blob: 36ba9db4d5f9aa1eec6da63a58a47716409d77fb [file] [log] [blame]
# flake8: noqa: E266, C417, B950
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from torch import Tensor
from torch.nn import functional as F
def find_multiple(n: int, k: int) -> int:
if n % k == 0:
return n
return n + k - (n % k)
@dataclass
class ModelArgs:
block_size: int = 2048
vocab_size: int = 32000
n_layer: int = 32
n_head: int = 32
dim: int = 4096
intermediate_size: int = None
n_local_heads: int = -1
head_dim: int = 64
rope_base: float = 10000
norm_eps: float = 1e-5
num_experts: int = 8
num_activated_experts: int = 2
def __post_init__(self):
if self.n_local_heads == -1:
self.n_local_heads = self.n_head
if self.intermediate_size is None:
hidden_dim = 4 * self.dim
n_hidden = int(2 * hidden_dim / 3)
self.intermediate_size = find_multiple(n_hidden, 256)
self.head_dim = self.dim // self.n_head
@classmethod
def from_name(cls, name: str):
if name in transformer_configs:
return cls(**transformer_configs[name])
# fuzzy search
config = [
config
for config in transformer_configs
if config in str(name).upper() or config in str(name)
]
assert len(config) == 1, name
return cls(**transformer_configs[config[0]])
transformer_configs = {
"Mixtral-8x7B-v0.1": dict(
block_size=32768,
n_layer=16,
n_head=32,
n_local_heads=8,
dim=4096,
intermediate_size=14336,
rope_base=1000000.0,
num_experts=8,
num_activated_experts=2,
),
}
class KVCache(nn.Module):
def __init__(
self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16
):
super().__init__()
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype))
self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype))
def update(self, input_pos, k_val, v_val):
# input_pos: [S], k_val: [B, H, S, D]
assert input_pos.shape[0] == k_val.shape[2]
k_out = self.k_cache
v_out = self.v_cache
k_out[:, :, input_pos] = k_val
v_out[:, :, input_pos] = v_val
return k_out, v_out
class Transformer(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.config = config
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.layers = nn.ModuleList(
TransformerBlock(config) for _ in range(config.n_layer)
)
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
self.freqs_cis: Optional[Tensor] = None
self.mask_cache: Optional[Tensor] = None
self.max_batch_size = -1
self.max_seq_length = -1
def setup_caches(self, max_batch_size, max_seq_length):
if (
self.max_seq_length >= max_seq_length
and self.max_batch_size >= max_batch_size
):
return
head_dim = self.config.dim // self.config.n_head
max_seq_length = find_multiple(max_seq_length, 8)
self.max_seq_length = max_seq_length
self.max_batch_size = max_batch_size
for b in self.layers:
b.attention.kv_cache = KVCache(
max_batch_size, max_seq_length, self.config.n_local_heads, head_dim
)
self.freqs_cis = precompute_freqs_cis(
self.config.block_size,
self.config.dim // self.config.n_head,
self.config.rope_base,
)
self.causal_mask = torch.tril(
torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)
)
def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None) -> Tensor:
assert self.freqs_cis is not None, "Caches must be initialized first"
mask = self.causal_mask[None, None, input_pos]
freqs_cis = self.freqs_cis[input_pos]
x = self.tok_embeddings(idx)
for i, layer in enumerate(self.layers):
x = layer(x, input_pos, freqs_cis, mask)
x = self.norm(x)
logits = self.output(x)
return logits
@classmethod
def from_name(cls, name: str):
return cls(ModelArgs.from_name(name))
class TransformerBlock(nn.Module):
def __init__(self, config: ModelArgs) -> None:
super().__init__()
self.attention = Attention(config)
self.block_sparse_moe = MOEFeedForward(config)
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
def forward(
self, x: Tensor, input_pos: Tensor, freqs_cis: Tensor, mask: Tensor
) -> Tensor:
h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos)
out = h + self.block_sparse_moe(self.ffn_norm(h))
return out
class Attention(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
assert config.dim % config.n_head == 0
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim
# key, query, value projections for all heads, but in a batch
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False)
self.wo = nn.Linear(config.dim, config.dim, bias=False)
self.kv_cache = None
self.n_head = config.n_head
self.head_dim = config.head_dim
self.n_local_heads = config.n_local_heads
self.dim = config.dim
self._register_load_state_dict_pre_hook(self.load_hook)
def load_hook(self, state_dict, prefix, *args):
if prefix + "wq.weight" in state_dict:
wq = state_dict.pop(prefix + "wq.weight")
wk = state_dict.pop(prefix + "wk.weight")
wv = state_dict.pop(prefix + "wv.weight")
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
mask: Tensor,
input_pos: Optional[Tensor] = None,
) -> Tensor:
bsz, seqlen, _ = x.shape
kv_size = self.n_local_heads * self.head_dim
q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1)
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim)
v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim)
q = apply_rotary_emb(q, freqs_cis)
k = apply_rotary_emb(k, freqs_cis)
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))
if self.kv_cache is not None:
k, v = self.kv_cache.update(input_pos, k, v)
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim)
y = self.wo(y)
return y
class ConditionalFeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.w1 = nn.Parameter(
torch.empty(config.num_experts, config.intermediate_size, config.dim)
)
self.w2 = nn.Parameter(
torch.empty(config.num_experts, config.dim, config.intermediate_size)
)
self.w3 = nn.Parameter(
torch.empty(config.num_experts, config.intermediate_size, config.dim)
)
def forward(self, x: Tensor, expert_indices: Tensor) -> Tensor:
w1_weights = self.w1[expert_indices] # [T, A, D, D]
w3_weights = self.w3[expert_indices] # [T, A, D, D]
w2_weights = self.w2[expert_indices] # [T, A, D, D]
x1 = F.silu(torch.einsum("ti,taoi -> tao", x, w1_weights))
x3 = torch.einsum("ti, taoi -> tao", x, w3_weights)
expert_outs = torch.einsum("tao, taio -> tai", (x1 * x3), w2_weights)
return expert_outs
class MOEFeedForward(nn.Module):
def __init__(self, config) -> None:
super().__init__()
self.gate = nn.Linear(config.dim, config.num_experts, bias=False)
self.cond_ffn = ConditionalFeedForward(config)
self.dim = config.dim
self.num_activated_experts = config.num_activated_experts
def forward(self, x: Tensor) -> Tensor:
x = x.view(-1, self.dim)
# T = num_tokens, E = num_experts, D = hidden dim, A = activated experts
# x: [T, D]
scores = self.gate(x) # [T, E]
expert_weights = F.softmax(scores, dim=-1)
expert_weights, expert_indices = torch.topk(
expert_weights, self.num_activated_experts, dim=-1
) # [T, A], [T, A]
expert_weights /= expert_weights.sum(dim=-1, keepdim=True) # [T, A]
expert_outs = self.cond_ffn(x, expert_indices)
return torch.einsum("tai,ta -> ti", expert_outs, expert_weights)
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor:
freqs = 1.0 / (
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
)
t = torch.arange(seq_len, device=freqs.device)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
return cache.to(dtype=torch.bfloat16)
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor:
xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1],
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return x_out2.type_as(x)