| import numpy as np |
| |
| from . import benchmark |
| |
| |
| class MatMulBench(benchmark.Benchmark): |
| def __init__(self, mode, device, dtype, B, M, N, K): |
| super().__init__(mode, device, dtype) |
| self.B = B |
| self.M = M |
| self.N = N |
| self.K = K |
| self.d1 = self.rand( |
| [B, M, N], device=device, dtype=dtype, requires_grad=self.requires_grad |
| ) |
| self.d2 = self.rand( |
| [B, N, K], device=device, dtype=dtype, requires_grad=self.requires_grad |
| ) |
| self.inputs = [self.d1, self.d2] |
| |
| def forward(self, d1, d2): |
| y = self.matmul(d1, d2) |
| return y |
| |
| def reference(self): |
| return np.matmul(self.numpy(self.d1), self.numpy(self.d2)) |
| |
| def config(self): |
| return [self.B, self.M, self.N, self.K] |
| |
| @staticmethod |
| def module(): |
| return "batch_matmul" |
| |
| def memory_workload(self): |
| if self.mode == "fwd": |
| sol_count = 1 |
| algorithmic_count = 1 |
| else: |
| sol_count = 1 + 1 |
| algorithmic_count = 1 + (1 + 1) |
| |
| buffer_size = ( |
| self.B * self.M * self.N |
| + self.B * self.M * self.N |
| + self.B * self.N * self.K |
| ) |
| return { |
| "sol": buffer_size * sol_count, |
| "algorithmic": buffer_size * algorithmic_count, |
| } |
| |
| def compute_workload(self): |
| if self.mode == "fwd": |
| count = 1 |
| else: |
| count = 1 + (1 + 1) |
| |
| op_count = 2 * self.B * self.M * self.N * self.K |
| |
| return op_count * count |
| |
| @staticmethod |
| def default_configs(): |
| return [[128, 64, 128, 256]] |
| |
| |
| benchmark.register_benchmark_class(MatMulBench) |