blob: 939f1202680b6aded3bdcfc2a62f858c4709a020 [file] [log] [blame]
#include <torch/csrc/distributed/c10d/ProcessGroupMPI.hpp>
#ifdef USE_C10D_MPI
#include <iostream>
#include <limits>
#include <map>
#include <c10/core/DeviceGuard.h>
#include <c10/util/irange.h>
#if defined(OPEN_MPI) && OPEN_MPI
#include <mpi-ext.h> // Needed for CUDA-aware check
#endif
namespace c10d {
#define MPI_CHECK(cmd) \
do { \
int mpiStatus = cmd; \
if (mpiStatus != MPI_SUCCESS) { \
std::string err = "MPI error in: " + std::string(__FILE__) + ":" + \
std::to_string(__LINE__) + \
", with error code: " + std::to_string(mpiStatus); \
TORCH_CHECK(false, err); \
} \
} while (0)
namespace {
// Op mapping
std::map<ReduceOp::RedOpType, MPI_Op> mpiOp = {
{ReduceOp::MIN, MPI_MIN},
{ReduceOp::MAX, MPI_MAX},
{ReduceOp::SUM, MPI_SUM},
{ReduceOp::PRODUCT, MPI_PROD},
};
// Type mapping
std::map<at::ScalarType, MPI_Datatype> mpiDatatype = {
{at::kByte, MPI_UNSIGNED_CHAR},
{at::kChar, MPI_CHAR},
{at::kDouble, MPI_DOUBLE},
{at::kFloat, MPI_FLOAT},
{at::kInt, MPI_INT},
{at::kLong, MPI_LONG},
{at::kShort, MPI_SHORT},
};
// Checking CUDA-aware MPI support, currently we only support CUDA aware
// MPI ops through Open MPI
bool cudaAwareMpiCheck() {
// Run time check
#if defined(MPIX_CUDA_AWARE_SUPPORT)
if (MPIX_Query_cuda_support() == 1) {
return true;
} else {
return false;
}
#else // !defined(MPIX_CUDA_AWARE_SUPPORT)
return false;
#endif // MPIX_CUDA_AWARE_SUPPORT
}
// Checking the input tensor's validity
void checkSingleTensorHelper(const at::Tensor& tensor) {
if (!tensor.is_contiguous()) {
TORCH_CHECK(false, "input tensor has to be contiguous");
}
if (tensor.is_sparse()) {
TORCH_CHECK(false, "input tensor has to be dense");
}
if (tensor.is_cuda() && !cudaAwareMpiCheck()) {
TORCH_CHECK(
false,
"CUDA tensor detected and the MPI used doesn't "
"have CUDA-aware MPI support");
}
}
void checkSingleTensor(const std::vector<at::Tensor>& tensors) {
if (tensors.size() != 1) {
TORCH_CHECK(
false, "MPI process group does not support multi-GPU collectives");
}
checkSingleTensorHelper(tensors[0]);
}
void checkSameSizeAndType(
const at::Tensor& t_in,
const std::vector<at::Tensor>& tensors) {
for (const auto& tensor : tensors) {
if ((tensor.numel() != t_in.numel()) ||
(tensor.scalar_type() != t_in.scalar_type())) {
TORCH_CHECK(false, "Tensors are not equal in size or data type");
}
checkSingleTensorHelper(tensor);
}
}
} // namespace
std::vector<at::Tensor> ProcessGroupMPI::WorkMPI::result() {
return outputTensors_;
}
c10::intrusive_ptr<c10::ivalue::Future> ProcessGroupMPI::WorkMPI::getFuture() {
return future_;
}
void ProcessGroupMPI::WorkMPI::finishWorkMPIError(std::exception_ptr eptr) {
future_->setError(eptr);
finish(eptr);
}
void ProcessGroupMPI::WorkMPI::finishWorkMPI() {
future_->markCompleted(at::IValue(outputTensors_));
finish();
}
ProcessGroupMPI::AsyncWork::AsyncWork(
MPI_Request request,
std::vector<at::Tensor> outputTensors,
const char* profilingTitle,
const c10::optional<std::vector<at::Tensor>>& inputTensors)
: Work(-1, OpType::UNKNOWN, profilingTitle, inputTensors),
outputTensors_(std::move(outputTensors)),
request_(request) {
memset(&status_, 0, sizeof(status_));
}
ProcessGroupMPI::AsyncWork::~AsyncWork() {
if (request_ != MPI_REQUEST_NULL) {
std::cerr
<< "Attempted destruction of AsyncWork before work has completed, "
<< "terminating the program." << std::endl;
std::terminate();
}
}
bool ProcessGroupMPI::AsyncWork::isCompleted() {
if (request_ == MPI_REQUEST_NULL) {
return true;
}
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
int flag = 0;
MPI_CHECK(MPI_Test(&request_, &flag, &status_));
if (request_ != MPI_REQUEST_NULL) {
return false;
}
// request_ == MPI_REQUEST_NULL; the work has completed
// Populate exception if request was not successful
if (status_.MPI_ERROR != MPI_SUCCESS) {
populateException();
}
return true;
}
bool ProcessGroupMPI::AsyncWork::isSuccess() const {
if (request_ != MPI_REQUEST_NULL) {
TORCH_CHECK(
false,
"Invalid call to AsyncWork::isSuccess before work has completed");
}
return status_.MPI_ERROR == MPI_SUCCESS;
}
int ProcessGroupMPI::AsyncWork::sourceRank() const {
return status_.MPI_SOURCE;
}
bool ProcessGroupMPI::AsyncWork::wait(std::chrono::milliseconds /* unused */) {
if (request_ == MPI_REQUEST_NULL) {
// AsyncWork needs to manually call profiling end callbacks if they are set,
// since it does not call ProcessGroup::finish().
if (Work::recordFunctionEndCallback_) {
Work::recordFunctionEndCallback_();
Work::recordFunctionEndCallback_ = nullptr;
}
return true;
}
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Wait(&request_, &status_));
auto ok = (status_.MPI_ERROR == MPI_SUCCESS);
// AsyncWork needs to manually call profiling end callbacks if they are set,
// since it does not call ProcessGroup::finish().
if (Work::recordFunctionEndCallback_) {
Work::recordFunctionEndCallback_();
Work::recordFunctionEndCallback_ = nullptr;
}
if (!ok) {
populateException();
std::rethrow_exception(exception_);
}
// Always return true, because abort API is not implemented.
return true;
}
void ProcessGroupMPI::AsyncWork::abort(){
TORCH_CHECK(false, "ProcessGroupMPI::AsyncWork::abort not implemented.")}
std::vector<at::Tensor> ProcessGroupMPI::AsyncWork::result() {
return outputTensors_;
}
void ProcessGroupMPI::AsyncWork::populateException() {
std::array<char, MPI_MAX_ERROR_STRING> buf;
int len = buf.size();
MPI_CHECK(MPI_Error_string(status_.MPI_ERROR, buf.data(), &len));
exception_ =
std::make_exception_ptr(std::runtime_error(std::string(buf.data(), len)));
}
// Static global states
int ProcessGroupMPI::mpiThreadSupport_ = 0;
std::mutex ProcessGroupMPI::pgGlobalMutex_;
// We only want to initialize once
c10::once_flag ProcessGroupMPI::onceFlagInitMPI;
void ProcessGroupMPI::mpiExit() {
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Finalize());
}
void ProcessGroupMPI::initMPIOnce() {
// Initialize MPI environment
c10::call_once(onceFlagInitMPI, []() {
int mpi_was_initialized = 0;
MPI_CHECK(MPI_Initialized(&mpi_was_initialized));
if (mpi_was_initialized == 0) {
MPI_CHECK(MPI_Init_thread(
nullptr, nullptr, MPI_THREAD_SERIALIZED, &mpiThreadSupport_));
if (mpiThreadSupport_ < MPI_THREAD_SERIALIZED) {
TORCH_CHECK(
false,
"Used MPI implementation doesn't have the "
"minimum level of threading support: "
"MPI_THREAD_SERIALIZED. This is required by "
"c10d package");
}
if (std::atexit(ProcessGroupMPI::mpiExit)) {
TORCH_CHECK(false, "Fail to register the MPI exit handler");
}
} else {
TORCH_WARN_ONCE("MPI was previously initialized.");
}
});
}
c10::intrusive_ptr<ProcessGroupMPI> ProcessGroupMPI::createProcessGroupMPI(
std::vector<int> ranks) {
// Once initialization
initMPIOnce();
MPI_Comm groupComm = MPI_COMM_WORLD;
int rank = -1;
int size = -1;
{
std::lock_guard<std::mutex> globalLock(pgGlobalMutex_);
// If no ranks are specified, assume we're creating the root group
if (!ranks.empty()) {
MPI_Group worldGroup;
MPI_Group ranksGroup;
MPI_CHECK(MPI_Comm_group(MPI_COMM_WORLD, &worldGroup));
MPI_CHECK(
MPI_Group_incl(worldGroup, ranks.size(), ranks.data(), &ranksGroup));
// `MPI_Comm_create` can be flaky in certain cases.
// See: https://github.com/pytorch/pytorch/issues/53899
constexpr int kMaxNumRetries = 3;
bool groupComm_updated = false;
MPI_Barrier(MPI_COMM_WORLD);
for (const auto i : c10::irange(kMaxNumRetries)) {
(void)i;
if (MPI_Comm_create(MPI_COMM_WORLD, ranksGroup, &groupComm)) {
groupComm_updated = true;
break;
}
}
MPI_CHECK(groupComm_updated);
MPI_CHECK(MPI_Group_free(&worldGroup));
MPI_CHECK(MPI_Group_free(&ranksGroup));
}
// Fetch rank and world size for this group (MPI_COMM_WORLD or new)
if (groupComm != MPI_COMM_NULL) {
MPI_CHECK(MPI_Comm_rank(groupComm, &rank));
MPI_CHECK(MPI_Comm_size(groupComm, &size));
if (rank < 0 || size < 0) {
TORCH_CHECK(false, "Failed to get the world_size / rank");
}
}
}
// If this process is not part of the group, we don't construct a
// process group instance. This is in line with the semantics of the
// other process group types.
if (groupComm == MPI_COMM_NULL) {
return c10::intrusive_ptr<ProcessGroupMPI>();
}
return c10::make_intrusive<ProcessGroupMPI>(rank, size, groupComm);
}
ProcessGroupMPI::ProcessGroupMPI(int rank, int size, MPI_Comm pgComm)
: Backend(rank, size), stop_(false), pgComm_(pgComm) {
if (pgComm_ == MPI_COMM_NULL) {
TORCH_CHECK(false, "pgComm_ must not be MPI_COMM_NULL");
}
// Start the worker thread accepting MPI calls
workerThread_ = std::thread(&ProcessGroupMPI::runLoop, this);
init();
}
ProcessGroupMPI::~ProcessGroupMPI() {
destroy();
}
void ProcessGroupMPI::destroy() {
std::unique_lock<std::mutex> lock(pgMutex_);
queueConsumeCV_.wait(lock, [&] { return queue_.empty(); });
// Queue is empty, signal stop
stop_ = true;
// Release lock to allow threads to terminate
lock.unlock();
queueProduceCV_.notify_all();
// Join the single worker thread
workerThread_.join();
}
void ProcessGroupMPI::abort() {
destroy();
MPI_Abort(pgComm_, EXIT_FAILURE);
}
void ProcessGroupMPI::runLoop() {
std::unique_lock<std::mutex> lock(pgMutex_);
while (!stop_) {
if (queue_.empty()) {
queueProduceCV_.wait(lock);
continue;
}
auto workTuple = std::move(queue_.front());
queue_.pop_front();
auto& workEntry = std::get<0>(workTuple);
auto& work = std::get<1>(workTuple);
lock.unlock();
queueConsumeCV_.notify_one();
try {
workEntry->run(workEntry);
work->finishWorkMPI();
} catch (...) {
work->finishWorkMPIError(std::current_exception());
}
lock.lock();
}
}
c10::intrusive_ptr<Work> ProcessGroupMPI::enqueue(
std::unique_ptr<WorkEntry> entry,
const char* profilingTitle,
const c10::optional<std::vector<at::Tensor>>& inputTensors) {
auto work =
c10::make_intrusive<WorkMPI>(entry->dst, profilingTitle, inputTensors);
std::unique_lock<std::mutex> lock(pgMutex_);
queue_.push_back(std::make_tuple(std::move(entry), work));
lock.unlock();
queueProduceCV_.notify_one();
return work;
}
c10::intrusive_ptr<Work> ProcessGroupMPI::broadcast(
std::vector<at::Tensor>& tensors,
const BroadcastOptions& opts) {
checkSingleTensor(tensors);
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[opts, this](std::unique_ptr<WorkEntry>& entry) {
auto data = (entry->src)[0];
c10::DeviceGuard guard(data.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Bcast(
data.data_ptr(),
data.numel(),
mpiDatatype.at(data.scalar_type()),
opts.rootRank,
pgComm_));
};
auto entry =
std::make_unique<WorkEntry>(&tensors, &tensors, std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:broadcast",
c10::optional<std::vector<at::Tensor>>(tensors));
}
c10::intrusive_ptr<Work> ProcessGroupMPI::allreduce(
std::vector<at::Tensor>& tensors,
const AllreduceOptions& opts) {
checkSingleTensor(tensors);
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[opts, this](std::unique_ptr<WorkEntry>& entry) {
auto data = (entry->src)[0];
c10::DeviceGuard guard(data.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Allreduce(
MPI_IN_PLACE,
data.data_ptr(),
data.numel(),
mpiDatatype.at(data.scalar_type()),
mpiOp.at(opts.reduceOp),
pgComm_));
};
auto entry =
std::make_unique<WorkEntry>(&tensors, &tensors, std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:all_reduce",
c10::optional<std::vector<at::Tensor>>(tensors));
}
c10::intrusive_ptr<Work> ProcessGroupMPI::allreduce_coalesced(
std::vector<at::Tensor>& tensors,
const AllreduceCoalescedOptions& opts) {
TORCH_CHECK(false, "allreduce_coalesced is currently not supported with MPI");
}
c10::intrusive_ptr<Work> ProcessGroupMPI::reduce(
std::vector<at::Tensor>& tensors,
const ReduceOptions& opts) {
checkSingleTensor(tensors);
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[opts, this](std::unique_ptr<WorkEntry>& entry) {
auto data = (entry->src)[0];
auto dataPtr = (entry->src)[0].data_ptr();
void* sendbuf = (rank_ == opts.rootRank) ? MPI_IN_PLACE : dataPtr;
void* recvbuf = (rank_ == opts.rootRank) ? dataPtr : nullptr;
c10::DeviceGuard guard(data.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Reduce(
sendbuf,
recvbuf,
data.numel(),
mpiDatatype.at(data.scalar_type()),
mpiOp.at(opts.reduceOp),
opts.rootRank,
pgComm_));
};
auto entry =
std::make_unique<WorkEntry>(&tensors, &tensors, std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:reduce",
c10::optional<std::vector<at::Tensor>>(tensors));
}
c10::intrusive_ptr<Work> ProcessGroupMPI::allgather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllgatherOptions& opts) {
checkSingleTensor(inputTensors);
if (outputTensors.size() != 1) {
TORCH_CHECK(
false,
"MPI process group only supports a single "
"tensor op");
}
if (static_cast<size_t>(size_) != outputTensors[0].size()) {
TORCH_CHECK(
false,
"All gather: number of output tensors should equal "
"to the world size");
}
checkSameSizeAndType(inputTensors[0], outputTensors[0]);
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[this](std::unique_ptr<WorkEntry>& entry) {
auto data = (entry->src)[0];
std::vector<at::Tensor> outputDataVec = entry->dst;
auto flatOutputTensor = newLikeFlat(outputDataVec);
c10::DeviceGuard guard(data.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Allgather(
data.data_ptr(),
data.numel(),
mpiDatatype.at(data.scalar_type()),
flatOutputTensor.data_ptr(),
data.numel(),
mpiDatatype.at(data.scalar_type()),
pgComm_));
for (const auto i : c10::irange(outputDataVec.size())) {
outputDataVec[i].copy_(flatOutputTensor[i]);
}
};
auto entry = std::make_unique<WorkEntry>(
&inputTensors, &outputTensors[0], std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:all_gather",
c10::optional<std::vector<at::Tensor>>(inputTensors));
}
c10::intrusive_ptr<Work> ProcessGroupMPI::allgather_coalesced(
std::vector<std::vector<at::Tensor>>& /* unused */,
std::vector<at::Tensor>& /* unused */,
const AllgatherOptions& /* unused */) {
TORCH_CHECK(false, "ProcessGroupMPI does not support allgather_coalesced");
}
c10::intrusive_ptr<Work> ProcessGroupMPI::gather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const GatherOptions& opts) {
checkSingleTensor(inputTensors);
if (rank_ != opts.rootRank) {
if (outputTensors.size() > 0) {
TORCH_CHECK(
false,
"Gather: number of output tensors should be 0 "
"for non-root");
}
} else {
if (outputTensors.size() != 1) {
TORCH_CHECK(false, "Gather: multi-GPU collective is not supported");
}
if (static_cast<size_t>(size_) != outputTensors[0].size()) {
TORCH_CHECK(
false,
"Gather: number of output tensors should equal "
"to the world size");
}
checkSameSizeAndType(inputTensors[0], outputTensors[0]);
}
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[opts, this](std::unique_ptr<WorkEntry>& entry) {
auto data = (entry->src)[0];
void* recvbuf = nullptr;
at::Tensor flatOutputTensor;
std::vector<at::Tensor> dstdata = entry->dst;
if (rank_ == opts.rootRank) {
flatOutputTensor = newLikeFlat(dstdata);
recvbuf = flatOutputTensor.data_ptr();
}
c10::DeviceGuard guard(data.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Gather(
data.data_ptr(),
data.numel(),
mpiDatatype.at(data.scalar_type()),
recvbuf,
data.numel(),
mpiDatatype.at(data.scalar_type()),
opts.rootRank,
pgComm_));
if (rank_ == opts.rootRank) {
const std::vector<at::Tensor>& outputDataVec = entry->dst;
// copy the flattened output tensors to the outputs
for (const auto i : c10::irange(outputDataVec.size())) {
outputDataVec.at(i).copy_(flatOutputTensor[i]);
}
}
};
if (rank_ == opts.rootRank) {
auto entry = std::make_unique<WorkEntry>(
&inputTensors, &outputTensors[0], std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:gather",
c10::optional<std::vector<at::Tensor>>(inputTensors));
} else {
auto entry =
std::make_unique<WorkEntry>(&inputTensors, nullptr, std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:gather",
c10::optional<std::vector<at::Tensor>>(inputTensors));
}
}
c10::intrusive_ptr<Work> ProcessGroupMPI::scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ScatterOptions& opts) {
checkSingleTensor(outputTensors);
if (rank_ != opts.rootRank) {
if (inputTensors.size() > 0) {
TORCH_CHECK(
false,
"Scatter: number of input tensors should be 0 "
"for non-root");
}
} else {
if (inputTensors.size() != 1) {
TORCH_CHECK(false, "Scatter: multi-GPU collective is not supported");
}
if (static_cast<size_t>(size_) != inputTensors[0].size()) {
TORCH_CHECK(
false,
"Scatter: number of input tensors should equal "
"to the world size");
}
checkSameSizeAndType(outputTensors[0], inputTensors[0]);
}
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[opts, this](std::unique_ptr<WorkEntry>& entry) {
auto data = (entry->dst)[0];
void* sendbuf = nullptr;
at::Tensor flatInputTensor;
if (rank_ == opts.rootRank) {
std::vector<at::Tensor>& inputDataVec = entry->src;
flatInputTensor = newLikeFlat(inputDataVec);
sendbuf = flatInputTensor.data_ptr();
// copy the input tensors to the flatten large send buffer
for (const auto i : c10::irange(inputDataVec.size())) {
flatInputTensor[i].copy_(inputDataVec.at(i));
}
}
c10::DeviceGuard guard(data.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Scatter(
sendbuf,
data.numel(),
mpiDatatype.at(data.scalar_type()),
data.data_ptr(),
data.numel(),
mpiDatatype.at(data.scalar_type()),
opts.rootRank,
pgComm_));
};
if (rank_ == opts.rootRank) {
auto entry = std::make_unique<WorkEntry>(
&inputTensors[0], &outputTensors, std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:scatter",
inputTensors.size() > 0
? c10::optional<std::vector<at::Tensor>>(inputTensors[0])
: c10::nullopt);
} else {
auto entry = std::make_unique<WorkEntry>(
nullptr, &outputTensors, std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:scatter",
inputTensors.size() > 0
? c10::optional<std::vector<at::Tensor>>(inputTensors[0])
: c10::nullopt);
}
}
c10::intrusive_ptr<Work> ProcessGroupMPI::reduce_scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ReduceScatterOptions& opts) {
TORCH_CHECK(false, "ProcessGroupMPI does not support reduce_scatter");
}
c10::intrusive_ptr<Work> ProcessGroupMPI::alltoall_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
std::vector<int64_t>& outputSplitSizes,
std::vector<int64_t>& inputSplitSizes,
const AllToAllOptions& opts) {
checkSingleTensorHelper(inputTensor);
checkSingleTensorHelper(outputTensor);
if (outputSplitSizes.size() == 0 && inputSplitSizes.size() == 0) {
// We can use alltoall
TORCH_CHECK(
outputTensor.numel() == inputTensor.numel() &&
outputTensor.type() == inputTensor.type(),
"Tensors are not equal in size or data type");
TORCH_CHECK(
outputTensor.size(0) % size_ == 0,
"Tensor's dim 0 does not divide equally across group size");
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[this](std::unique_ptr<WorkEntry>& entry) {
auto srcdata = (entry->src)[0];
auto dstdata = (entry->dst)[0];
c10::DeviceGuard guard(srcdata.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Alltoall(
srcdata.data_ptr(),
srcdata.numel() / size_,
mpiDatatype.at(srcdata.scalar_type()),
dstdata.data_ptr(),
dstdata.numel() / size_,
mpiDatatype.at(dstdata.scalar_type()),
pgComm_));
};
std::vector<at::Tensor> inputTensors = {inputTensor};
std::vector<at::Tensor> outputTensors = {outputTensor};
auto entry = std::make_unique<WorkEntry>(
&inputTensors, &outputTensors, std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:all_to_all",
c10::optional<std::vector<at::Tensor>>(inputTensors));
} else {
// Need alltoallv
c10d::checkSplitSizes(inputSplitSizes, inputTensor, size_);
c10d::checkSplitSizes(outputSplitSizes, outputTensor, size_);
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[this, inputSplitSizes, outputSplitSizes](
std::unique_ptr<WorkEntry>& entry) {
auto srcdata = (entry->src)[0];
auto dstdata = (entry->dst)[0];
std::vector<int> send_lengths(size_);
std::vector<int> recv_lengths(size_);
std::vector<int> send_offsets(size_);
std::vector<int> recv_offsets(size_);
c10d::computeLengthsAndOffsets(
inputSplitSizes, srcdata, &send_lengths, &send_offsets);
c10d::computeLengthsAndOffsets(
outputSplitSizes, dstdata, &recv_lengths, &recv_offsets);
c10::DeviceGuard guard(srcdata.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Alltoallv(
srcdata.data_ptr(),
send_lengths.data(),
send_offsets.data(),
mpiDatatype.at(srcdata.scalar_type()),
dstdata.data_ptr(),
recv_lengths.data(),
recv_offsets.data(),
mpiDatatype.at(dstdata.scalar_type()),
pgComm_));
};
std::vector<at::Tensor> inputTensors = {inputTensor};
std::vector<at::Tensor> outputTensors = {outputTensor};
auto entry = std::make_unique<WorkEntry>(
&inputTensors, &outputTensors, std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:all_to_all",
c10::optional<std::vector<at::Tensor>>(inputTensors));
}
}
c10::intrusive_ptr<Work> ProcessGroupMPI::alltoall(
std::vector<at::Tensor>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllToAllOptions& opts) {
TORCH_CHECK(
inputTensors.size() == static_cast<size_t>(size_),
"Number of input tensors are not equal to group size");
TORCH_CHECK(
outputTensors.size() == static_cast<size_t>(size_),
"Number of output tensors are not equal to group size");
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[this](std::unique_ptr<WorkEntry>& entry) {
std::vector<int> send_lengths(size_);
std::vector<int> recv_lengths(size_);
std::vector<int> send_offsets(size_);
std::vector<int> recv_offsets(size_);
auto srcdata = entry->src;
auto dstdata = entry->dst;
int64_t src_len = c10d::computeLengthsAndOffsets(
srcdata, &send_lengths, &send_offsets);
int64_t dst_len = c10d::computeLengthsAndOffsets(
dstdata, &recv_lengths, &recv_offsets);
std::vector<int64_t> send_lengthsL(
send_lengths.begin(), send_lengths.end());
std::vector<int64_t> recv_lengthsL(
recv_lengths.begin(), recv_lengths.end());
at::Tensor srcFlatData = at::empty({src_len}, srcdata[0].options());
at::Tensor dstFlatData = at::empty({dst_len}, dstdata[0].options());
auto srcFlatDataSplits =
srcFlatData.split_with_sizes(c10::IntArrayRef(send_lengthsL), 0);
for (const auto i : c10::irange(size_)) {
srcFlatDataSplits[i].copy_(srcdata[i].view({-1}));
}
c10::DeviceGuard guard1(srcdata[0].device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Alltoallv(
srcFlatData.data_ptr(),
send_lengths.data(),
send_offsets.data(),
mpiDatatype.at(srcdata[0].scalar_type()),
dstFlatData.data_ptr(),
recv_lengths.data(),
recv_offsets.data(),
mpiDatatype.at(dstdata[0].scalar_type()),
pgComm_));
auto dstFlatDataSplits =
dstFlatData.split_with_sizes(c10::IntArrayRef(recv_lengthsL), 0);
for (const auto i : c10::irange(size_)) {
dstdata[i].view({-1}).copy_(dstFlatDataSplits[i]);
}
};
auto entry = std::make_unique<WorkEntry>(
&inputTensors, &outputTensors, std::move(runFunc));
return enqueue(
std::move(entry),
"mpi:all_to_all",
c10::optional<std::vector<at::Tensor>>(inputTensors));
}
c10::intrusive_ptr<Work> ProcessGroupMPI::send(
std::vector<at::Tensor>& tensors,
int dstRank,
int tag) {
checkSingleTensor(tensors);
auto& tensor = tensors[0];
MPI_Request request = MPI_REQUEST_NULL;
{
c10::DeviceGuard guard(tensor.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Isend(
tensor.data_ptr(),
tensor.numel(),
mpiDatatype.at(tensor.scalar_type()),
dstRank,
tag,
pgComm_,
&request));
}
return c10::make_intrusive<AsyncWork>(
request,
std::vector<at::Tensor>(),
"mpi:send",
c10::optional<std::vector<at::Tensor>>(tensors));
}
c10::intrusive_ptr<Work> ProcessGroupMPI::recv(
std::vector<at::Tensor>& tensors,
int srcRank,
int tag) {
checkSingleTensor(tensors);
auto& tensor = tensors[0];
MPI_Request request = MPI_REQUEST_NULL;
{
c10::DeviceGuard guard(tensor.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Irecv(
tensor.data_ptr(),
tensor.numel(),
mpiDatatype.at(tensor.scalar_type()),
srcRank,
tag,
pgComm_,
&request));
}
return c10::make_intrusive<AsyncWork>(
request,
tensors,
"mpi:recv",
c10::optional<std::vector<at::Tensor>>(tensors));
}
c10::intrusive_ptr<Work> ProcessGroupMPI::recvAnysource(
std::vector<at::Tensor>& tensors,
int tag) {
checkSingleTensor(tensors);
auto& tensor = tensors[0];
MPI_Request request = MPI_REQUEST_NULL;
{
c10::DeviceGuard guard(tensor.device());
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Irecv(
tensor.data_ptr(),
tensor.numel(),
mpiDatatype.at(tensor.scalar_type()),
MPI_ANY_SOURCE,
tag,
pgComm_,
&request));
}
return c10::make_intrusive<AsyncWork>(
request,
tensors,
"mpi:recvAnySource",
c10::optional<std::vector<at::Tensor>>(tensors));
}
c10::intrusive_ptr<Work> ProcessGroupMPI::barrier(const BarrierOptions& opts) {
std::function<void(std::unique_ptr<WorkEntry>&)> runFunc =
[this](std::unique_ptr<WorkEntry>& entry) {
std::unique_lock<std::mutex> globalLock(pgGlobalMutex_);
MPI_CHECK(MPI_Barrier(pgComm_));
};
auto entry =
std::make_unique<WorkEntry>(nullptr, nullptr, std::move(runFunc));
return enqueue(std::move(entry), "mpi:barrier", c10::nullopt);
}
c10::intrusive_ptr<Work> ProcessGroupMPI::_allgather_base(
at::Tensor& /*unused */,
at::Tensor& /*unused */,
const AllgatherOptions& /*unused */) {
TORCH_CHECK(false, "no support for _allgather_base in MPI process group");
}
} // namespace c10d
#endif // USE_C10D_MPI