 0))
args = (torch.randn(3, B, device=device), torch.randn([]))
self.vmap_inplace_test(Tensor.fill_, args, {}, (1, None))
check_vmap_fallback(self, test, Tensor.fill_)
def test_conv_double_backward(self, device):
images = torch.randn(2, 1, 5, 5, device=device)
weight = torch.randn(2, 1, 2, 2, device=device)
bias = torch.randn(2, device=device)
ggI = torch.randn_like(images)
ggW = torch.randn_like(weight)
ggb = torch.randn_like(bias)
stride = (1, 1)
padding = (0, 0)
dilation = (1, 1)
transposed = False
output_padding = (0, 0)
groups = 1
output_mask = (True, True, True)
gO = torch.randn_like(F.conv2d(images, weight, bias, stride, padding, dilation, groups))
args = (
ggI, ggW, ggb, gO, weight, images, stride, padding, dilation,
transposed, output_padding, groups, output_mask,
)
op = torch.ops.aten._convolution_double_backward
generator = get_fallback_and_vmap_exhaustive(op, args, {})
is_cuda_sm86 = device.startswith("cuda") and torch.cuda.get_device_capability(0) == (8, 6)
atol, rtol = (1e-3, 1e-3) if is_cuda_sm86 else (1e-4, 1e-4)
def test():
for loop_out, batched_out in generator:
self.assertEqual(loop_out, batched_out, atol=atol, rtol=rtol)
check_vmap_fallback(self, test, op)
def test_isnan(self, device):
test = functools.partial(_vmap_test, check_propagates_grad=False)
B, N, C, H, W = 2, 3, 24, 5, 7
op = torch.isnan
x = torch.randn(B, N, C, H, W)
x[x > 0] = float('nan')
test(self, op, (x,), in_dims=(0))
def test_sum_scalar(self, device):
x = torch.tensor([10.], device=device)
y = vmap(torch.sum)(x)
self.assertEqual(y, x)
y = vmap(lambda x: x.sum(0))(x)
self.assertEqual(y, x)
y = vmap(lambda x: x.sum(-1))(x)
self.assertEqual(y, x)
def test_isinf(self, device):
test = functools.partial(_vmap_test, check_propagates_grad=False)
B, N, C, H, W = 2, 3, 24, 5, 7
op = torch.isinf
x = torch.randn(B, N, C, H, W)
x[x > 0] = float('inf')
test(self, op, (x,), in_dims=(0))
def test_foo_like(self, device):
# vfdev-5: Probably, we can remove this line. Flake8 reported as unused
# test = functools.partial(_vmap_test, check_propagates_grad=False)
B, N, C, H, W = 2, 3, 24, 5, 7
for op in [torch.ones_like, torch.zeros_like]:
x = torch.randn(B, N, C, H, W)
# todo(chilli): test these better
# Not testing correctness, just that they run
vmap(op, in_dims=(0,))(x,)
def test_flatten(self, device):
test = functools.partial(_vmap_test, check_propagates_grad=False)
op = torch.flatten
x = torch.randn(2, 3, 4, 5)
test(self, op, (x, 1, 2), in_dims=(0, None, None))
def test_group_norm(self, device):
test = functools.partial(_vmap_test, check_propagates_grad=False)
B, N, C, H, W = 2, 3, 24, 5, 7
op = F.group_norm
x = torch.randn(B, N, C, H, W)
weight = torch.randn(C)
bias = torch.randn(C)
test(self, op, (x, 3, weight, bias), in_dims=(0, None, None, None))
x = torch.randn(B, N, C, H, W)
weight = torch.randn(B, C)
bias = torch.randn(B, C)
test(self, op, (x, 4, weight, bias), in_dims=(0, None, 0, 0))
def test_index_put(self, device):
def test(f, t, idx, values):
base = f(t[0], idx[0], values[0])
self.assertEqual(vmap(f, in_dims=(0, 0, 0))(t, idx, values)[0], base)
self.assertEqual(vmap(f, in_dims=(0, None, None))(t, idx[0], values[0])[0], base)
self.assertEqual(vmap(f, in_dims=(0, None, 0))(t, idx[0], values)[0], base)
self.assertEqual(vmap(f, in_dims=(0, 0, None))(t, idx, values[0])[0], base)
def f(x, y, z):
x[y] = z
return x
x = torch.randn(3, 4, 5, device=device)
y = torch.zeros((3, 2), device=device).long()
z = torch.randn(3, 2, 5, device=device)
test(f, x, y, z)
# indexing innermost dim
def f(t, idx, values):
t[:, idx] = values
return t
t = torch.zeros((3, 2, 3))
values = torch.ones((3, 1, 2))
idx = torch.tensor([[1, 2]]).expand((3, 2))
test(f, t, idx, values)
# indexing middle dim
def f(t, idx, values):
t[:, idx, :] = values
return t
t = torch.zeros((3, 2, 3, 3))
values = torch.ones((3, 1, 2, 3))
idx = torch.tensor([[0, 2]]).expand((3, 2))
test(f, t, idx, values)
# indexing with slices
def f(t, values):
t[:, :2, :] = values
return t
base = f(t[0], values[0])
self.assertEqual(vmap(f, in_dims=(0, 0))(t, values)[0], base)
self.assertEqual(vmap(f, in_dims=(0, None))(t, values[0])[0], base)
# index_put_
tensor = torch.zeros(3, 3, 4)
value = torch.ones(3, 2)
idxs = (torch.tensor([[0], [1], [2]]), torch.tensor([[0]]), torch.tensor([1, 2]))
expected = torch.index_put_(tensor.clone(), idxs, value)
def f(t, idx, v):
torch.index_put_(t, idx, v)
return t
self.assertEqual(vmap(f, in_dims=(0, (None, None), 0))(tensor, idxs[1:], value), expected)
self.assertEqual(vmap(f, in_dims=(0, (None, None), None))(tensor, idxs[1:], value[0]), expected)
# boolean mask
B = 2
x = torch.randn(1, 3, 3)
gy = torch.randn(B, 1, 3, 3)
def f(x, gy):
mask = x < 1e-09
zeros = torch.zeros([])
index_put = torch.ops.aten.index_put.default(gy, [mask], zeros)
return index_put
self.vmap_outplace_test(f, (x, gy), {}, in_dims=(None, 0))
@parametrize('training', [True, False])
@parametrize('track_running_stats', [True, False])
@parametrize('affine', [True, False])
def test_batch_norm(self, device, affine, track_running_stats, training):
if not track_running_stats and not training:
return
test = functools.partial(_vmap_test, check_propagates_grad=False)
BN = torch.nn.BatchNorm2d
ensemble_size = 10
hidden_dim = 3
weights, buffers, _, _, _ = \
functional_init_with_buffers(BN, [ensemble_size])(
hidden_dim, affine=affine, track_running_stats=track_running_stats)
inputs = [torch.randn(ensemble_size, 32, hidden_dim, 16, 16, device=device)]
in_dims = [0]
def append(inp, in_dim):
inputs.append(inp)
in_dims.append(in_dim)
if track_running_stats:
running_mean, running_var, _ = buffers
append(running_mean.to(device), 0)
append(running_var.to(device), 0)
else:
append(None, None)
append(None, None)
if affine:
weight, bias = weights
append(weight.to(device), 0)
append(bias.to(device), 0)
else:
append(None, None)
append(None, None)
append(training, None)
def op(inp, running_mean, running_var, weight, bias, training):
res = F.batch_norm(inp, running_mean, running_var, weight, bias, training)
if track_running_stats:
return res, running_mean, running_var
return res
test(self, op, tuple(inputs), in_dims=tuple(in_dims))
def test_torch_return_types_returns(self, device):
t = torch.randn(3, 2, 2, device=device)
self.assertTrue(isinstance(vmap(torch.min, (0, None))(t, 0), torch.return_types.min))
self.assertTrue(isinstance(vmap(torch.max, (0, None))(t, 0), torch.return_types.max))
self.assertTrue(isinstance(vmap(torch.topk, (0, None, None))(t, 1, 0), torch.return_types.topk))
self.assertTrue(isinstance(vmap(torch.linalg.eig, (0))(t), torch.return_types.linalg_eig))
def test_namedtuple_returns(self, device):
Point = namedtuple('Point', ['x', 'y'])
def f(x, y):
return Point(x=x, y=y)
x = torch.randn(2, 5, device=device)
y = torch.randn(2, 3, device=device)
self.assertTrue(isinstance(vmap(f)(x, y), Point))
def test_inplace_on_view(self, device):
def func(leaf):
base = leaf * leaf
view = base.transpose(0, 1)
view[2:4, 2:4] *= 2
view[0:2, 0:2].diagonal().sin_()
view = view[1:3, 1:3]
view.cos_()
return view
def push_vjp(leaf, gout):
_, vjp_fn = vjp(func, leaf)
result, = vjp_fn(gout)
return result
leaf = torch.randn(4, 4, device=device)
gout = torch.randn(2, 2, device=device)
args = (leaf, gout)
for args, in_dims, _, in generate_vmap_inputs(args, {}):
if in_dims[1] is None:
# triggers some composite compliance problem
continue
self.vmap_outplace_test(push_vjp, args, {}, in_dims)
def test_advanced_indexing(self, device):
def test(f, args):
for loop_out, batched_out in get_fallback_and_vmap_exhaustive(f, args, {}):
self.assertEqual(loop_out, batched_out)
def f(x, idx):
return x[:, idx]
def f2(x, idx):
return x[idx, :]
def f3(x, idx):
return x[:, :, idx]
inps = (torch.randn(5, 5, 5, device=device),
torch.randn(5, 5, 5, 5, device=device),
torch.randn(5, 5, 5, 5, 5, device=device))
idxes = (torch.tensor([0, 1, 2], device=device),
torch.tensor([0, 1, 2], device=device).reshape(3, 1),
torch.tensor([0, 1, 2], device=device).reshape(3, 1, 1))
for (inp, idx) in itertools.product(inps, idxes):
test(f, (inp, idx))
test(f2, (inp, idx))
test(f3, (inp, idx))
def test_nested_advanced_indexing(self, device):
e = torch.rand(7, 4, device=device)
idx = torch.tensor([0, 1], device=device).view(2, 1)
# simple reference implementation for comparison
def _fake_vmap(f, in_dims=0, out_dims=0):
def w(input):
r = [f(input.select(in_dims, i)) for i in range(input.size(in_dims))]
return torch.stack(r, out_dims)
return w
def with_vmap(_vmap):
def g(idx_):
def f(e_):
return e_[idx_]
return _vmap(f, in_dims=1)(e)
r = _vmap(g)(idx)
return r
a = with_vmap(vmap)
b = with_vmap(_fake_vmap)
self.assertEqual(a, b)
@ops(filter(lambda op: "linalg" in op.name, op_db + additional_op_db), allowed_dtypes=(torch.float,))
@skipOps('TestVmapOperatorsOpInfo', 'test_vmap_linalg_failure_1D_input', {
xfail('linalg.vector_norm'), # can accept vector inputs
xfail('linalg.norm'), # can accept vector inputs
xfail('linalg.norm', 'subgradients_at_zero'), # can accept vector inputs
xfail('linalg.vander'), # can accept vector inputs
skip('linalg.multi_dot'), # accepts list of tensor inputs, has its own special test
xfail('linalg.vecdot'),
# throws in vmap on CUDA
# IndexError: Dimension out of range (expected to be in range of [-1, 0], but got -2)
# https://github.com/pytorch/pytorch/runs/8110653462?check_suite_focus=true
# but it passes locally
xfail('linalg.diagonal'),
skip('linalg.matrix_norm', ''),
skip('linalg.ldl_solve', ''),
})
def test_vmap_linalg_failure_1D_input(self, device, dtype, op):
for sample in op.sample_inputs(device, dtype, requires_grad=False):
if sample.input.dim() != 2 or sample.input.shape[0] == 0:
continue
test_input = sample.input[0] # using the sample input avoids numerical inconsistency issues
with self.assertRaisesRegex(RuntimeError, "dimension"):
op(test_input, *sample.args, **sample.kwargs)
def op_wrapper(inp):
return op(inp, *sample.args, **sample.kwargs)
# square inputs are more likely to pass linalg checks
test_input = test_input.expand(test_input.shape[0], test_input.shape[0])
with self.assertRaisesRegex(RuntimeError, "dimension"):
return vmap(op_wrapper)(test_input)
def test_vmap_multi_dot_failure_1D_input(self):
# special exception for first and last tensors so making giving 3 items avoids special cases
inputs = (torch.randn(3, 3), torch.randn(3), torch.randn(3, 3))
with self.assertRaisesRegex(RuntimeError, "tensor 1 must be 2D but got 1D"):
torch.linalg.multi_dot(inputs)
# square inputs are more likely to pass linalg checks
inputs = tuple(i.expand(i.shape[0], i.shape[0]) for i in inputs)
with self.assertRaisesRegex(RuntimeError, "tensor 1 must be 2D but got 1D"):
return vmap(torch.linalg.multi_dot)(inputs)
def test_vmap_escaped_error(self):
escaped = None
def f(x):
nonlocal escaped
escaped = x
return x ** 2
x = torch.randn([3, 3, 3, 3, 3])
vmap(f)(x)
common_message = r"your tensor may have escaped from inside a function being vmapped.*{0}.*"
# Note: These are not a complete set of tests for all possible functions calling 'vmap_check_escaped'
with self.assertRaisesRegex(RuntimeError, common_message.format("gen_vmap_plumbing")):
escaped.sin()
with self.assertRaisesRegex(RuntimeError, common_message.format("boxed_tensor_inputs_batch_rule")):
escaped.sin_()
with self.assertRaisesRegex(RuntimeError, common_message.format("gen_vmap_inplace_plumbing")):
escaped.mul_(1)
with self.assertRaisesRegex(RuntimeError, common_message.format("binary_cross_entropy_plumbing")):
torch.nn.functional.binary_cross_entropy(escaped, torch.zeros([3, 3, 3, 3]))
with self.assertRaisesRegex(RuntimeError, common_message.format("boxed_existing_bdim_all_batch_rule")):
torch.nn.functional.adaptive_max_pool2d(escaped, output_size=(1, 1))
with self.assertRaisesRegex(RuntimeError, common_message.format("boxed_reduction_batch_rule")):
escaped.argmin()
a = torch.zeros([4, 4, 4, 4])
b = torch.zeros([4, 4, 4, 4], dtype=torch.long)
with self.assertRaisesRegex(RuntimeError, common_message.format("boxed_all_tensors_have_optional_bdim")):
torch.ops.aten.adaptive_max_pool2d_backward(escaped, a, b)
vmap(f)(torch.tensor([[0, 0], [0, 0]], dtype=torch.int))
with self.assertRaisesRegex(RuntimeError, common_message.format("gen_vmap_plumbing_no_returns")):
torch.ops.aten._linalg_check_errors(escaped, 'linalg.inv', is_matrix=False)
def test_vmap_with_anomaly_detection(self):
with torch.autograd.set_detect_anomaly(True):
x = torch.zeros(3) - 1
def fn(x):
return x.sum()
per_sample_grad = vmap(grad(fn))(x)
self.assertEqual(per_sample_grad, torch.ones_like(x))
def bad_fn(x):
return x.sqrt().sum()
err_msg = "Function 'SqrtBackward0' returned nan values in its 0th output."
with self.assertRaisesRegex(RuntimeError, err_msg):
vmap(grad(bad_fn))(x)
def test_searchsorted_bucketize(self, device):
# OpInfo generates test with repeated samples in batch dim.
# Thus we test explicitily with different samples across a batch.
def test():
boundaries = torch.tensor([[1, 4, 5, 7, 9], [1, 2, 6, 8, 10]], device=device)
v = torch.tensor(3, device=device)
self.vmap_outplace_test(torch.searchsorted, (boundaries, v), {}, (0, None))
self.vmap_outplace_test(torch.bucketize, (v, boundaries), {}, (None, 0))
boundaries = torch.tensor([[1, 4, 5, 7, 9], [1, 2, 4, 8, 9]], device=device)
v = torch.tensor([3, 4], device=device)
self.vmap_outplace_test(torch.searchsorted, (boundaries, v), {}, (0, 0))
self.vmap_outplace_test(torch.bucketize, (v, boundaries), {}, (0, 0))
test()
class TestRandomness(TestCase):
def _reset_random(self, generator, orig_state, use_generator, seed):
return generator.set_state(orig_state) if use_generator else torch.manual_seed(seed)
def _get_image(self, batched_input, batch_size, device):
if batched_input == "first":
return torch.ones([batch_size, 3, 3, 14, 14], device=device)
if batched_input == "last":
return torch.ones([3, 3, 14, 14, batch_size], device=device)
assert batched_input == "none"
return torch.ones([3, 3, 14, 14], device=device)
def _assert_all_slices_equal(self, tensor):
expected = tensor[0]
self.assertTrue((tensor == expected).all())
def _assert_all_slices_unique(self, tensor):
B0 = tensor.shape[0]
slices_equal = vmap(vmap(lambda x, y: (x == y).all(), (0, None)), (None, 0))(tensor, tensor)
assert slices_equal.shape == (B0, B0)
slices_equal.diagonal().zero_()
self.assertEqual(slices_equal, torch.zeros_like(slices_equal))
def _assert_throws_in_error_mode(self, fn, args, in_dims):
with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
vmap(fn, in_dims=in_dims, randomness="error")(*args)
def _assert_throws_in_different_mode_inplace(self, fn, args, in_dims):
with self.assertRaisesRegex(RuntimeError, r"different inplace randomness on an unbatched tensor"):
vmap(fn, in_dims=in_dims, randomness="different")(*args)
def _assert_throws_in_same_mode_batched(self, fn, args, in_dims):
with self.assertRaisesRegex(RuntimeError,
r"Vmap does not currently support same randomness with a batched tensor input"):
vmap(fn, in_dims=in_dims, randomness="same")(*args)
def _in_dims(self, *batched_strings):
def get_in_dim(batched_string):
if batched_string == "first":
return 0
if batched_string == "last":
return -1
assert batched_string == "none"
return None
batched_strings = batched_strings + ("first",) # for the always batched as first dim dummy argument
return tuple(get_in_dim(batched_string) for batched_string in batched_strings)
@parametrize('randomness', ['same', 'different', 'error'])
@parametrize('use_generator', [True, False])
def test_factory_ops(self, device, randomness, use_generator):
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {'device': device, 'generator': generator} if use_generator else {'device': device}
ops = [
lambda _, shape: torch.randn(shape, **kwargs),
lambda _, shape: torch.rand(shape, **kwargs),
lambda _, shape: torch.randint(100, shape, **kwargs),
lambda _, shape: torch.randint(5, 100, shape, **kwargs),
lambda _, shape: torch.normal(0., 1., shape, **kwargs),
]
B0 = 4
shape = (3, 3)
seed = 1234567
for op in ops:
passed = torch.randn(B0, device=device)
if randomness == 'error':
self._assert_throws_in_error_mode(op, (passed, shape), in_dims=(0, None))
return
generator = self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=(0, None), randomness=randomness)(passed, shape)
generator = self._reset_random(generator, orig_state, use_generator, seed)
if randomness == "different":
expected = op(passed, [B0, *shape])
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
expected = op(passed, shape)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize('randomness', ['same', 'different', 'error'])
@parametrize('use_generator', [True, False])
def test_randperm(self, device, randomness, use_generator):
# needs a special case because randperm doesn't take a batch size
B0 = 4
seed = 1234567
passed = torch.randn(B0, device=device)
torch.manual_seed(seed)
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {'device': device, 'generator': generator} if use_generator else {'device': device}
if randomness == 'error':
with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
vmap(lambda _: torch.randperm(10, **kwargs), randomness=randomness)(passed)
return
vmap_result = vmap(lambda _: torch.randperm(10, **kwargs), randomness=randomness)(passed)
generator = generator.set_state(orig_state)
torch.manual_seed(seed)
if randomness == 'different':
for i in range(B0):
expected = torch.randperm(10, **kwargs)
self.assertEqual(vmap_result[i], expected)
else:
expected = torch.randperm(10, **kwargs)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize('randomness', ['error', 'same', 'different'])
@parametrize('batched_input', ["first", "last", "none"])
def test_dropout(self, device, randomness, batched_input):
def op(t, ignored):
return torch.nn.functional.dropout(torch.ones_like(t), training=True)
B0 = 4
always_batched = torch.randn((B0,))
passed = self._get_image(batched_input, B0, device)
in_dims = self._in_dims(batched_input)
if randomness == 'error':
with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
return
vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
# Check that the randomness is within bounds...
# ideally this is close to 0.5
p_estimate = vmap_result.mean() / 2
self.assertTrue(p_estimate < 0.75)
self.assertTrue(p_estimate > 0.25)
if randomness == 'different':
self._assert_all_slices_unique(vmap_result)
return
assert randomness == 'same'
self._assert_all_slices_equal(vmap_result)
@parametrize('randomness', ['error', 'same', 'different'])
@parametrize('batched_input', ["first", "last", "none"])
def test_alpha_dropout(self, device, randomness, batched_input):
def op(t, ignored):
return torch.nn.functional.alpha_dropout(torch.ones_like(t), training=True)
B0 = 4
always_batched = torch.randn((B0,))
passed = self._get_image(batched_input, B0, device)
in_dims = self._in_dims(batched_input)
if randomness == 'error':
with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
return
# I have no clue how to actually test corectness of alpha dropout because the docs
# seem wrong: https://github.com/pytorch/pytorch/issues/74004
vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
if randomness == 'different':
self._assert_all_slices_unique(vmap_result)
return
assert randomness == 'same'
self._assert_all_slices_equal(vmap_result)
@parametrize('randomness', ['error', 'same', 'different'])
@parametrize('batched_input', ["first", "last", "none"])
@parametrize('dim', [2, 3])
def test_feature_dropout(self, device, randomness, batched_input, dim):
def op(t, ignored):
f = torch.nn.functional.dropout2d if dim == 2 else torch.nn.functional.dropout3d
return f(torch.ones_like(t), training=True)
B0 = 4
always_batched = torch.randn((B0,))
passed = self._get_image(batched_input, B0, device)
if dim == 3:
unsqueeze_dim = -2 if batched_input == "last" else -1
passed = passed.unsqueeze(unsqueeze_dim)
in_dims = self._in_dims(batched_input)
if randomness == 'error':
with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
return
vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
# Check that the randomness is within bounds...
# ideally this is close to 0.5
p_estimate = vmap_result.mean() / 2
self.assertTrue(p_estimate < 0.75)
self.assertTrue(p_estimate > 0.25)
# Check the "feature" pattern
dims = [-1, -2] if dim == 2 else [-1, -2, -3]
planes_numel = 2 * vmap_result.numel() / (vmap_result.shape[0] * vmap_result.shape[1] * vmap_result.shape[2])
planes = vmap_result.sum(dims)
result = (planes == 0) ^ (planes == planes_numel)
self.assertEqual(result, torch.ones_like(result, dtype=torch.bool))
if randomness == 'different':
self._assert_all_slices_unique(vmap_result)
return
assert randomness == 'same'
self._assert_all_slices_equal(vmap_result)
@parametrize('randomness', ['error', 'same', 'different'])
@parametrize('batched_input', ["first", "last", "none"])
def test_feature_alpha_dropout(self, device, randomness, batched_input):
def op(t, ignored):
return torch.nn.functional.feature_alpha_dropout(torch.ones_like(t), training=True)
B0 = 4
always_batched = torch.randn((B0,))
passed = self._get_image(batched_input, B0, device)
unsqueeze_dim = -2 if batched_input == "last" else -1
passed = passed.unsqueeze(unsqueeze_dim)
in_dims = self._in_dims(batched_input)
if randomness == 'error':
with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
return
vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
# I have no clue how to actually test corectness of alpha dropout because the docs
# seem wrong: https://github.com/pytorch/pytorch/issues/74004
# Check the "feature" pattern
dims = [-1, -2, -3]
planes = vmap_result.sum(dims)
max_elt = planes.max()
min_elt = planes.min()
result = (planes == min_elt) ^ (planes == max_elt)
self.assertEqual(result, torch.ones_like(result, dtype=torch.bool))
if randomness == 'different':
self._assert_all_slices_unique(vmap_result)
return
assert randomness == 'same'
self._assert_all_slices_equal(vmap_result)
@parametrize('randomness', ['error', 'same', 'different'])
@parametrize('batched_input', ["first", "last", "none"])
def test_like_functions(self, device, randomness, batched_input):
seed = 1234567
supported_ops = [
lambda t, _: torch.randint_like(t, 20),
lambda t, _: torch.randint_like(t, 0, 20),
lambda t, _: torch.rand_like(t),
lambda t, _: torch.randn_like(t),
]
B0 = 4
for op in supported_ops:
always_batched = torch.randn(B0)
passed = self._get_image(batched_input, B0, device)
in_dims = self._in_dims(batched_input)
if randomness == 'error':
with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
vmap(op, in_dims=in_dims, randomness=randomness)(passed, always_batched)
return
torch.manual_seed(seed)
vmap_result = vmap(op, randomness=randomness, in_dims=in_dims)(passed, always_batched)
torch.manual_seed(seed)
if batched_input == "last":
passed = passed.movedim(-1, 0)
if randomness == 'different':
if batched_input == "none":
passed = passed.expand(B0, *passed.shape)
expected = op(passed, 0)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(expected, vmap_result)
return
assert randomness == 'same'
if batched_input != "none":
passed = passed[0]
expected = op(passed, 0)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(expected, vmap_result[i])
@parametrize('use_generator', [True, False])
@parametrize('randomness', ['error', 'same', 'different'])
@parametrize('batched_input', ["first", "last", "none"])
def test_random_unary_inplace(self, device, use_generator, randomness, batched_input):
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {'generator': generator} if use_generator else {}
ops = [
lambda t, _: t.random_(**kwargs),
lambda t, _: t.random_(100, **kwargs),
lambda t, _: t.random_(-5, 100, **kwargs),
lambda t, _: t.normal_(**kwargs),
lambda t, _: t.bernoulli_(**kwargs),
lambda t, _: t.cauchy_(**kwargs),
lambda t, _: t.exponential_(**kwargs),
lambda t, _: t.geometric_(0.5, **kwargs),
lambda t, _: t.log_normal_(**kwargs),
lambda t, _: t.uniform_(**kwargs),
]
B0 = 4
seed = 1234567
in_dims = self._in_dims(batched_input)
for op in ops:
# because of in place updates, clone inputs
always_batched = torch.randn(B0, device=device)
passed = self._get_image(batched_input, B0, device)
passed_expected = passed.clone()
if randomness == 'error':
self._assert_throws_in_error_mode(op, (passed, always_batched), in_dims=in_dims)
return
if randomness == 'different' and batched_input == "none":
self._assert_throws_in_different_mode_inplace(op, (passed, always_batched), in_dims=in_dims)
return
generator = self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(passed, always_batched)
if batched_input == "last":
passed_expected = passed_expected.movedim(-1, 0)
generator = self._reset_random(generator, orig_state, use_generator, seed)
if randomness == "different":
expected = op(passed_expected, always_batched)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
if batched_input != "none":
passed_expected = passed_expected[0].clone() # bug in pytorch, normal_ on views doesn't work
expected = op(passed_expected, always_batched)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize('use_generator', [True, False])
@parametrize('randomness', ['error', 'same', 'different'])
@parametrize('batched_input', ["first", "last", "none"])
@parametrize('batched_probability', ["first", "last", "none"])
def test_bernoulli_in_place(self, device, use_generator, randomness, batched_input, batched_probability):
B0 = 4
seed = 1234567
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {'generator': generator} if use_generator else {}
in_dims = self._in_dims(batched_input, batched_probability)
def op(t, p, ignored):
return t.bernoulli_(p, **kwargs)
# because of in place updates, clone inputs
always_batched = torch.randn(B0, device=device)
input = self._get_image(batched_input, B0, device)
input_expected = input.clone()
probability = self._get_image(batched_probability, B0, device) - 0.5
if randomness == 'error':
self._assert_throws_in_error_mode(op, (input, probability, always_batched), in_dims=in_dims)
return
if randomness == 'same' and batched_probability != "none":
self._assert_throws_in_same_mode_batched(op, (input, probability, always_batched), in_dims=in_dims)
return
if batched_input == "none" and batched_probability != "none":
regex = r"there exists a Tensor `other` in extra_args that has more elements than `self`"
with self.assertRaisesRegex(RuntimeError, regex):
vmap(op, in_dims=in_dims, randomness=randomness)(input, probability, always_batched)
return
if randomness == 'different' and batched_input == "none":
self._assert_throws_in_different_mode_inplace(op, (input, probability, always_batched), in_dims=in_dims)
return
self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(input, probability, always_batched)
self._reset_random(generator, orig_state, use_generator, seed)
if batched_input == "last":
input_expected = input_expected.movedim(-1, 0)
if batched_probability == "last":
probability = probability.movedim(-1, 0)
if randomness == "different":
expected = op(input_expected, probability, always_batched)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
if batched_input != "none":
input_expected = input_expected[0]
expected = op(input_expected, probability, always_batched)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize('use_generator', [True, False])
@parametrize('randomness', ['error', 'same', 'different'])
@parametrize('batched_input', ["first", "last", "none"])
@parametrize('batched_other', ["first", "last", "none"])
def test_random_binary_out_of_place(self, device, use_generator, randomness, batched_input, batched_other):
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {'generator': generator} if use_generator else {}
ops = [
lambda t, o, _: torch.normal(t, o, **kwargs),
lambda t, o, _: torch.binomial(t, (o - 0.5), **kwargs),
]
B0 = 4
seed = 1234567
in_dims = self._in_dims(batched_input, batched_other)
for op in ops:
always_batched = torch.randn(B0, device=device)
input = self._get_image(batched_input, B0, device)
other = self._get_image(batched_other, B0, device)
if randomness == 'error':
self._assert_throws_in_error_mode(op, (input, other, always_batched), in_dims=in_dims)
return
if randomness == 'same' and (batched_input != "none" or batched_other != "none"):
self._assert_throws_in_same_mode_batched(op, (input, other, always_batched), in_dims=in_dims)
return
generator = self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(input, other, always_batched)
if batched_input == "last":
input = input.movedim(-1, 0)
if batched_other == "last":
other = other.movedim(-1, 0)
generator = self._reset_random(generator, orig_state, use_generator, seed)
if randomness == "different":
if batched_input == "none":
input = input.expand(B0, *input.shape)
expected = op(input, other, always_batched)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
assert batched_input == "none" and batched_other == "none"
expected = op(input, other, always_batched)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize('use_generator', [True, False])
@parametrize('randomness', ['error', 'same', 'different'])
@parametrize('batched_input', ["first", "last", "none"])
def test_random_unary_out_of_place(self, device, use_generator, randomness, batched_input):
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {'generator': generator} if use_generator else {}
ops = [
lambda t, _: torch.normal(0., torch.abs(t), **kwargs),
lambda t, _: torch.normal(t, 1., **kwargs),
lambda t, _: torch.bernoulli(t - 0.5, **kwargs),
lambda t, _: torch.bernoulli(t, 0.5, **kwargs),
lambda t, _: torch._standard_gamma(t, **kwargs),
lambda t, _: torch._sample_dirichlet(t, **kwargs),
lambda t, _: torch.poisson(t, **kwargs),
]
B0 = 4
seed = 1234567
in_dims = self._in_dims(batched_input)
for op in ops:
always_batched = torch.randn(B0, device=device)
passed = self._get_image(batched_input, B0, device)
if randomness == 'error':
self._assert_throws_in_error_mode(op, (passed, always_batched), in_dims=in_dims)
return
if randomness == 'same' and batched_input != "none":
self._assert_throws_in_same_mode_batched(op, (passed, always_batched), in_dims=in_dims)
return
generator = self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(passed, always_batched)
generator = self._reset_random(generator, orig_state, use_generator, seed)
if randomness == "different":
if batched_input == "none":
passed = passed.expand(B0, *passed.shape)
if batched_input == "last":
passed = passed.movedim(-1, 0)
expected = op(passed, always_batched)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
expected = op(passed, always_batched)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
@parametrize('use_generator', [True, False])
@parametrize('randomness', ['error', 'same', 'different'])
@parametrize('batched_call', [True, False])
@parametrize('batched_input', ["first", "last", "none"])
def test_multinomial(self, device, use_generator, randomness, batched_call, batched_input):
def flatten_input(input, batch_call, batch_location):
if batch_call and batch_location != "none":
final_size = 3 # [B0, B, N]
elif not batch_call and batch_location == "none":
final_size = 1 # [N]
else:
final_size = 2 # [B0, N] or [B, N]
start_idx = final_size - 1
end_idx = -1
if batch_location == "last":
start_idx -= 1
end_idx -= 1 # gets to correct final size because using negative indices
ret = input.flatten(start_idx, end_idx)
assert ret.dim() == final_size
return ret
def op(input, _):
return torch.multinomial(input, 10, **kwargs)
generator = torch.Generator(device=device)
orig_state = generator.get_state()
kwargs = {'generator': generator} if use_generator else {}
B0 = 4
seed = 1234567
in_dims = self._in_dims(batched_input)
always_batched = torch.randn(B0, device=device)
passed = self._get_image(batched_input, B0, device)
passed = flatten_input(passed, batched_call, batched_input)
if randomness == 'error':
self._assert_throws_in_error_mode(op, (passed, always_batched), in_dims=in_dims)
return
if randomness == 'same' and batched_input != "none":
self._assert_throws_in_same_mode_batched(op, (passed, always_batched), in_dims=in_dims)
return
generator = self._reset_random(generator, orig_state, use_generator, seed)
vmap_result = vmap(op, in_dims=in_dims, randomness=randomness)(passed, always_batched)
generator = self._reset_random(generator, orig_state, use_generator, seed)
if randomness == "different":
if batched_input == "none":
passed = passed.expand(B0, *passed.shape)
if batched_input == "last":
passed = passed.movedim(-1, 0)
orig_passed_size = passed.shape[:2] if batched_call else passed.shape[:1]
passed = passed.flatten(0, 1) if batched_call else passed
expected = op(passed, always_batched)
expected = expected.reshape(*orig_passed_size, 10)
self._assert_all_slices_unique(vmap_result)
self.assertEqual(vmap_result, expected)
else:
expected = op(passed, always_batched)
self._assert_all_slices_equal(vmap_result)
for i in range(B0):
self.assertEqual(vmap_result[i], expected)
def test_unsupported_random(self, device):
x = torch.randn(3, device=device)
y = x.abs()
z = x.abs()
with self.assertRaisesRegex(RuntimeError, "calling out variants"):
def f(x):
return torch.randn(3, device=device, out=y)
vmap(f, randomness='same')(x)
with self.assertRaisesRegex(RuntimeError, "calling out variants"):
def f(x0, x1):
return torch.normal(x, y, out=x)
vmap(f, randomness='same')(z, z)
with self.assertRaisesRegex(RuntimeError, "do not yet support"):
def f(z):
return torch.rrelu(x)
vmap(f, randomness='same')(z)
@parametrize('in_dim', [0, 1, 2])
@parametrize('out_dim', [0, 1, 2])
def test_chunk_vmap(self, in_dim, out_dim):
randomness = "different"
x = torch.randn(4, 5, 6)
def f(x):
y = x.sin() + torch.rand_like(x)
return y
for chunks in [1, 2, 3, 4, 7, 10, 16]:
output = chunk_vmap(
f, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunks=chunks
)(x)
self._assert_all_slices_unique(output)
@parametrize('in_dim', [0, 1, 2])
@parametrize('out_dim', [0, 1, 2])
def test_vmap_chunksize(self, in_dim, out_dim):
randomness = "different"
x = torch.randn(4, 5, 6)
def f(x):
y = x.sin() + torch.rand_like(x)
return y
for chunk_size in [1, 2, 3, 4, 7, 10, 16, 100]:
output = vmap(
f, in_dims=in_dim, out_dims=out_dim, randomness=randomness, chunk_size=chunk_size
)(x)
self._assert_all_slices_unique(output)
def test_jacfwd_with_random(self):
# checks on behavior are above, this just checks that jacfwd respects
# the randomness param
x = torch.rand(3, 4)
with self.assertRaisesRegex(RuntimeError, r"called random operation while in randomness error mode"):
jacfwd(torch.bernoulli)(x)
# x isn't batched so use bernoulli since it doesn't do inplace randomness
jacfwd(torch.bernoulli, randomness="same")(x)
jacfwd(torch.bernoulli, randomness="different")(x)
@parametrize('randomness', ['error', 'same', 'different'])
def test_dropout_unbatched(self, device, randomness):
x = torch.randn(3, device=device)
y = torch.randn(1, 3, device=device)
def fn(x, y):
# output from dropout should be a Tensor[B, 1, 3] (B=3)
return x + torch.nn.functional.dropout(y, p=0.5).mean(1)
# We just verify that this doesn't raise an error for
# `same` and `different` randomness.
# Ref: https://github.com/pytorch/pytorch/issues/92283
context = self.assertRaises(RuntimeError) if randomness == 'error' else contextlib.nullcontext()
with context:
vmap(fn, in_dims=(0, None), randomness=randomness)(x, y)
class TestTransformFailure(TestCase):
@parametrize('transform', ['vmap', 'grad', 'grad_and_value', 'vjp', 'jvp', 'jacrev', 'jacfwd'])
def test_fails_with_autograd_function(self, device, transform):
class Test(torch.autograd.Function):
@staticmethod
def forward(_, input):
return input
@staticmethod
def backward(_, grad_input):
return grad_input
transform = getattr(functorch, transform)
def f(x):
return Test.apply(x)
if transform in (grad, grad_and_value):
input = torch.tensor(4.)
else:
input = torch.randn(5)
if transform == vjp:
transform = functools.partial(transform, f)
elif transform == jvp:
input = (input,)
transform = functools.partial(transform, f, input)
else:
transform = transform(f)
with self.assertRaisesRegex(RuntimeError, "autograd.Function"):
transform(input)
class TestVmapDeviceType(Namespace.TestVmapBase):
def _vmap_test(self, *args, **kwargs):
return _vmap_test(self, *args, **kwargs)
def test__is_all_true(self, device):
def test():
def f(x, *, expected_result):
result = torch.ops.aten._is_all_true(x)
self.assertFalse(torch._C._functorch.is_batchedtensor(result))
self.assertEqual(result.shape, torch.Size([]))
self.assertEqual(result.item(), expected_result)
return result
x = torch.rand(10, device=device)
vmap(f)(x >= 0, expected_result=True)
vmap(f)(x < 0, expected_result=False)
x[random.choice(range(10))] *= -1
vmap(f)(x >= 0, expected_result=False)
vmap(f)(x < 0, expected_result=False)
x = -torch.rand(10, device=device)
vmap(f)(x > 0, expected_result=False)
vmap(f)(x <= 0, expected_result=True)
check_vmap_fallback(self, test, torch._is_all_true)
def test__is_any_true(self, device):
def test():
def f(x, *, expected_result):
result = torch.ops.aten._is_any_true(x)
self.assertFalse(torch._C._functorch.is_batchedtensor(result))
self.assertEqual(result.shape, torch.Size([]))
self.assertEqual(result.item(), expected_result)
return result
x = torch.zeros(10, device=device, dtype=torch.bool)
vmap(f)(x > 0, expected_result=False)
x[5] = True
vmap(f)(x > 0, expected_result=True)
vmap(f)(x[1::2], expected_result=True)
vmap(f)(x[0::2], expected_result=False)
check_vmap_fallback(self, test, torch._is_any_true)
def test_check_tensor(self, device):
def test():
test_sizes = [
(1,),
(10,),
(1, 1),
(1, 10),
(10, 1),
(10, 10),
(1, 1, 1),
(10, 1, 1),
(1, 10, 1),
(10, 10, 10),
]
def check_gte_0(t):
return torch._test_check_tensor(t >= 0)
error_message = "Test message for TORCH_CHECK_TENSOR_ALL"
for size in test_sizes:
t_all_gte_0 = torch.rand(size, device=device)
t_all_lt_0 = t_all_gte_0 - 1
vmap(check_gte_0)(t_all_gte_0)
if len(size) >= 2:
vmap(vmap(check_gte_0))(t_all_gte_0)
with self.assertRaisesRegex(RuntimeError, error_message):
vmap(check_gte_0)(t_all_lt_0)
if len(size) >= 2:
with self.assertRaisesRegex(RuntimeError, error_message):
vmap(vmap(check_gte_0))(t_all_lt_0)
if t_all_gte_0.numel() > 1:
t_all_gte_0_but_one = t_all_gte_0.clone()
idx = (random.choice(range(dim_size)) for dim_size in size)
t_all_gte_0_but_one[(..., *idx)] = -1
with self.assertRaisesRegex(RuntimeError, error_message):
vmap(check_gte_0)(t_all_gte_0_but_one)
if len(size) >= 2:
with self.assertRaisesRegex(RuntimeError, error_message):
vmap(vmap(check_gte_0))(t_all_gte_0_but_one)
check_vmap_fallback(self, test, torch._test_check_tensor)
only_for = ("cpu", "cuda")
instantiate_device_type_tests(TestVmapOperatorsOpInfo, globals(), only_for=only_for)
instantiate_device_type_tests(
TestVmapBatchedGradient,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(TestTransformFailure, globals(), only_for=only_for)
instantiate_device_type_tests(TestRandomness, globals(), only_for=only_for)
instantiate_device_type_tests(TestVmapDeviceType, globals(), only_for=only_for)
if __name__ == '__main__':
run_tests()