| import math |
| import torch |
| from torch import Tensor |
| |
| from .optimizer import Optimizer |
| from typing import List, Optional |
| |
| __all__ = ['ASGD', 'asgd'] |
| |
| class ASGD(Optimizer): |
| """Implements Averaged Stochastic Gradient Descent. |
| |
| It has been proposed in `Acceleration of stochastic approximation by |
| averaging`_. |
| |
| Args: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-2) |
| lambd (float, optional): decay term (default: 1e-4) |
| alpha (float, optional): power for eta update (default: 0.75) |
| t0 (float, optional): point at which to start averaging (default: 1e6) |
| weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
| foreach (bool, optional): whether foreach implementation of optimizer |
| is used (default: None) |
| maximize (bool, optional): maximize the params based on the objective, instead of |
| minimizing (default: False) |
| |
| .. _Acceleration of stochastic approximation by averaging: |
| https://dl.acm.org/citation.cfm?id=131098 |
| """ |
| |
| def __init__(self, params, lr=1e-2, lambd=1e-4, alpha=0.75, t0=1e6, weight_decay=0, |
| foreach: Optional[bool] = None, maximize: bool = False): |
| if not 0.0 <= lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 <= weight_decay: |
| raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| |
| defaults = dict(lr=lr, lambd=lambd, alpha=alpha, t0=t0, |
| weight_decay=weight_decay, foreach=foreach, maximize=maximize) |
| super(ASGD, self).__init__(params, defaults) |
| |
| def __setstate__(self, state): |
| super().__setstate__(state) |
| for group in self.param_groups: |
| group.setdefault('foreach', None) |
| group.setdefault('maximize', False) |
| state_values = list(self.state.values()) |
| step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step']) |
| if not step_is_tensor: |
| for s in state_values: |
| s['step'] = torch.tensor(float(s['step'])) |
| eta_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['eta']) |
| if not eta_is_tensor: |
| for s in state_values: |
| s['eta'] = torch.tensor(s['eta']) |
| mu_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['mu']) |
| if not mu_is_tensor: |
| for s in state_values: |
| s['mu'] = torch.tensor(float(s['mu'])) |
| |
| @torch.no_grad() |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Args: |
| closure (Callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| with torch.enable_grad(): |
| loss = closure() |
| |
| for group in self.param_groups: |
| params_with_grad = [] |
| grads = [] |
| mus = [] |
| axs = [] |
| etas = [] |
| state_steps = [] |
| |
| for p in group['params']: |
| if p.grad is not None: |
| params_with_grad.append(p) |
| if p.grad.is_sparse: |
| raise RuntimeError('ASGD does not support sparse gradients') |
| grads.append(p.grad) |
| |
| state = self.state[p] |
| # State initialization |
| if len(state) == 0: |
| state['step'] = torch.tensor(0.) |
| state['eta'] = torch.tensor(group['lr']) |
| state['mu'] = torch.tensor(1.) |
| state['ax'] = torch.zeros_like(p, memory_format=torch.preserve_format) |
| |
| mus.append(state['mu']) |
| axs.append(state['ax']) |
| etas.append(state['eta']) |
| state_steps.append(state['step']) |
| |
| asgd(params_with_grad, |
| grads, |
| axs, |
| mus, |
| etas, |
| state_steps, |
| lambd=group['lambd'], |
| lr=group['lr'], |
| t0=group['t0'], |
| alpha=group['alpha'], |
| weight_decay=group['weight_decay'], |
| foreach=group['foreach'], |
| maximize=group['maximize']) |
| |
| return loss |
| |
| |
| def asgd(params: List[Tensor], |
| grads: List[Tensor], |
| axs: List[Tensor], |
| mus: List[Tensor], |
| etas: List[Tensor], |
| state_steps: List[Tensor], |
| # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 |
| # setting this as kwarg for now as functional API is compiled by torch/distributed/optim |
| foreach: bool = None, |
| maximize: bool = False, |
| *, |
| lambd: float, |
| lr: float, |
| t0: float, |
| alpha: float, |
| weight_decay: float): |
| r"""Functional API that performs asgd algorithm computation. |
| |
| See :class:`~torch.optim.ASGD` for details. |
| """ |
| |
| if foreach is None: |
| # Placeholder for more complex foreach logic to be added when value is not set |
| foreach = False |
| |
| if foreach and torch.jit.is_scripting(): |
| raise RuntimeError('torch.jit.script not supported with foreach optimizers') |
| |
| if foreach and not torch.jit.is_scripting(): |
| func = _multi_tensor_asgd |
| else: |
| func = _single_tensor_asgd |
| |
| func(params, |
| grads, |
| axs, |
| mus, |
| etas, |
| state_steps, |
| lambd=lambd, |
| lr=lr, |
| t0=t0, |
| alpha=alpha, |
| weight_decay=weight_decay, |
| maximize=maximize) |
| |
| |
| def _single_tensor_asgd(params: List[Tensor], |
| grads: List[Tensor], |
| axs: List[Tensor], |
| mus: List[Tensor], |
| etas: List[Tensor], |
| state_steps: List[Tensor], |
| *, |
| lambd: float, |
| lr: float, |
| t0: float, |
| alpha: float, |
| weight_decay: float, |
| maximize: bool): |
| |
| for i, param in enumerate(params): |
| grad = grads[i] |
| grad = grad if not maximize else -grad |
| mu = mus[i] |
| ax = axs[i] |
| eta = etas[i] |
| step_t = state_steps[i] |
| |
| # update step |
| step_t += 1 |
| step = step_t.item() |
| |
| if weight_decay != 0: |
| grad = grad.add(param, alpha=weight_decay) |
| |
| # decay term |
| param.mul_(1 - lambd * eta.item()) |
| |
| # update parameter |
| param.add_(grad, alpha=-eta.item()) |
| |
| # averaging |
| if mu.item() != 1: |
| ax.add_(param.sub(ax).mul(mu)) |
| else: |
| ax.copy_(param) |
| |
| new_eta = torch.tensor(lr / math.pow((1 + lambd * lr * step), alpha)) |
| eta.copy_(new_eta) |
| new_mu = torch.tensor(1 / max(1, step - t0)) |
| mu.copy_(new_mu) |
| |
| |
| def _multi_tensor_asgd(params: List[Tensor], |
| grads: List[Tensor], |
| axs: List[Tensor], |
| mus: List[Tensor], |
| etas: List[Tensor], |
| state_steps: List[Tensor], |
| *, |
| lambd: float, |
| lr: float, |
| t0: float, |
| alpha: float, |
| weight_decay: float, |
| maximize: bool): |
| |
| if len(params) == 0: |
| return |
| |
| if maximize: |
| grads = torch._foreach_neg(grads) |
| |
| # update step |
| torch._foreach_add_(state_steps, 1) |
| |
| if weight_decay != 0: |
| torch._foreach_add_(grads, params, alpha=weight_decay) |
| |
| # decay term |
| eta = etas[0].item() |
| torch._foreach_mul_(params, 1 - lambd * eta) |
| |
| # update parameter |
| torch._foreach_add_(params, grads, alpha=-eta) |
| |
| # averaging |
| for i in range(len(axs)): |
| if mus[i].item() != 1: |
| axs[i].add_(params[i].sub(axs[i]).mul(mus[i])) |
| else: |
| axs[i].copy_(params[i]) |
| |
| # update eta and mu |
| for i in range(len(mus)): |
| new_eta = torch.tensor(lr / math.pow((1 + lambd * lr * state_steps[i].item()), alpha)) |
| etas[i].copy_(new_eta) |
| new_mu = torch.tensor(1 / max(1, state_steps[i].item() - t0)) |
| mus[i].copy_(new_mu) |