| # flake8: noqa: E266, C417, B950 |
| from dataclasses import dataclass |
| from typing import Optional |
| |
| import torch |
| import torch.nn as nn |
| from torch import Tensor |
| from torch.nn import functional as F |
| |
| |
| def find_multiple(n: int, k: int) -> int: |
| if n % k == 0: |
| return n |
| return n + k - (n % k) |
| |
| |
| @dataclass |
| class ModelArgs: |
| block_size: int = 2048 |
| vocab_size: int = 32000 |
| n_layer: int = 32 |
| n_head: int = 32 |
| dim: int = 4096 |
| intermediate_size: int = None |
| n_local_heads: int = -1 |
| head_dim: int = 64 |
| rope_base: float = 10000 |
| norm_eps: float = 1e-5 |
| num_experts: int = 8 |
| num_activated_experts: int = 2 |
| |
| def __post_init__(self): |
| if self.n_local_heads == -1: |
| self.n_local_heads = self.n_head |
| if self.intermediate_size is None: |
| hidden_dim = 4 * self.dim |
| n_hidden = int(2 * hidden_dim / 3) |
| self.intermediate_size = find_multiple(n_hidden, 256) |
| self.head_dim = self.dim // self.n_head |
| |
| @classmethod |
| def from_name(cls, name: str): |
| if name in transformer_configs: |
| return cls(**transformer_configs[name]) |
| # fuzzy search |
| config = [ |
| config |
| for config in transformer_configs |
| if config in str(name).upper() or config in str(name) |
| ] |
| assert len(config) == 1, name |
| return cls(**transformer_configs[config[0]]) |
| |
| |
| transformer_configs = { |
| "Mixtral-8x7B-v0.1": dict( |
| block_size=32768, |
| n_layer=16, |
| n_head=32, |
| n_local_heads=8, |
| dim=4096, |
| intermediate_size=14336, |
| rope_base=1000000.0, |
| num_experts=8, |
| num_activated_experts=2, |
| ), |
| } |
| |
| |
| class KVCache(nn.Module): |
| def __init__( |
| self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16 |
| ): |
| super().__init__() |
| cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim) |
| self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype)) |
| self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype)) |
| |
| def update(self, input_pos, k_val, v_val): |
| # input_pos: [S], k_val: [B, H, S, D] |
| assert input_pos.shape[0] == k_val.shape[2] |
| |
| k_out = self.k_cache |
| v_out = self.v_cache |
| k_out[:, :, input_pos] = k_val |
| v_out[:, :, input_pos] = v_val |
| |
| return k_out, v_out |
| |
| |
| class Transformer(nn.Module): |
| def __init__(self, config: ModelArgs) -> None: |
| super().__init__() |
| self.config = config |
| |
| self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) |
| self.layers = nn.ModuleList( |
| TransformerBlock(config) for _ in range(config.n_layer) |
| ) |
| self.norm = RMSNorm(config.dim, eps=config.norm_eps) |
| self.output = nn.Linear(config.dim, config.vocab_size, bias=False) |
| |
| self.freqs_cis: Optional[Tensor] = None |
| self.mask_cache: Optional[Tensor] = None |
| self.max_batch_size = -1 |
| self.max_seq_length = -1 |
| |
| def setup_caches(self, max_batch_size, max_seq_length): |
| if ( |
| self.max_seq_length >= max_seq_length |
| and self.max_batch_size >= max_batch_size |
| ): |
| return |
| head_dim = self.config.dim // self.config.n_head |
| max_seq_length = find_multiple(max_seq_length, 8) |
| self.max_seq_length = max_seq_length |
| self.max_batch_size = max_batch_size |
| for b in self.layers: |
| b.attention.kv_cache = KVCache( |
| max_batch_size, max_seq_length, self.config.n_local_heads, head_dim |
| ) |
| |
| self.freqs_cis = precompute_freqs_cis( |
| self.config.block_size, |
| self.config.dim // self.config.n_head, |
| self.config.rope_base, |
| ) |
| self.causal_mask = torch.tril( |
| torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool) |
| ) |
| |
| def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None) -> Tensor: |
| assert self.freqs_cis is not None, "Caches must be initialized first" |
| mask = self.causal_mask[None, None, input_pos] |
| freqs_cis = self.freqs_cis[input_pos] |
| x = self.tok_embeddings(idx) |
| |
| for i, layer in enumerate(self.layers): |
| x = layer(x, input_pos, freqs_cis, mask) |
| x = self.norm(x) |
| logits = self.output(x) |
| return logits |
| |
| @classmethod |
| def from_name(cls, name: str): |
| return cls(ModelArgs.from_name(name)) |
| |
| |
| class TransformerBlock(nn.Module): |
| def __init__(self, config: ModelArgs) -> None: |
| super().__init__() |
| self.attention = Attention(config) |
| self.block_sparse_moe = MOEFeedForward(config) |
| self.ffn_norm = RMSNorm(config.dim, config.norm_eps) |
| self.attention_norm = RMSNorm(config.dim, config.norm_eps) |
| |
| def forward( |
| self, x: Tensor, input_pos: Tensor, freqs_cis: Tensor, mask: Tensor |
| ) -> Tensor: |
| h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos) |
| out = h + self.block_sparse_moe(self.ffn_norm(h)) |
| return out |
| |
| |
| class Attention(nn.Module): |
| def __init__(self, config: ModelArgs): |
| super().__init__() |
| assert config.dim % config.n_head == 0 |
| |
| total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim |
| # key, query, value projections for all heads, but in a batch |
| self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) |
| self.wo = nn.Linear(config.dim, config.dim, bias=False) |
| self.kv_cache = None |
| |
| self.n_head = config.n_head |
| self.head_dim = config.head_dim |
| self.n_local_heads = config.n_local_heads |
| self.dim = config.dim |
| self._register_load_state_dict_pre_hook(self.load_hook) |
| |
| def load_hook(self, state_dict, prefix, *args): |
| if prefix + "wq.weight" in state_dict: |
| wq = state_dict.pop(prefix + "wq.weight") |
| wk = state_dict.pop(prefix + "wk.weight") |
| wv = state_dict.pop(prefix + "wv.weight") |
| state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) |
| |
| def forward( |
| self, |
| x: Tensor, |
| freqs_cis: Tensor, |
| mask: Tensor, |
| input_pos: Optional[Tensor] = None, |
| ) -> Tensor: |
| bsz, seqlen, _ = x.shape |
| |
| kv_size = self.n_local_heads * self.head_dim |
| q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) |
| |
| q = q.view(bsz, seqlen, self.n_head, self.head_dim) |
| k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
| v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
| |
| q = apply_rotary_emb(q, freqs_cis) |
| k = apply_rotary_emb(k, freqs_cis) |
| |
| q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) |
| |
| if self.kv_cache is not None: |
| k, v = self.kv_cache.update(input_pos, k, v) |
| |
| k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) |
| v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) |
| y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0) |
| |
| y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) |
| |
| y = self.wo(y) |
| return y |
| |
| |
| class ConditionalFeedForward(nn.Module): |
| def __init__(self, config): |
| super().__init__() |
| self.w1 = nn.Parameter( |
| torch.empty(config.num_experts, config.intermediate_size, config.dim) |
| ) |
| self.w2 = nn.Parameter( |
| torch.empty(config.num_experts, config.dim, config.intermediate_size) |
| ) |
| self.w3 = nn.Parameter( |
| torch.empty(config.num_experts, config.intermediate_size, config.dim) |
| ) |
| |
| def forward(self, x: Tensor, expert_indices: Tensor) -> Tensor: |
| w1_weights = self.w1[expert_indices] # [T, A, D, D] |
| w3_weights = self.w3[expert_indices] # [T, A, D, D] |
| w2_weights = self.w2[expert_indices] # [T, A, D, D] |
| x1 = F.silu(torch.einsum("ti,taoi -> tao", x, w1_weights)) |
| x3 = torch.einsum("ti, taoi -> tao", x, w3_weights) |
| expert_outs = torch.einsum("tao, taio -> tai", (x1 * x3), w2_weights) |
| return expert_outs |
| |
| |
| class MOEFeedForward(nn.Module): |
| def __init__(self, config) -> None: |
| super().__init__() |
| self.gate = nn.Linear(config.dim, config.num_experts, bias=False) |
| self.cond_ffn = ConditionalFeedForward(config) |
| self.dim = config.dim |
| self.num_activated_experts = config.num_activated_experts |
| |
| def forward(self, x: Tensor) -> Tensor: |
| x = x.view(-1, self.dim) |
| # T = num_tokens, E = num_experts, D = hidden dim, A = activated experts |
| # x: [T, D] |
| scores = self.gate(x) # [T, E] |
| expert_weights = F.softmax(scores, dim=-1) |
| expert_weights, expert_indices = torch.topk( |
| expert_weights, self.num_activated_experts, dim=-1 |
| ) # [T, A], [T, A] |
| expert_weights /= expert_weights.sum(dim=-1, keepdim=True) # [T, A] |
| expert_outs = self.cond_ffn(x, expert_indices) |
| return torch.einsum("tai,ta -> ti", expert_outs, expert_weights) |
| |
| |
| class RMSNorm(nn.Module): |
| def __init__(self, dim: int, eps: float = 1e-5): |
| super().__init__() |
| self.eps = eps |
| self.weight = nn.Parameter(torch.ones(dim)) |
| |
| def _norm(self, x): |
| return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) |
| |
| def forward(self, x: Tensor) -> Tensor: |
| output = self._norm(x.float()).type_as(x) |
| return output * self.weight |
| |
| |
| def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor: |
| freqs = 1.0 / ( |
| base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem) |
| ) |
| t = torch.arange(seq_len, device=freqs.device) |
| freqs = torch.outer(t, freqs) |
| freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
| cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) |
| return cache.to(dtype=torch.bfloat16) |
| |
| |
| def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: |
| xshaped = x.float().reshape(*x.shape[:-1], -1, 2) |
| freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) |
| x_out2 = torch.stack( |
| [ |
| xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], |
| xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], |
| ], |
| -1, |
| ) |
| |
| x_out2 = x_out2.flatten(3) |
| return x_out2.type_as(x) |