| from . import benchmark |
| |
| |
| class ReduceBench(benchmark.Benchmark): |
| def __init__(self, mode, device, dtype, case, M, N, K, skip_input_transform): |
| super().__init__(mode, device, dtype) |
| self.case = case |
| self.M = M |
| self.N = N |
| self.K = K |
| self._set_skip_input_transform(skip_input_transform) |
| |
| self.inputs = [ |
| self.randn( |
| [M, N, K], device=device, dtype=dtype, requires_grad=self.requires_grad |
| ) |
| ] |
| if case == "row": |
| self.dims = [1, 2] |
| elif case == "mid": |
| self.dims = [0, 2] |
| elif case == "col": |
| self.dims = [0, 1] |
| elif case == "full": |
| self.dims = [0, 1, 2] |
| else: |
| raise ValueError(f"invalid case: {case}") |
| |
| def forward(self, inputs): |
| if self.skip_input_transform: |
| x = inputs |
| else: |
| x = self.add(inputs, 0.001) |
| y = self.sum(x, self.dims) |
| return y |
| |
| def config(self): |
| if self.case == "full": |
| return [self.M * self.N * self.K, self._skip_input_transform_str()] |
| return [self.M, self.N, self.K, self._skip_input_transform_str()] |
| |
| @staticmethod |
| def default_configs(): |
| return [ |
| # [512, 512, 512], |
| [512, 64, 512, "s0"], |
| ] |
| |
| @staticmethod |
| def module(): |
| return "reduce" |
| |
| def memory_workload(self): |
| if self.mode == "fwd": |
| sol_count = 1 |
| algorithmic_count = 1 |
| else: |
| sol_count = (1) + (1) |
| algorithmic_count = 1 + 1 |
| |
| buffer_size = self.M * self.N * self.K |
| return { |
| "sol": buffer_size * sol_count, |
| "algorithmic": buffer_size * algorithmic_count, |
| } |
| |
| def _set_skip_input_transform(self, input_str): |
| # In the test setting, s1 will skip the input transformation, and s0 will not. |
| if input_str == "s0": |
| self.skip_input_transform = False |
| elif input_str == "s1": |
| self.skip_input_transform = True |
| else: |
| raise ValueError(f"invalid skip_input_transform: {input_str}") |
| |
| def _skip_input_transform_str(self): |
| if self.skip_input_transform: |
| return "s1" |
| else: |
| return "s0" |
| |
| |
| class ReduceRowBench(ReduceBench): |
| def __init__(self, mode, device, dtype, M, N, K, skip_input_transform): |
| super().__init__(mode, device, dtype, "row", M, N, K, skip_input_transform) |
| |
| @staticmethod |
| def module(): |
| return "reduce_row" |
| |
| |
| class ReduceMidBench(ReduceBench): |
| def __init__(self, mode, device, dtype, M, N, K, skip_input_transform): |
| super().__init__(mode, device, dtype, "mid", M, N, K, skip_input_transform) |
| |
| @staticmethod |
| def module(): |
| return "reduce_mid" |
| |
| |
| class ReduceColBench(ReduceBench): |
| def __init__(self, mode, device, dtype, M, N, K, skip_input_transform): |
| super().__init__(mode, device, dtype, "col", M, N, K, skip_input_transform) |
| |
| @staticmethod |
| def module(): |
| return "reduce_col" |
| |
| |
| class ReduceFullBench(ReduceBench): |
| def __init__(self, mode, device, dtype, M, skip_input_transform): |
| super().__init__(mode, device, dtype, "full", M, 1, 1, skip_input_transform) |
| |
| def config(self): |
| return [self.M * self.N * self.K, self._skip_input_transform_str()] |
| |
| @staticmethod |
| def default_configs(): |
| return [ |
| [1 << 24, "s1"], |
| ] |
| |
| @staticmethod |
| def module(): |
| return "reduce_full" |
| |
| |
| class Reduce2DBench(benchmark.Benchmark): |
| """ |
| A benchmark class to validate 2 dimensional reduction performance. |
| Only a simple add is fused to induce the fuser and isolate reduction perf. |
| """ |
| |
| def __init__(self, mode, device, dtype, red_dim, dim0, dim1): |
| super().__init__(mode, device, dtype) |
| self.red_dim = red_dim |
| self.dim0 = dim0 |
| self.dim1 = dim1 |
| |
| self.inputs = [ |
| self.randn( |
| [dim0, dim1], |
| device=device, |
| dtype=dtype, |
| requires_grad=self.requires_grad, |
| ) |
| ] |
| |
| if red_dim != 0 and red_dim != 1: |
| raise ValueError(f"invalid reduction dimension: {red_dim}") |
| |
| def forward(self, inputs): |
| x = self.add(inputs, 0.001) |
| y = self.sum(x, [self.red_dim]) |
| return y |
| |
| def config(self): |
| return [self.red_dim, self.dim0, self.dim1] |
| |
| @staticmethod |
| def default_configs(): |
| return [ |
| [1, 640, 524288], |
| ] |
| |
| @staticmethod |
| def module(): |
| return "reduce2d" |
| |
| @staticmethod |
| def input_iterable(): |
| return True |
| |
| def memory_workload(self): |
| assert self.mode == "fwd", "Only the forward operation is modeled!" |
| |
| buffer_size = self.dim0 * self.dim1 |
| if self.red_dim == 0: |
| buffer_size += self.dim1 |
| else: |
| buffer_size += self.dim0 |
| return { |
| "sol": buffer_size, |
| "algorithmic": buffer_size, |
| } |
| |
| |
| class Reduce2DInnerBench(Reduce2DBench): |
| def __init__(self, mode, device, dtype, dim0, dim1): |
| super().__init__(mode, device, dtype, 1, dim0, dim1) |
| |
| @staticmethod |
| def default_configs(): |
| parent_config = Reduce2DBench.default_configs()[0] |
| return [parent_config[1:]] |
| |
| def config(self): |
| parent_config = super().config() |
| return parent_config[1:] |
| |
| @staticmethod |
| def module(): |
| return "reduce2d_inner" |
| |
| |
| class Reduce2DOuterBench(Reduce2DBench): |
| def __init__(self, mode, device, dtype, dim0, dim1): |
| super().__init__(mode, device, dtype, 0, dim0, dim1) |
| |
| @staticmethod |
| def default_configs(): |
| parent_config = Reduce2DBench.default_configs()[0] |
| return [parent_config[1:]] |
| |
| def config(self): |
| parent_config = super().config() |
| return parent_config[1:] |
| |
| @staticmethod |
| def module(): |
| return "reduce2d_outer" |
| |
| |
| benchmark.register_benchmark_class(ReduceRowBench) |
| benchmark.register_benchmark_class(ReduceMidBench) |
| benchmark.register_benchmark_class(ReduceColBench) |
| benchmark.register_benchmark_class(Reduce2DInnerBench) |
| benchmark.register_benchmark_class(Reduce2DOuterBench) |
| benchmark.register_benchmark_class(ReduceFullBench) |
| |
| |
| class DynamicReduce2DBench(benchmark.DynamicShape, Reduce2DBench): |
| """ |
| A benchmark class to validate 2 dimensional reduction performance. |
| Only a simple add is fused to induce the fuser and isolate reduction perf. |
| """ |
| |
| def __init__(self, mode, device, dtype, red_dim, dim0, dim1): |
| benchmark.DynamicShape.__init__(self) |
| Reduce2DBench.__init__(self, mode, device, dtype, red_dim, dim0, dim1) |
| |
| def instantiate_input(self): |
| dim0, dim1 = self.rand_shape([self.dim0, self.dim1]) |
| |
| self.inputs = [ |
| self.randn( |
| [dim0, dim1], |
| device=self.device, |
| dtype=self.dtype, |
| requires_grad=self.requires_grad, |
| ) |
| ] |
| |
| @staticmethod |
| def module(): |
| return "dynamicreduce2d" |
| |
| |
| class DynamicReduce2DInnerBench(DynamicReduce2DBench): |
| def __init__(self, mode, device, dtype, dim0, dim1): |
| super().__init__(mode, device, dtype, 1, dim0, dim1) |
| |
| @staticmethod |
| def default_configs(): |
| parent_config = DynamicReduce2DBench.default_configs()[0] |
| return [parent_config[1:]] |
| |
| def config(self): |
| parent_config = super().config() |
| return parent_config[1:] |
| |
| @staticmethod |
| def module(): |
| return "reduce2d_dynamic_inner" |
| |
| |
| class DynamicReduce2DOuterBench(DynamicReduce2DBench): |
| def __init__(self, mode, device, dtype, dim0, dim1): |
| super().__init__(mode, device, dtype, 0, dim0, dim1) |
| |
| @staticmethod |
| def default_configs(): |
| parent_config = DynamicReduce2DBench.default_configs()[0] |
| return [parent_config[1:]] |
| |
| def config(self): |
| parent_config = super().config() |
| return parent_config[1:] |
| |
| @staticmethod |
| def module(): |
| return "reduce2d_dynamic_outer" |
| |
| |
| benchmark.register_benchmark_class(DynamicReduce2DInnerBench) |
| benchmark.register_benchmark_class(DynamicReduce2DOuterBench) |