blob: 6c33980b887b86e1b84ea2e7d5fa97c316286917 [file] [log] [blame]
import argparse
import asyncio
import os.path
import subprocess
import threading
import time
from concurrent.futures import ThreadPoolExecutor
from queue import Empty
import numpy as np
import pandas as pd
import torch
import torch.multiprocessing as mp
class FrontendWorker(mp.Process):
"""
This worker will send requests to a backend process, and measure the
throughput and latency of those requests as well as GPU utilization.
"""
def __init__(
self,
metrics_dict,
request_queue,
response_queue,
read_requests_event,
batch_size,
num_iters=10,
):
super().__init__()
self.metrics_dict = metrics_dict
self.request_queue = request_queue
self.response_queue = response_queue
self.read_requests_event = read_requests_event
self.warmup_event = mp.Event()
self.batch_size = batch_size
self.num_iters = num_iters
self.poll_gpu = True
self.start_send_time = None
self.end_recv_time = None
def _run_metrics(self, metrics_lock):
"""
This function will poll the response queue until it has received all
responses. It records the startup latency, the average, max, min latency
as well as througput of requests.
"""
warmup_response_time = None
response_times = []
for i in range(self.num_iters + 1):
response, request_time = self.response_queue.get()
if warmup_response_time is None:
self.warmup_event.set()
warmup_response_time = time.time() - request_time
else:
response_times.append(time.time() - request_time)
self.end_recv_time = time.time()
self.poll_gpu = False
response_times = np.array(response_times)
with metrics_lock:
self.metrics_dict["warmup_latency"] = warmup_response_time
self.metrics_dict["average_latency"] = response_times.mean()
self.metrics_dict["max_latency"] = response_times.max()
self.metrics_dict["min_latency"] = response_times.min()
self.metrics_dict["throughput"] = (self.num_iters * self.batch_size) / (
self.end_recv_time - self.start_send_time
)
def _run_gpu_utilization(self, metrics_lock):
"""
This function will poll nvidia-smi for GPU utilization every 100ms to
record the average GPU utilization.
"""
def get_gpu_utilization():
try:
nvidia_smi_output = subprocess.check_output(
[
"nvidia-smi",
"--query-gpu=utilization.gpu",
"--id=0",
"--format=csv,noheader,nounits",
]
)
gpu_utilization = nvidia_smi_output.decode().strip()
return gpu_utilization
except subprocess.CalledProcessError:
return "N/A"
gpu_utilizations = []
while self.poll_gpu:
gpu_utilization = get_gpu_utilization()
if gpu_utilization != "N/A":
gpu_utilizations.append(float(gpu_utilization))
with metrics_lock:
self.metrics_dict["gpu_util"] = torch.tensor(gpu_utilizations).mean().item()
def _send_requests(self):
"""
This function will send one warmup request, and then num_iters requests
to the backend process.
"""
fake_data = torch.randn(self.batch_size, 3, 250, 250, requires_grad=False)
other_data = [
torch.randn(self.batch_size, 3, 250, 250, requires_grad=False)
for i in range(self.num_iters)
]
# Send one batch of warmup data
self.request_queue.put((fake_data, time.time()))
# Tell backend to poll queue for warmup request
self.read_requests_event.set()
self.warmup_event.wait()
# Tell backend to poll queue for rest of requests
self.read_requests_event.set()
# Send fake data
self.start_send_time = time.time()
for i in range(self.num_iters):
self.request_queue.put((other_data[i], time.time()))
def run(self):
# Lock for writing to metrics_dict
metrics_lock = threading.Lock()
requests_thread = threading.Thread(target=self._send_requests)
metrics_thread = threading.Thread(
target=self._run_metrics, args=(metrics_lock,)
)
gpu_utilization_thread = threading.Thread(
target=self._run_gpu_utilization, args=(metrics_lock,)
)
requests_thread.start()
metrics_thread.start()
# only start polling GPU utilization after the warmup request is complete
self.warmup_event.wait()
gpu_utilization_thread.start()
requests_thread.join()
metrics_thread.join()
gpu_utilization_thread.join()
class BackendWorker:
"""
This worker will take tensors from the request queue, do some computation,
and then return the result back in the response queue.
"""
def __init__(
self,
metrics_dict,
request_queue,
response_queue,
read_requests_event,
batch_size,
num_workers,
model_dir=".",
compile_model=True,
):
super().__init__()
self.device = "cuda:0"
self.metrics_dict = metrics_dict
self.request_queue = request_queue
self.response_queue = response_queue
self.read_requests_event = read_requests_event
self.batch_size = batch_size
self.num_workers = num_workers
self.model_dir = model_dir
self.compile_model = compile_model
self._setup_complete = False
self.h2d_stream = torch.cuda.Stream()
self.d2h_stream = torch.cuda.Stream()
# maps thread_id to the cuda.Stream associated with that worker thread
self.stream_map = dict()
def _setup(self):
import time
from torchvision.models.resnet import BasicBlock, ResNet
import torch
# Create ResNet18 on meta device
with torch.device("meta"):
m = ResNet(BasicBlock, [2, 2, 2, 2])
# Load pretrained weights
start_load_time = time.time()
state_dict = torch.load(
f"{self.model_dir}/resnet18-f37072fd.pth",
mmap=True,
map_location=self.device,
)
self.metrics_dict["torch_load_time"] = time.time() - start_load_time
m.load_state_dict(state_dict, assign=True)
m.eval()
if self.compile_model:
start_compile_time = time.time()
m.compile()
end_compile_time = time.time()
self.metrics_dict["m_compile_time"] = end_compile_time - start_compile_time
return m
def model_predict(
self,
model,
input_buffer,
copy_event,
compute_event,
copy_sem,
compute_sem,
response_list,
request_time,
):
# copy_sem makes sure copy_event has been recorded in the data copying thread
copy_sem.acquire()
self.stream_map[threading.get_native_id()].wait_event(copy_event)
with torch.cuda.stream(self.stream_map[threading.get_native_id()]):
with torch.no_grad():
response_list.append(model(input_buffer))
compute_event.record()
compute_sem.release()
del input_buffer
def copy_data(self, input_buffer, data, copy_event, copy_sem):
data = data.pin_memory()
with torch.cuda.stream(self.h2d_stream):
input_buffer.copy_(data, non_blocking=True)
copy_event.record()
copy_sem.release()
def respond(self, compute_event, compute_sem, response_list, request_time):
# compute_sem makes sure compute_event has been recorded in the model_predict thread
compute_sem.acquire()
self.d2h_stream.wait_event(compute_event)
with torch.cuda.stream(self.d2h_stream):
self.response_queue.put((response_list[0].cpu(), request_time))
async def run(self):
def worker_initializer():
self.stream_map[threading.get_native_id()] = torch.cuda.Stream()
worker_pool = ThreadPoolExecutor(
max_workers=self.num_workers, initializer=worker_initializer
)
h2d_pool = ThreadPoolExecutor(max_workers=1)
d2h_pool = ThreadPoolExecutor(max_workers=1)
self.read_requests_event.wait()
# Clear as we will wait for this event again before continuing to
# poll the request_queue for the non-warmup requests
self.read_requests_event.clear()
while True:
try:
data, request_time = self.request_queue.get(timeout=5)
except Empty:
break
if not self._setup_complete:
model = self._setup()
copy_sem = threading.Semaphore(0)
compute_sem = threading.Semaphore(0)
copy_event = torch.cuda.Event()
compute_event = torch.cuda.Event()
response_list = []
input_buffer = torch.empty(
[self.batch_size, 3, 250, 250], dtype=torch.float32, device="cuda"
)
asyncio.get_running_loop().run_in_executor(
h2d_pool,
self.copy_data,
input_buffer,
data,
copy_event,
copy_sem,
)
asyncio.get_running_loop().run_in_executor(
worker_pool,
self.model_predict,
model,
input_buffer,
copy_event,
compute_event,
copy_sem,
compute_sem,
response_list,
request_time,
)
asyncio.get_running_loop().run_in_executor(
d2h_pool,
self.respond,
compute_event,
compute_sem,
response_list,
request_time,
)
if not self._setup_complete:
self.read_requests_event.wait()
self._setup_complete = True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num_iters", type=int, default=100)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--model_dir", type=str, default=".")
parser.add_argument(
"--compile", default=True, action=argparse.BooleanOptionalAction
)
parser.add_argument("--output_file", type=str, default="output.csv")
parser.add_argument(
"--profile", default=False, action=argparse.BooleanOptionalAction
)
parser.add_argument("--num_workers", type=int, default=4)
args = parser.parse_args()
downloaded_checkpoint = False
if not os.path.isfile(f"{args.model_dir}/resnet18-f37072fd.pth"):
p = subprocess.run(
[
"wget",
"https://download.pytorch.org/models/resnet18-f37072fd.pth",
]
)
if p.returncode == 0:
downloaded_checkpoint = True
else:
raise RuntimeError("Failed to download checkpoint")
try:
mp.set_start_method("forkserver")
request_queue = mp.Queue()
response_queue = mp.Queue()
read_requests_event = mp.Event()
manager = mp.Manager()
metrics_dict = manager.dict()
metrics_dict["batch_size"] = args.batch_size
metrics_dict["compile"] = args.compile
frontend = FrontendWorker(
metrics_dict,
request_queue,
response_queue,
read_requests_event,
args.batch_size,
num_iters=args.num_iters,
)
backend = BackendWorker(
metrics_dict,
request_queue,
response_queue,
read_requests_event,
args.batch_size,
args.num_workers,
args.model_dir,
args.compile,
)
frontend.start()
if args.profile:
def trace_handler(prof):
prof.export_chrome_trace("trace.json")
with torch.profiler.profile(on_trace_ready=trace_handler) as prof:
asyncio.run(backend.run())
else:
asyncio.run(backend.run())
frontend.join()
metrics_dict = {k: [v] for k, v in metrics_dict._getvalue().items()}
output = pd.DataFrame.from_dict(metrics_dict, orient="columns")
output_file = "./results/" + args.output_file
is_empty = not os.path.isfile(output_file)
with open(output_file, "a+", newline="") as file:
output.to_csv(file, header=is_empty, index=False)
finally:
# Cleanup checkpoint file if we downloaded it
if downloaded_checkpoint:
os.remove(f"{args.model_dir}/resnet18-f37072fd.pth")