blob: abd8233d5a503e47ff037a731325b63a0d69bc02 [file] [log] [blame]
import time
from collections import namedtuple
from torch.utils import ThroughputBenchmark
NUM_LOOP_ITERS = 1000
BenchmarkConfig = namedtuple("BenchmarkConfig", "num_warmup_iters num_iters")
ModuleConfig = namedtuple("ModuleConfig", "pt_fn c2_op num_params graph_mode")
def ms_to_us(time_ms):
return time_ms * 1e3
def secs_to_us(time_s):
return time_s * 1e6
def secs_to_ms(time_s):
return time_s * 1e3
def benchmark_using_throughput_benchmark(config, module):
print("Benchmarking via ThroughputBenchmark")
bench = ThroughputBenchmark(module.module)
bench.add_input(*module.tensor_inputs)
stats = bench.benchmark(1, config.num_warmup_iters, config.num_iters)
return stats.latency_avg_ms / NUM_LOOP_ITERS
def benchmark_module(config, module, use_throughput_benchmark=False):
if use_throughput_benchmark:
return benchmark_using_throughput_benchmark(config, module)
module.forward(config.num_warmup_iters)
print(f"Running module for {config.num_iters} iterations")
start = time.time()
module.forward(config.num_iters)
end = time.time()
time_elapsed_s = end - start
return secs_to_ms(time_elapsed_s) / config.num_iters / NUM_LOOP_ITERS