blob: 560b42cca6409d79c9ea9aa017a86c3a758944be [file] [log] [blame]
# Owner(s): ["module: onnx"]
import caffe2.python.onnx.backend as c2
import numpy as np
import onnx
import pytorch_test_common
import torch
import torch.utils.cpp_extension
from test_pytorch_onnx_caffe2 import do_export
from torch.testing._internal import common_utils
class TestCaffe2CustomOps(pytorch_test_common.ExportTestCase):
def test_custom_add(self):
op_source = """
#include <torch/script.h>
torch::Tensor custom_add(torch::Tensor self, torch::Tensor other) {
return self + other;
}
static auto registry =
torch::RegisterOperators("custom_namespace::custom_add", &custom_add);
"""
torch.utils.cpp_extension.load_inline(
name="custom_add",
cpp_sources=op_source,
is_python_module=False,
verbose=True,
)
class CustomAddModel(torch.nn.Module):
def forward(self, a, b):
return torch.ops.custom_namespace.custom_add(a, b)
def symbolic_custom_add(g, self, other):
return g.op("Add", self, other)
torch.onnx.register_custom_op_symbolic(
"custom_namespace::custom_add", symbolic_custom_add, 9
)
x = torch.randn(2, 3, 4, requires_grad=False)
y = torch.randn(2, 3, 4, requires_grad=False)
model = CustomAddModel()
# before fixing #51833 this used to give a PyBind error
# with PyTorch 1.10dev ("Unable to cast from non-held to held
# instance (T& to Holder<T>)")
onnxir, _ = do_export(model, (x, y), opset_version=11)
onnx_model = onnx.ModelProto.FromString(onnxir)
prepared = c2.prepare(onnx_model)
caffe2_out = prepared.run(inputs=[x.cpu().numpy(), y.cpu().numpy()])
np.testing.assert_array_equal(caffe2_out[0], model(x, y).cpu().numpy())
if __name__ == "__main__":
common_utils.run_tests()