| import torch |
| |
| from . import benchmark |
| |
| |
| class SwishBench(benchmark.Benchmark): |
| def __init__(self, mode, device, dtype, M, N): |
| super().__init__(mode, device, dtype) |
| self.M = M |
| self.N = N |
| self.data = self.rand( |
| [M, N], device=device, dtype=dtype, requires_grad=self.requires_grad |
| ) |
| self.inputs = [self.data] |
| self.zeros = torch.zeros(M, N, device=device) |
| self.six = self.zeros + 6.0 |
| self.three = self.zeros + 3.0 |
| self.sixth = self.zeros + 1.0 / 6.0 |
| |
| def forward(self, inp): |
| y = inp * (torch.min(torch.relu(inp), self.six) + self.three) * self.sixth |
| return y |
| |
| def reference(self): |
| return self.numpy(self.forward(self.data)) |
| |
| def config(self): |
| return [self.M, self.N] |
| |
| @staticmethod |
| def module(): |
| return "swish" |
| |
| def memory_workload(self): |
| if self.mode == "fwd": |
| sol_count = 1 + 1 |
| algorithmic_count = 3 + 1 |
| else: |
| sol_count = (1 + 1) + (1 + 1) |
| algorithmic_count = (3 + 1) + (3 + 1) |
| |
| buffer_size = self.M * self.N |
| return { |
| "sol": buffer_size * sol_count, |
| "algorithmic": buffer_size * algorithmic_count, |
| } |
| |
| @staticmethod |
| def default_configs(): |
| return [[128, 1 << 16]] |
| |
| |
| benchmark.register_benchmark_class(SwishBench) |