blob: 29850fb22397b2efb670fa065743e6156191df25 [file] [log] [blame]
#include <c10/util/StringUtil.h>
#include <fmt/format.h>
#include <torch/csrc/distributed/c10d/Utils.hpp>
#include <torch/csrc/distributed/c10d/debug.h>
#include <torch/csrc/distributed/c10d/logger.hpp>
#include <string>
#include <c10/util/CallOnce.h>
#ifdef USE_C10D_GLOO
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
#endif
namespace c10d {
// Logs runtime stats to configured destination. Note that since data collection
// only runs every ddp_runtime_logging_sample_rate iterations, the actual
// training iterations recorded will be like 10,
// (20-10) * ddp_runtime_logging_sample_rate,
// (50-10) * ddp_runtime_logging_sample_rate and so on.
const int LoggingIterations[] = {10, 20, 50, 100, 500, 800, 1000}; // NOLINT
std::ostream& operator<<(std::ostream& output, const Logger& logger) {
auto& ddp_logging_data = (*logger.ddp_logging_data_);
std::string loggerInfo = fmt::format(
"[Rank {} / {}] [before iteration {}] Training {} unused_parameter_size={} \n "
"Avg forward compute time: {} \n Avg backward compute time: {} \n"
"Avg backward comm. time: {} \n Avg backward comm/comp overlap time: {}",
ddp_logging_data.ints_map["rank"],
ddp_logging_data.ints_map["world_size"],
ddp_logging_data.ints_map["iteration"],
ddp_logging_data.strs_map["module_name"],
ddp_logging_data.ints_map["unused_parameter_size"],
ddp_logging_data.ints_map["avg_forward_compute_time"],
ddp_logging_data.ints_map["avg_backward_compute_time"],
ddp_logging_data.ints_map["avg_backward_comm_time"],
ddp_logging_data.ints_map["avg_backward_compute_comm_overlap_time"]);
if (!ddp_logging_data.strs_map["comm_hook"].empty()) {
loggerInfo += fmt::format(
"\n Gradient comm. hook: {}", ddp_logging_data.strs_map["comm_hook"]);
}
if (ddp_logging_data.ints_map["join_uneven_inputs"]) {
loggerInfo += "\n Uneven input detection with join() enabled.";
}
return output << loggerInfo;
}
Logger::Logger(std::shared_ptr<c10d::Reducer> reducer)
: reducer_(std::move(reducer)) {
ddp_logging_data_ = std::make_unique<at::DDPLoggingData>();
}
c10::once_flag log_graph_static_flag;
void Logger::log_if_graph_static(bool is_static) {
c10::call_once(log_graph_static_flag, [this, is_static]() {
ddp_logging_data_->ints_map["can_set_static_graph"] = is_static;
// It is useful to report the iteration that training finished at.
ddp_logging_data_->ints_map["iteration"] = reducer_->num_iterations_;
at::LogPyTorchDDPUsage(*ddp_logging_data_);
});
}
// Environment variables
void Logger::set_env_variables() {
ddp_logging_data_->strs_map["master_port"] = parse_env("MASTER_PORT");
ddp_logging_data_->strs_map["master_addr"] = parse_env("MASTER_ADDR");
ddp_logging_data_->strs_map["torch_distributed_debug"] =
parse_env("TORCH_DISTRIBUTED_DEBUG");
ddp_logging_data_->strs_map["cuda_visible_devices"] =
parse_env("CUDA_VISIBLE_DEVICES");
if (reducer_->process_group_->getBackendName() == "nccl") {
ddp_logging_data_->strs_map["nccl_socket_ifname"] =
parse_env("NCCL_SOCKET_IFNAME");
ddp_logging_data_->strs_map["nccl_blocking_wait"] =
parse_env("NCCL_BLOCKING_WAIT");
ddp_logging_data_->strs_map["nccl_async_error_handling"] =
parse_env("NCCL_ASYNC_ERROR_HANDLING");
ddp_logging_data_->strs_map["nccl_debug"] = parse_env("NCCL_DEBUG");
ddp_logging_data_->strs_map["nccl_nthreads"] = parse_env("NCCL_NTHREADS");
ddp_logging_data_->strs_map["nccl_ib_timeout"] =
parse_env("NCCL_IB_TIMEOUT");
}
if (reducer_->process_group_->getBackendName() == "gloo") {
ddp_logging_data_->strs_map["gloo_socket_ifname"] =
parse_env("GLOO_SOCKET_IFNAME");
ddp_logging_data_->strs_map["gloo_device_transport"] =
parse_env("GLOO_DEVICE_TRANSPORT");
#ifdef USE_C10D_GLOO
auto gloo_pg = static_cast<c10d::ProcessGroupGloo*>(
reducer_->process_group_
->getBackend(c10d::ProcessGroup::BackendType::GLOO)
.get());
auto n_threads = gloo_pg->getNumThreads();
ddp_logging_data_->ints_map["gloo_num_threads"] = n_threads;
#endif
}
}
void Logger::set_parameter_stats() {
// The number of parameter tensors
ddp_logging_data_->ints_map["num_parameter_tensors"] =
reducer_->params_.size();
// Total parameters size (Bytes)
ddp_logging_data_->ints_map["total_parameter_size_bytes"] = 0;
// Parameters' data types, there may be multiple data
// types for mixed precision training.
std::set<std::string> unique_dtypes;
for (const auto& t : reducer_->params_) {
ddp_logging_data_->ints_map["total_parameter_size_bytes"] +=
t.numel() * t.element_size();
unique_dtypes.insert(std::string(t.dtype().name()));
}
ddp_logging_data_->strs_map["dtypes"] = c10::Join(", ", unique_dtypes);
}
std::vector<std::vector<size_t>> Logger::get_per_bucket_variable_indices() {
std::vector<std::vector<size_t>> per_bucket_variable_indices;
per_bucket_variable_indices.reserve(reducer_->buckets_.size());
for (const auto& bucket : reducer_->buckets_) {
const auto& indices = bucket.variable_indices;
per_bucket_variable_indices.push_back(indices);
}
return per_bucket_variable_indices;
}
std::vector<int64_t> Logger::get_bucket_sizes() {
std::vector<int64_t> bucket_sizes;
for (const auto& bucket : reducer_->buckets_) {
const auto& variables = bucket.variables;
int64_t bucket_size = 0;
for (const auto& v : variables) {
bucket_size += v.numel() * v.element_size();
}
bucket_sizes.push_back(bucket_size);
}
return bucket_sizes;
}
// Communication hook. Empty string if not set, in which case it will not be
// logged.
void Logger::set_comm_hook(const std::string& hook) {
ddp_logging_data_->strs_map["comm_hook"] = hook;
}
// Whether we are running under model.join() context manager for DDP uneven
// inputs.
void Logger::set_uneven_input_join() {
ddp_logging_data_->ints_map["join_uneven_inputs"] = true;
}
void Logger::set_static_graph() {
ddp_logging_data_->ints_map["static_graph"] = reducer_->static_graph_;
}
// Data that can be got during DistributedDataParallel construction time
void Logger::set_construction_data_and_log(
const std::string& module_name,
const std::vector<int>& device_ids,
int output_device,
bool broadcast_buffers,
bool has_sync_bn,
bool static_graph) {
// No lock is needed, as it will be called in DistributedDataParallel
// constructor.
if (static_graph) {
set_static_graph();
}
ddp_logging_data_->strs_map["module_name"] = module_name;
ddp_logging_data_->ints_map["world_size"] =
reducer_->process_group_->getSize();
ddp_logging_data_->ints_map["rank"] = reducer_->process_group_->getRank();
// In which iteration of the training loop the get_ddp_logging_data()
// is called to fetch the DDPLoggingData, 0 if the data is fetched
// before training loop.
ddp_logging_data_->ints_map["iteration"] = 0;
ddp_logging_data_->ints_map["is_multi_device_module"] =
reducer_->is_multi_device_module_;
set_parameter_stats();
// A list of bucket sizes (Bytes) calculated during construction time
ddp_logging_data_->strs_map["bucket_sizes"] =
c10::Join(", ", get_bucket_sizes());
set_env_variables();
// DistributedDataParallel constructor input parameters
ddp_logging_data_->strs_map["device_ids"] = c10::Join(", ", device_ids);
ddp_logging_data_->ints_map["output_device"] = output_device;
ddp_logging_data_->ints_map["broadcast_buffers"] = broadcast_buffers;
ddp_logging_data_->ints_map["has_sync_bn"] = has_sync_bn;
ddp_logging_data_->ints_map["bucket_cap_bytes"] = reducer_->bucket_bytes_cap_;
ddp_logging_data_->ints_map["find_unused_parameters"] =
reducer_->find_unused_parameters_;
ddp_logging_data_->ints_map["gradient_as_bucket_view"] =
reducer_->gradient_as_bucket_view_;
ddp_logging_data_->strs_map["backend_name"] =
reducer_->process_group_->getBackendName();
if (debug_level() != DebugLevel::Off) {
std::string initInfo = fmt::format(
"[Rank {}]: DDP Initialized with: \n",
ddp_logging_data_->ints_map["rank"]);
std::stringstream ddpLoggingDataInfo;
for (const auto& intItem : ddp_logging_data_->ints_map) {
ddpLoggingDataInfo << intItem.first << ": " << intItem.second << "\n";
}
for (const auto& strItem : ddp_logging_data_->strs_map) {
ddpLoggingDataInfo << strItem.first << ": " << strItem.second << "\n";
}
LOG(INFO) << initInfo << ddpLoggingDataInfo.str();
}
at::LogPyTorchDDPUsage(*ddp_logging_data_);
}
void Logger::set_event_time(
int64_t& event_time,
Timer& timer,
Timer::Event event) {
auto timestamp = timer.getTimestamp(event);
if (timestamp != c10::nullopt) {
// TODO: should we set this as human-readable time instead of unixtime?
event_time = *timestamp;
}
}
void Logger::calculate_avg_time(
int64_t& avg_time,
int64_t& time_duration,
Timer& timer,
Timer::Event start_event,
Timer::Event end_event) {
TORCH_CHECK(num_iterations_stats_recorded_ > 0);
c10::optional<int64_t> maybe_time_duration =
timer.measureDifference(start_event, end_event);
if (!maybe_time_duration.has_value()) {
return;
}
time_duration = maybe_time_duration.value();
avg_time = (time_duration + avg_time * (num_iterations_stats_recorded_ - 1)) /
num_iterations_stats_recorded_;
}
void Logger::reset_performance_stats() {
ddp_logging_data_->ints_map["forward_compute_time"] = 0;
ddp_logging_data_->ints_map["backward_comm_time"] = 0;
ddp_logging_data_->ints_map["backward_compute_time"] = 0;
ddp_logging_data_->ints_map["backward_compute_comm_overlap_time"] = 0;
ddp_logging_data_->ints_map["forward_compute_time_start"] = 0;
ddp_logging_data_->ints_map["backward_compute_time_start"] = 0;
ddp_logging_data_->ints_map["backward_comm_time_start"] = 0;
ddp_logging_data_->ints_map["backward_compute_time_end"] = 0;
ddp_logging_data_->ints_map["backward_comm_time_end"] = 0;
}
void Logger::set_runtime_stats_and_log() {
// Sync with reducer's data
std::lock_guard<std::mutex> lock(reducer_->mutex_);
// Set runtime stats at the sampling iterations.
if (!reducer_->should_collect_runtime_stats()) {
return;
}
num_iterations_stats_recorded_++;
// Set ith iteration when the runtime stats are set.
ddp_logging_data_->ints_map["iteration"] = reducer_->num_iterations_;
// When get_ddp_logging_data() is called, "unused_parameter_size",
// "has_rebuilt_buckets" and "rebuilt_bucket_sizes" are updated in the latest
// sampling iteration.
// If unused_parameters_ is not empty, calculate its sizes.
// unused_parameters_ is calculated in forward call of
// each iteration.
if (reducer_->unused_parameters_.empty() &&
reducer_->find_unused_parameters_) {
// No unused params in this iteration
ddp_logging_data_->ints_map["unused_parameter_size"] = 0;
}
for (const auto& unused_index : reducer_->unused_parameters_) {
const auto& v = reducer_->params_[unused_index];
ddp_logging_data_->ints_map["unused_parameter_size"] +=
v.numel() * v.element_size();
}
// rebuilt_bucket_sizes will not change once buckets are rebuilt,
// so it only needs to set once during whole training loop.
// Rebuild buckets stats after 1st iteration
if (ddp_logging_data_->ints_map["has_rebuilt_buckets"] !=
reducer_->has_rebuilt_bucket_) {
ddp_logging_data_->ints_map["has_rebuilt_buckets"] =
reducer_->has_rebuilt_bucket_;
ddp_logging_data_->strs_map["rebuilt_bucket_sizes"] =
c10::Join(", ", get_bucket_sizes());
// Log per-bucket variable indices
std::vector<std::string> per_bucket_variable_indices;
auto indices = get_per_bucket_variable_indices();
per_bucket_variable_indices.reserve(indices.size());
for (const auto& bucket_indices : indices) {
per_bucket_variable_indices.push_back(c10::Join(" ", bucket_indices));
}
ddp_logging_data_->strs_map["rebuilt_per_bucket_param_indices"] =
c10::Join(", ", per_bucket_variable_indices);
}
// Log gradient ready order
if (!reducer_->grad_ready_order_indices_.empty()) {
// Note that the indices are for the previous iteration as
// this function is called in forward pass, and we last computed gradient
// ready order in the last backward pass.
ddp_logging_data_->strs_map["prev_iteration_grad_ready_order_indices"] =
c10::Join(", ", reducer_->grad_ready_order_indices_);
}
reset_performance_stats();
// Cuda time stats are only collected for single device modules.
if (reducer_->params_[0].is_cuda() && reducer_->is_multi_device_module_) {
TORCH_WARN_ONCE(
"Cuda time stats are not collected for multi-device modules.");
return;
}
if (!reducer_->timer_ &&
(!reducer_->params_[0].is_cuda() && !reducer_->params_[0].is_cpu())) {
TORCH_WARN_ONCE(
"Time stats are currently only collected for CPU and CUDA devices. "
"Please refer to CpuTimer or CudaTimer for how to register timer "
"for other device type.");
return;
}
TORCH_INTERNAL_ASSERT(reducer_->timer_);
calculate_avg_time(
ddp_logging_data_->ints_map["avg_forward_compute_time"],
ddp_logging_data_->ints_map["forward_compute_time"],
*reducer_->timer_,
Timer::Event::kForwardStart,
Timer::Event::kBackwardComputeStart);
calculate_avg_time(
ddp_logging_data_->ints_map["avg_backward_compute_time"],
ddp_logging_data_->ints_map["backward_compute_time"],
*reducer_->timer_,
Timer::Event::kBackwardComputeStart,
Timer::Event::kBackwardComputeEnd);
calculate_avg_time(
ddp_logging_data_->ints_map["avg_backward_comm_time"],
ddp_logging_data_->ints_map["backward_comm_time"],
*reducer_->timer_,
Timer::Event::kBackwardCommStart,
Timer::Event::kBackwardCommEnd);
calculate_avg_time(
ddp_logging_data_->ints_map["avg_backward_compute_comm_overlap_time"],
ddp_logging_data_->ints_map["backward_compute_comm_overlap_time"],
*reducer_->timer_,
Timer::Event::kBackwardCommStart,
Timer::Event::kBackwardComputeEnd);
set_event_time(
ddp_logging_data_->ints_map["forward_compute_time_start"],
*reducer_->timer_,
Timer::Event::kForwardStart);
set_event_time(
ddp_logging_data_->ints_map["backward_compute_time_start"],
*reducer_->timer_,
Timer::Event::kBackwardComputeStart);
set_event_time(
ddp_logging_data_->ints_map["backward_comm_time_start"],
*reducer_->timer_,
Timer::Event::kBackwardCommStart);
set_event_time(
ddp_logging_data_->ints_map["backward_compute_time_end"],
*reducer_->timer_,
Timer::Event::kBackwardComputeEnd);
set_event_time(
ddp_logging_data_->ints_map["backward_comm_time_end"],
*reducer_->timer_,
Timer::Event::kBackwardCommEnd);
// Log runtime stats to stderr if TORCH_DISTRIBUTED_DEBUG=DETAIL is enabled.
if (debug_level() == DebugLevel::Detail) {
LOG(INFO) << *this;
}
// Log runtime (e.g. avg performance) stats at the beginning and also
// after a larger number of iterations. Choosing 10/1000/10000 is
// not scientific here, it assumes most of applications will run
// at least 10 iterations. stats could have smaller variance if
// selected num_iterations_ is larger.
if (std::find(
std::begin(LoggingIterations),
std::end(LoggingIterations),
num_iterations_stats_recorded_) != std::end(LoggingIterations)) {
at::LogPyTorchDDPUsage(*ddp_logging_data_);
}
}
at::DDPLoggingData Logger::get_ddp_logging_data() {
std::lock_guard<std::mutex> lock(reducer_->mutex_);
return *ddp_logging_data_;
}
} // namespace c10d