| # Owner(s): ["module: inductor"] |
| |
| import sys |
| import unittest |
| |
| import torch |
| |
| import torch._inductor |
| |
| from torch.testing._internal.common_utils import ( |
| instantiate_parametrized_tests, |
| IS_FBCODE, |
| parametrize, |
| TEST_WITH_ROCM, |
| TestCase, |
| ) |
| |
| from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA |
| |
| aten = torch.ops.aten |
| |
| try: |
| try: |
| from .test_torchinductor import check_model, check_model_cuda, requires_cuda |
| except ImportError: |
| from test_torchinductor import check_model, check_model_cuda, requires_cuda |
| except (unittest.SkipTest, ImportError) as e: |
| sys.stderr.write(f"{type(e)}: {e}\n") |
| if __name__ == "__main__": |
| sys.exit(0) |
| raise |
| |
| bin_ops_under_test = [ |
| torch._foreach_add, |
| torch._foreach_mul, |
| torch._foreach_sub, |
| torch._foreach_div, |
| torch._foreach_maximum, |
| ] |
| un_ops_under_test = [torch._foreach_reciprocal, torch._foreach_neg, torch._foreach_sign] |
| compose_ops = [torch._foreach_addcdiv, torch._foreach_addcmul] |
| all_ops = parametrize( |
| "op", bin_ops_under_test + un_ops_under_test, name_fn=lambda f: f.__name__ |
| ) |
| bin_ops = parametrize("op", bin_ops_under_test, name_fn=lambda f: f.__name__) |
| decomp_ops = parametrize("op", compose_ops, name_fn=lambda f: f.__name__) |
| |
| |
| def gen_args(op): |
| if op in un_ops_under_test: |
| return ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ) |
| else: |
| return ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ) |
| |
| |
| @instantiate_parametrized_tests |
| class ForeachTests(TestCase): |
| check_model_cuda = check_model_cuda |
| check_model_cpu = check_model |
| check_kernel_count = True |
| |
| def setUp(self): |
| super().setUp() |
| torch._inductor.metrics.reset() |
| |
| def tearDown(self): |
| super().tearDown() |
| torch._inductor.metrics.reset() |
| |
| def _test_single_list(self, op): |
| if op in un_ops_under_test: |
| |
| def fn(a0, a1): |
| return op([a0, a1]) |
| |
| else: |
| |
| def fn(a0, a1, b0, b1): |
| return op([a0, a1], [b0, b1]) |
| |
| self.check_model_cuda( |
| fn, |
| gen_args(op), |
| ) |
| |
| def _test_single_scalar(self, op): |
| def fn(a0, a1): |
| return op([a0, a1], 3.3) |
| |
| self.check_model_cuda( |
| fn, |
| ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ), |
| ) |
| |
| # called in test_cpp_wrapper.py |
| @requires_cuda() |
| def test_foreach_cpp_wrapper(self): |
| self._test_single_list(op=torch._foreach_add) |
| |
| @requires_cuda() |
| @all_ops |
| def test_single_list(self, op): |
| self._test_single_list(op) |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @bin_ops |
| def test_single_scalar(self, op): |
| self._test_single_scalar(op) |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @all_ops |
| def test_scheduler_fusion_list(self, op): |
| if op in un_ops_under_test: |
| |
| def fn(a0, a1): |
| c = op([a0, a1]) |
| return torch._foreach_sqrt(c) |
| |
| else: |
| |
| def fn(a0, a1, b0, b1): |
| c = op([a0, a1], [b0, b1]) |
| return c, torch._foreach_add([a0, a1], c) |
| |
| self.check_model_cuda( |
| fn, |
| gen_args(op), |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @bin_ops |
| def test_scheduler_fusion_scalar(self, op): |
| def fn(a0, a1): |
| c = op([a0, a1], 3.4) |
| return c, torch._foreach_add([a0, a1], c) |
| |
| self.check_model_cuda( |
| fn, |
| ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ), |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @bin_ops |
| def test_broadcasting(self, op): |
| def fn(a0, a1, b0, b1): |
| return op([a0, a1], [b0, b1]) |
| |
| fn_opt = torch._dynamo.optimize()(fn) |
| |
| inputs = ( |
| torch.rand(10, 1, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| torch.rand(1, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ) |
| actual = fn_opt(*inputs) |
| expected = fn(*inputs) |
| self.assertEqual(actual, expected) |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @all_ops |
| def test_singleton_lists(self, op): |
| if op in un_ops_under_test: |
| |
| def fn(a0): |
| return op([a0]) |
| |
| args = (torch.rand(10, 10, device="cuda:0"),) |
| else: |
| |
| def fn(a0, b0): |
| return op([a0], [b0]) |
| |
| args = ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(10, 10, device="cuda:0"), |
| ) |
| |
| self.check_model_cuda( |
| fn, |
| args, |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @bin_ops |
| def test_type_promotion(self, op): |
| def fn(a0, a1, b0, b1): |
| return op([a0, a1], [b0, b1]) |
| |
| fn_opt = torch._dynamo.optimize()(fn) |
| |
| max32 = torch.iinfo(torch.int32).max |
| max64 = torch.iinfo(torch.int64).max |
| inputs = ( |
| torch.randint(max32, (10, 10), device="cuda:0", dtype=torch.int32), |
| torch.randint(max32, (20, 20), device="cuda:0", dtype=torch.int32), |
| torch.randint(max32, (10, 10), device="cuda:0", dtype=torch.int32), |
| torch.randint(max64, (20, 20), device="cuda:0", dtype=torch.int64), |
| ) |
| actual = fn_opt(*inputs) |
| expected = fn(*inputs) |
| self.assertEqual(actual, expected) |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) |
| |
| @requires_cuda() |
| @bin_ops |
| def test_kernel_split_arg_limit_list(self, op): |
| def fn(a, b): |
| return op(a, b) |
| |
| fn_opt = torch._dynamo.optimize()(fn) |
| |
| max_args = 370 |
| max_list_len = (max_args // 3) + 1 |
| inputs = ( |
| [torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)], |
| [torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)], |
| ) |
| |
| actual = fn_opt(*inputs) |
| expected = fn(*inputs) |
| self.assertEqual(actual, expected) |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) |
| |
| @requires_cuda() |
| @bin_ops |
| @unittest.skip( |
| "Triton recursion depth exceeded: https://github.com/openai/triton/issues/1763" |
| ) |
| def test_kernel_split_arg_limit_scalar(self, op): |
| def fn(a): |
| return op(a, 3.3) |
| |
| fn_opt = torch._dynamo.optimize()(fn) |
| |
| max_args = 370 |
| max_list_len = (max_args // 2) + 1 |
| inputs = ([torch.rand(10, 10, device="cuda:0") for _ in range(max_list_len)],) |
| |
| actual = fn_opt(*inputs) |
| expected = fn(*inputs) |
| self.assertEqual(actual, expected) |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) |
| |
| @requires_cuda() |
| @bin_ops |
| def test_fusion_duplicate_buffer_list(self, op): |
| def fn(a0, a1, b0, b1): |
| c = op([a0, a1], [b0, b1]) |
| return op([a0, b0], [c[0], c[0]]) |
| |
| self.check_model_cuda( |
| fn, |
| ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ), |
| reference_in_float=False, |
| check_lowp=False, |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @all_ops |
| def test_non_foreach_consumer_list(self, op): |
| if op in un_ops_under_test: |
| |
| def fn(a0, a1): |
| c = op([a0, a1]) |
| return torch.mul(c[0], a0) |
| |
| else: |
| |
| def fn(a0, a1, b0, b1): |
| c = op([a0, a1], [b0, b1]) |
| return torch.mul(c[0], a0) |
| |
| self.check_model_cuda( |
| fn, |
| gen_args(op), |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @bin_ops |
| def test_non_foreach_consumer_scalar(self, op): |
| def fn(a0, a1): |
| c = op([a0, a1], 4.7) |
| return torch.mul(c[0], a0) |
| |
| self.check_model_cuda( |
| fn, |
| ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ), |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @all_ops |
| def test_non_foreach_producer_list(self, op): |
| if op in un_ops_under_test: |
| |
| def fn(a0, a1): |
| c0 = torch.add(a0, a0) |
| c1 = torch.add(a1, a1) |
| return op([c0, c1]) |
| |
| else: |
| |
| def fn(a0, a1, b0, b1): |
| c0 = torch.add(a0, b0) |
| c1 = torch.add(a1, b1) |
| return op([a0, a1], [c0, c1]) |
| |
| self.check_model_cuda( |
| fn, gen_args(op), reference_in_float=False, check_lowp=False |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @bin_ops |
| def test_non_foreach_producer_scalar(self, op): |
| def fn(a0, a1, b0, b1): |
| c0 = torch.mul(a0, b0) |
| c1 = torch.mul(a1, b1) |
| return op([c0, c1], 5.6) |
| |
| self.check_model_cuda( |
| fn, |
| ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ), |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @all_ops |
| def test_non_foreach_consumer_producer_list(self, op): |
| if op in un_ops_under_test: |
| |
| def fn(a0, a1): |
| c0 = torch.add(a0, a0) |
| c1 = torch.mul(a1, a1) |
| d = op([c0, c1]) |
| e0 = torch.mul(d[0], a0) |
| e1 = torch.mul(d[1], a1) |
| return [e0, e1] |
| |
| else: |
| |
| def fn(a0, a1, b0, b1): |
| c0 = torch.add(a0, b0) |
| c1 = torch.add(a1, b1) |
| d = op([a0, a1], [c0, c1]) |
| e0 = torch.mul(d[0], a0) |
| e1 = torch.mul(d[1], a1) |
| return [e0, e1] |
| |
| self.check_model_cuda( |
| fn, |
| gen_args(op), |
| reference_in_float=False, |
| check_lowp=False, |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @bin_ops |
| def test_non_foreach_consumer_producer_scalar(self, op): |
| def fn(a0, a1, b0, b1): |
| c0 = torch.add(a0, b0) |
| c1 = torch.add(a1, b1) |
| d = op([c0, c1], 5.8) |
| e0 = torch.mul(d[0], a0) |
| e1 = torch.mul(d[1], a1) |
| return [e0, e1] |
| |
| self.check_model_cuda( |
| fn, |
| ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ), |
| reference_in_float=False, |
| check_lowp=False, |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| @requires_cuda() |
| @bin_ops |
| @torch._dynamo.config.patch("automatic_dynamic_shapes", False) |
| @torch._dynamo.config.patch("assume_static_by_default", False) |
| def test_dynamic_shapes_fallback(self, op): |
| def fn(a0, a1, b0, b1): |
| return op([a0, a1], [b0, b1]) |
| |
| inputs = ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ) |
| |
| self.check_model_cuda(fn, inputs) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) |
| |
| @unittest.skipIf(IS_FBCODE, "cpp compile not supported in fbcode") |
| @bin_ops |
| def test_cpu_cpp_fallback(self, op): |
| def fn(a0, a1, b0, b1): |
| return op([a0, a1], [b0, b1]) |
| |
| inputs = ( |
| torch.rand(10, 10, device="cpu"), |
| torch.rand(20, 20, device="cpu"), |
| torch.rand(10, 10, device="cpu"), |
| torch.rand(20, 20, device="cpu"), |
| ) |
| |
| self.check_model_cpu(fn, inputs) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 2) |
| |
| @requires_cuda() |
| @decomp_ops |
| def test_decomp(self, op): |
| def fn(a0, a1, b0, b1, c0, c1): |
| return op([a0, a1], [b0, b1], [c0, c1], value=0.5) |
| |
| self.check_model_cuda( |
| fn, |
| ( |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| torch.rand(10, 10, device="cuda:0"), |
| torch.rand(20, 20, device="cuda:0"), |
| ), |
| ) |
| |
| self.assertEqual(torch._inductor.metrics.generated_kernel_count, 1) |
| |
| |
| if __name__ == "__main__": |
| from torch._dynamo.test_case import run_tests |
| |
| if (HAS_CPU or HAS_CUDA) and not TEST_WITH_ROCM: |
| run_tests(needs="filelock") |